A REMARK ON A CONVERSE OF TAYLOR'S THEOREM

BY J. J. RIVAUD

R. Abraham and J. Robbin in **(1)** proved essentially the following

THEOREM A. Let X and Y be normed linear spaces, U an open subset of $X, f_i: U \rightarrow$ $L^{k}(X, Y)$ for $i = 0, 1, \cdots, r$ ($r \ge 0$). For any $x \in U$ and $h \in X$ such that $x + h \in U$ define

$$
\rho(x, h) = f_0(x + h) - \sum_{i=0}^{r} \frac{f_i(x)}{i!} h^i
$$

Suppose that:

(i) *Each* f_i is continuous $(i = 0, 1, \dots, r)$

(ii) $\|\rho(x, h)\| / \|h\|' \to 0$ *as* $(x, h) \to (x_0, 0)$ $(x_0 \in U)$.

Then fo is *of class C' and DYo* = *f.* (i = 1, • • • , *r).*

This result is an extension of the finite dimensional case proved by Glaeser (2) . In this note, we prove that condition (ii) can be relaxed.

THEOREM B. Let X and Y be normed linear spaces, $U \subset X$ an open subset, $f_i: U \to L_i^k(X, Y)$ for $i = 0, 1, \cdots, r$ $(r \geq 0)$ continuous maps and define *p(x, h) as in the above theorem.*

Suppose that for each $x \in U$

$$
\frac{\rho(x,\,h)}{\|\,h\,\|^{r}}\,\to 0\quad as\quad h\to 0.
$$

Then

$$
\frac{\rho(x,\,h)}{\|h\|^r} \to 0 \quad as \quad (x,\,h) \to (x_0\,,\,0) \qquad (x_0 \in U)
$$

The following lemmata are the steps of the proof.

LEMMA 1. Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous map, denoted by

$$
D^{+}f(x) = \overline{\lim}_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}
$$

and

$$
D_{+}f(x) = \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}
$$

If $D^+f(x) \geq 0$ for all $x \in (a, b)$, then f is a non-decreasing monotone map. Anal*ogously if* $D_{+}f(x) \leq 0$ for all $x \in (a, b)$ then f is a non increasing monotone map.

The proof can be found in [3] pp. 98.

LEMMA 2. Let $f:(a, b) \rightarrow \mathbb{R}$ be a map of class C^{r-1} . Suppose that for every 28

 $x \in (a, b)$

$$
\lim_{h\to 0}\frac{f(x+h)-\sum_{i=0}^{r-1}\frac{1}{i!}D^i f(x)h^i}{h^r}=0
$$

Then f is a polinomial of degree $\leq r - 1$.

Proof. We will prove that $D^{+}(D^{r-1}f)(x) \ge 0$ and $D_{+}(D^{r-1}f)(x) < 0$ for all $x \in (a, b)$, by lemma $1 D^{r-1}f$ has to be constant and the lemma follows.

Since f is of class C^{r-1} we have

$$
\rho(x, h) = f(x + h) - \sum_{i=0}^{r-1} \frac{1}{i!} D^i f(x) h^i
$$

=
$$
\int_0^1 \frac{(1-t)^{r-2}}{(r-2)!} [D^{r-1} f(x + th) - D^{r-1} f(x)] h^{r-1} dt
$$

Hence

$$
\frac{\rho(x,h)}{h^r} = \int_0^1 \frac{(1-t)^{r-2}t}{(r-2)!} \left[\frac{D^{r-1}f(x+th) - D^{r-1}f(x)}{th} \right] dt
$$

 $\text{Suppose } D_{+}(D^{r-1}f)(x) \geq \epsilon > 0 \text{ for some } x \in (a, b), \text{ then}$

$$
\frac{D^{r-1}f(x+th)-D^{r-1}f(x)}{th} > \epsilon/2
$$

for *th* small enough, hence

$$
\frac{\rho(x,h)}{h^r} \ge \frac{\epsilon/2}{(r-2)!} \int_0^1 (1-t)^{r-2} \cdot t \, dt > 0
$$

i.e.

$$
\frac{\rho(x,\,h)}{h^r}\geq k\,>\,0
$$

for *h* small enough. This is a contradiction. Analogously if $D^+(D^{r-1}f)$ (x) \leq $- \epsilon < 0$.

COROLLARY. Let X be a normed linear space and $f:(a, b) \rightarrow X$ a C^r map such *that for all* $x \in (a, b)$

$$
\lim_{h\to 0}\frac{f(x+h)-\sum_{i=0}^{r-1}\frac{1}{i!}D^{i}f(x)h^{i}}{h^{r}}=0
$$

Then f is a polynomial of degree $\leq r - 1$.

The proof is obvious.

LEMMA 3. *Let X be a normed linear space and*

$$
f_i:(a, b) \to X \qquad i = 0, 1, \cdots, r
$$

continuous maps such that for every $x \in (a, b)$

$$
\lim_{h\to 0}\frac{f_0(x+h)-\sum_{i=0}^{r}\frac{1}{i!}f_i(x)h^i}{h^r}=0
$$

Then, f₀ is of class c' and $D^i f_0 = f_i$ *(i = 1, ..., r).*

Proof (By induction on *r*). For $r = 1$ the result is trivial. Suppose it is valid for $r-1$. It is clear that f_0, \cdots, f_{r-1} meet the hypothesis of induction then we can suppose

$$
f_i = D^i f_0 \qquad (i = 1, \cdots, r-1)
$$

and

$$
\lim_{h\to 0}\frac{f_0(x+h)-\sum_{i=0}^{r-1}\frac{1}{i!}D^if_0(x)h^i-\frac{1}{r!}f_r(x)h^r}{h^r}=0
$$

Consider the map $g:(a, b) \rightarrow X$ defined by

 $g(x) = \int_{x_0}^{x} \int_{x_0}^{t_r-1} \cdots \int_{x_0}^{t_1} f_r(t_0) dt_0 \cdots dt_{r-1}$

where $x_0 \in (a, b)$ is fixed.

The map *g* is of class *C*^{*r*} and $D'g = f_r$. Let $m(x) = f_0(x) - g(x)$, then *m* is of class C^{r-1} and satisfies the condition of the corollary, hence it is a polynomial of degree $\leq r-1$ and $D^r m = 0$ that implies the lemma.

Proof of theorem B. Let $x \in U$ and $h \in X$ with $\in h \parallel = 1$. It is enough to prove that

$$
\rho(x, \lambda h) = \int_0^1 \frac{(1-t)^{r-1}}{(r-1)!} [f_r(x + t\lambda h) - f_r(x)] (\lambda h)^r dt
$$

because the continuity of *fr* implies that

$$
\frac{\rho(x,\lambda h)}{\lambda^r}\to 0 \quad \text{as} \quad x\to x_0 \quad \text{and} \quad \lambda\to 0.
$$

Define $\varphi_i: (-\epsilon, \epsilon) \to X$ by

$$
\varphi_i(\lambda) = f_i(x + \lambda h)h^i \qquad (i = 0, \cdots, r)
$$

Since

$$
\frac{\varphi_0(\lambda + \mu) - \sum_{i=0}^r \frac{1}{i!} \varphi_i(\lambda) \mu^i}{\mu^n} = \frac{f_0(x' + \mu h) - \sum_{i=0}^r \frac{1}{i!} f_i(x')(\mu h)^i}{\|\mu h\|^n}
$$

where $x' = x + \lambda h$, we have that the conditions of the last lemma are fulfilled by the φ_i , then by the lemma and Taylor's theorem it follows that

$$
\rho(x,\lambda h) = f(x+\lambda h) - \sum_{i=0}^r \frac{1}{i!} f_i(x) (\lambda h^i)
$$

$$
= \varphi_0(\lambda) - \sum_{i=0}^r \frac{1}{i!} \varphi_i(0) \lambda^i
$$

= $\int_0^1 \frac{(1-t)^{r-1}}{(r-1)!} [\varphi_r(t\lambda) - \varphi_r(0)] \lambda^r dt$
= $\int_0^1 \frac{(1-t)^{r-1}}{(r-1)!} [f_r(x+t\lambda h) - f_r(x)](\lambda h)^r dt$.

Observe that a similar result for the remainders in the Whitney's extension theorem [4] is well known to be false.

In some places, Theorem A appears loosely stated (see [5]) apparently implying that in their proof they just need the weaker assumption on the remainder, which is not the case.

CENTRO DE lNVESTIGACION DEL IPN, MEXICO, D. F.

REFERENCES

[1] R. ABRAHAM AND **J.** ROBBIN, Transversal Mappings and Flows, **W.** A. Benjamin, New York, 1967.

[2] G. GLAESER, *Etude de quelques Algebres Tayloriennes,* J. Analyse Math. (1958), 1-118.

[3] H. L. RoYDEN, Real Analysis, second edition (1968), McMillan Company.

- [4] H. WHITNEY, *Analytic extensions of differentiable functions defined on closed sets,* Trans. Amer. Math. Soc. **36** (1934), 369-87.
- [5] E. NELSON, Topics in Dynamics I: Flows, Princeton University Press 1970.