A REMARK ON A CONVERSE OF TAYLOR'S THEOREM

BY J. J. RIVAUD

R. Abraham and J. Robbin in (1) proved essentially the following

THEOREM A. Let X and Y be normed linear spaces, U an open subset of $X, f_i: U \rightarrow U$ $L^{k}_{\mathfrak{s}}(X, Y)$ for $i = 0, 1, \dots, r$ $(r \geq 0)$. For any $x \in U$ and $h \in X$ such that $x + h \in U$ define

$$\rho(x, h) = f_0(x + h) - \sum_{i=0}^r \frac{f_i(x)}{i!} h^i$$

Suppose that:

(i) Each f_i is continuous $(i = 0, 1, \dots, r)$

(ii) $\| \rho(x, h) \| / \| h \|^r \to 0$ as $(x, h) \to (x_0, 0)$ $(x_0 \in U)$.

Then f_0 is of class C^r and $D^i f_0 = f_i$

This result is an extension of the finite dimensional case proved by Glaeser (2). In this note, we prove that condition (ii) can be relaxed.

THEOREM B. Let X and Y be normed linear spaces, $U \subset X$ an open subset, $f_i: U \to L_s^k(X, Y)$ for $i = 0, 1, \dots, r$ $(r \ge 0)$ continuous maps and define $\rho(x, h)$ as in the above theorem.

Suppose that for each $x \in U$

$$\frac{\rho(x, h)}{\|h\|^r} \to 0 \quad as \quad h \to 0.$$

Then

$$\frac{\rho(x, h)}{\|h\|^r} \to 0 \quad as \quad (x, h) \to (x_0, 0) \qquad (x_0 \in U)$$

 $(i=1,\cdots,r).$

The following lemmata are the steps of the proof.

LEMMA 1. Let $f:(a, b) \rightarrow \mathbf{R}$ be a continuous map, denoted by

$$D^+f(x) = \overline{\lim}_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$

and

$$D_{+}f(x) = \underline{\lim}_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

If $D^+f(x) \ge 0$ for all $x \in (a, b)$, then f is a non-decreasing monotone map. Analogously if $D_{+}f(x) \leq 0$ for all $x \in (a, b)$ then f is a non increasing monotone map.

The proof can be found in [3] pp. 98.

LEMMA 2. Let $f:(a, b) \rightarrow R$ be a map of class C^{r-1} . Suppose that for every 28

 $x \in (a, b)$

$$\lim_{h \to 0} \frac{f(x+h) - \sum_{i=0}^{r-1} \frac{1}{i!} D^i f(x) h^i}{h^r} = 0$$

Then f is a polynomial of degree $\leq r - 1$.

Proof. We will prove that $D^+(D^{r-1}f)(x) \ge 0$ and $D_+(D^{r-1}f)(x) \le 0$ for all $x \in (a, b)$, by lemma 1 $D^{r-1}f$ has to be constant and the lemma follows.

Since f is of class C^{r-1} we have

$$\rho(x,h) = f(x+h) - \sum_{i=0}^{r-1} \frac{1}{i!} D^{i} f(x) h^{i}$$
$$= \int_{0}^{1} \frac{(1-t)^{r-2}}{(r-2)!} [D^{r-1} f(x+th) - D^{r-1} f(x)] h^{r-1} dt$$

Hence

$$\frac{\rho(x,h)}{h^r} = \int_0^1 \frac{(1-t)^{r-2}t}{(r-2)!} \left[\frac{D^{r-1}f(x+th) - D^{r-1}f(x)}{th} \right] dt$$

Suppose $D_+(D^{r-1}f)$ $(x) \ge \epsilon > 0$ for some $x \in (a, b)$, then

$$\frac{D^{r-1}f(x+th) - D^{r-1}f(x)}{th} > \epsilon/2$$

for th small enough, hence

$$\frac{\rho(x, h)}{h^r} \ge \frac{\epsilon/2}{(r-2)!} \int_0^1 (1-t)^{r-2} \cdot t \, dt > 0$$

i.e.

$$\frac{\rho(x, h)}{h^r} \ge k > 0$$

for h small enough. This is a contradiction. Analogously if $D^+(D^{r-1}f)(x) \leq -\epsilon < 0$.

COROLLARY. Let X be a normed linear space and $f:(a, b) \to X \ a \ C^r$ map such that for all $x \in (a, b)$

$$\lim_{h \to 0} \frac{f(x+h) - \sum_{i=0}^{r-1} \frac{1}{i!} D^i f(x) h^i}{h^r} = 0$$

Then f is a polynomial of degree $\leq r - 1$.

The proof is obvious.

LEMMA 3. Let X be a normed linear space and

$$f_i:(a, b) \to X$$
 $i = 0, 1, \cdots, r$

continuous maps such that for every $x \in (a, b)$

$$\lim_{h \to 0} \frac{f_0(x+h) - \sum_{i=0}^r \frac{1}{i!} f_i(x)h^i}{h^r} = 0$$

Then, f_0 is of class c^r and $D^i f_0 = f_i$ $(i = 1, \dots, r)$.

Proof (By induction on r). For r = 1 the result is trivial. Suppose it is valid for r - 1. It is clear that f_0, \dots, f_{r-1} meet the hypothesis of induction then we can suppose

$$f_i = D^i f_0$$
 $(i = 1, \dots, r-1)$

and

$$\lim_{h \to 0} \frac{f_0(x+h) - \sum_{i=0}^{r-1} \frac{1}{i!} D^i f_0(x) h^i - \frac{1}{r!} f_r(x) h^r}{h^r} = 0$$

Consider the map $g:(a, b) \to X$ defined by

 $g(x) = \int_{x_0}^x \int_{x_0}^{t_{r-1}} \cdots \int_{x_0}^{t_1} f_r(t_0) dt_0 \cdots dt_{r-1}$

where $x_0 \in (a, b)$ is fixed.

The map g is of class C^r and $D^r g = f_r$. Let $m(x) = f_0(x) - g(x)$, then m is of class C^{r-1} and satisfies the condition of the corollary, hence it is a polynomial of degree $\leq r - 1$ and $D^r m = 0$ that implies the lemma.

Proof of theorem B. Let $x \in U$ and $h \in X$ with $\in h \parallel = 1$. It is enough to prove that

$$\rho(x, \lambda h) = \int_0^1 \frac{(1-t)^{r-1}}{(r-1)!} [f_r(x+t\lambda h) - f_r(x)](\lambda h)^r dt$$

because the continuity of f_r implies that

$$rac{
ho(x,\,\lambda h)}{\lambda^r}
ightarrow 0 \ \ ext{as} \ \ x
ightarrow x_0 \ \ ext{and} \ \ \lambda
ightarrow 0.$$

Define $\varphi_i: (-\epsilon, \epsilon) \to X$ by

$$\varphi_i(\lambda) = f_i(x + \lambda h)h^i$$
 $(i = 0, \dots, r)$

Since

$$\frac{\varphi_0(\lambda+\mu) - \sum_{i=0}^r \frac{1}{i!} \varphi_i(\lambda)\mu^i}{\mu^n} = \frac{f_0(x'+\mu h) - \sum_{i=0}^r \frac{1}{i!} f_i(x')(\mu h)^i}{\|\mu h\|^n}$$

where $x' = x + \lambda h$, we have that the conditions of the last lemma are fulfilled by the φ_i , then by the lemma and Taylor's theorem it follows that

$$\rho(x, \lambda h) = f(x + \lambda h) - \sum_{i=0}^{r} \frac{1}{i!} f_i(x) (\lambda h^i)$$

$$= \varphi_{0}(\lambda) - \sum_{i=0}^{r} \frac{1}{i!} \varphi_{i}(0) \lambda^{i}$$

$$= \int_{0}^{1} \frac{(1-t)^{r-1}}{(r-1)!} [\varphi_{r}(t\lambda) - \varphi_{r}(0)] \lambda^{r} dt$$

$$= \int_{0}^{1} \frac{(1-t)^{r-1}}{(r-1)!} [f_{r}(x+t\lambda h) - f_{r}(x)] (\lambda h)^{r} dt$$

Observe that a similar result for the remainders in the Whitney's extension theorem [4] is well known to be false.

In some places, Theorem A appears loosely stated (see [5]) apparently implying that in their proof they just need the weaker assumption on the remainder, which is not the case.

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D. F.

References

 R. ABRAHAM AND J. ROBBIN, Transversal Mappings and Flows, W. A. Benjamin, New York, 1967.

[2] G. GLAESER, Étude de quelques Algébres Tayloriennes, J. Analyse Math. (1958), 1-118.

[3] H. L. ROYDEN, Real Analysis, second edition (1968), McMillan Company.

- [4] H. WHITNEY, Analytic extensions of differentiable functions defined on closed sets, Trans. Amer. Math. Soc. 36 (1934), 369-87.
- [5] E. NELSON, Topics in Dynamics I: Flows, Princeton University Press 1970.