
A REMARK ON A CONVERSE OF TAYLOR'S THEOREM 

BY J. J. RIVAUD 

R. Abraham and J. Robbin in (1) proved essentially the following 

THEOREM A. Let X and Y be normed linear spaces, U an open subset of X, Ji: U -
L/(X, Y) for i = 0, 1, • • • , r (r ?: 0). For any x E U and h E X such that 
x + h E U define 

p(x, h) = fo(x + h) - Li=Jl.~) h' 
i. 

Suppose that: 
(i) Eachfi is continuous (i = 0, 1, • · · , r) 
(ii) II p (x, h) II/ II h II' - 0 as (x, h) - (xo, O) (xo E U). 

Then fo is of class C' and DYo = f. (i = 1, • • • , r). 

This result is an extension of the finite dimensional case proved by Glaeser ( 2). 
In this note, we prove that condition (ii) can be relaxed. 

THEOREM B. Let X and Y be normed linear spaces, Uc X an open subset, 
j.: U - L/(X, Y) for i = 0, 1, • • • , r (r ?: 0) continuous maps and define 
p(x, h) as in the above theorem. 

Suppose that for each x E U 

p(x, h) 
~ -o as h-0. 

Then 

p(x,h) 0 ( h) ( O) lfhF- as x, - Xo, 

The following lemmata are the steps of the proof. 

LEMMA 1. Letf: (a, b) - R be a continuous map, denoted by 

D+f( ) _ 1-. f(x+h) - f(x) 
X - lillh➔O+ h 

and 

D f( ) _ lim f(x+h) - f(x) 
+. X - _h➔O+ h 

(xo E U) 

If D+f(x) ?: 0 for all x E (a, b ), thenf is a non-decreasing monotone map. Anal
ogously if D+f(x) ::; 0for all x E (a, b) thenf is a non increasing monotone map. 

The proof can be found in [3] pp. 98. 

LEMMA 2. Let f: ( a, b) - R be a map of class cr-i. Suppose that for every 
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x E (a, b) 

Then f is a polinomial of degree ~ r - I. 

Proof. We will prove that D+(D'- 1f) (x) ~ 0 and D+(D'- 1f) (x) ~ 0 for 
all x E ( a, b), by lemma I D'-1J has to be constant and the lemma follows. 

Since f is of class C'- 1 we have 

Hence 

p(x, h) = f1 (I - t)'- 2t [D'- 1f(x + th) - D'- 1f(x)] d 
h' 0 (r - 2) ! th t 

Suppose D+(D'- 1f) (x) ~ E > 0 for some x E (a, b), then 

D'- 1f(x + th) - D'- 1f(x) 12 
th > e 

for th small enough, hence 

i.e. 

p(x, h) > e/2 f1 (I - t)'-2•t dt > 0 
h' - (r - 2)! 0 

for h small enough. This is a contradiction. Analogously if D+(D'- 1f) (x) ~ 
- € < 0. 

COROLLARY. Let X be a normed linear space and f: (a, b) - X a C' map such 
thatforallxE (a,b) 

f(x + h) - I:i:i ~ Dif(x)h• 
1. i. 0 
1mh➔o h' = 

Then f is a polynomial of degree ~ r - I. 

The proof is obvious. 

LEMMA 3. Let X be a normed linear space and 

k(a, b) -x i = 0, 1, • • • , r 
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continuous maps such that for every x E ( a, b) 

fo(x + h) - Lt=o \ fi(x)hi 
Ii '1,. 0 
mh➔o h• = 

Then, fo is of class c' and Difo = Ii (i = 1, · · · , r). 

Proof (By induction on r ). For r = 1 the result is trivial. Suppose it is valid 
for r - 1. It is clear that fo , • • • , f,-1 meet the hypothesis of induction then we 
can suppose 

Ii= Difo (i = 1, • • • , r - 1) 
and 

Consider the map g: ( a1 b) - X defined by 

g(x) = f:o f!~-t • • • f !lfr (to) dto • • • dt,_1 

where xo E ( a, b) is fixed. 
The map g is of class er and D'g = fr. Let m(x) = f 0(x) - g(x), then mis 

of class C,- 1 and satisfies the condition of the corollary, hence it is a polynomial 
of degree ::; r - 1 and D' m = 0 that implies the lemma. 

Proof of theorem B. Let x E U and h E X with E h II = 1. It is enough to prove 
that 

<1 r-1 

p(x, Xh) = fl (r-=-tl)! [f,(x + tXh) - fr(x)](Xh)' dt 

because the continuity of fr implies that 

p(x, Ah)_ 0 
x• and x-o. 

Define ll'i: (-E, E) - X by 

Since 
ll'i(X) = fi(x + Xh)hi (i = 0, • • • , r) 

ll'o(X + µ) - Li=O ~ ll'i(X)µ; 
'1,. 

fo(x' + µh) - Li=O ~ fi(x')(µh/ 
i. ---------- = ---------,-;-----=--,-;------

llµhll" µ." 

where x' = x + Xh, we have that the conditions of the last lemma are ful
filled by the ll'i , then by the lemma and Taylor's theorem it follows that 

p(x, Xh) = f(x + Xh) - Li=o \ fi(x) (Xh;) 
'1,. 
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= ~o(A) - L~=o ~ ~i(O):\i 
i. 

1(1-t)r-l r 

= Jo (r _ l)! [~r(t:\) - ~,(0)]A dt 

1 (1 - t)r-l r 

Jo (r _ l)! [f,(x + tAh) - f,(x)](Ah) dt. 

Observe that a similar result for the remainders in the Whitney's extension 
theorem [4] is well known to be false. 

In some places, Theorem A appears loosely stated (see [5]) apparently im
plying that in their proof they just need the weaker assumption on the remain
der, which is not the case. 

CENTRO DE lNVESTIGACION DEL IPN, MEXICO, D. F. 
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