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1. Introduction 
In [7] R. D. Nussbaum gave a characterization of the essential spectral 

radius re(T) of F. Browder essential spectrum ue(T), of a bounded 
linear operator T defined on a Banach space X. The basic tool used 
there was K. • Kuratowski measure of non-compactness [5] and 
Goldenstein-Gohberg-Markus ball measure of non compactness [3]. The 
object of this note is to relate some of the concepts and results in [7] to the 
concepts of approximation numbers and n-diameters which are due to A. 
Pietsch [8] and A. N. Kohnogoroff [ 4] respectively (see propositions 6 and 7). 
Also we will give another characterization of the essential spectral radius re( T) 
(Proposition 4), and relate this result to P. Enflo solution of the basis problem 
[2] in the following way: Let X be a Banach space and let L(X) the Banach 
algebra of all bounded linear operators in X. Denote by F(X) and K(X) the two 
sided ideals in B(X) consisting of all operators of finite rank and all compact 
operators, respectively. Then K(X) is closed and F(X) ~ K(X). A long outstand­
ing open question has been to characterize the closure A(X) of F(X) in L(X). 
In this direction I. Maddaus [6] proved that if X has a Schauder basis, then 
A(X) = K(X). However, a recent result of P. Enflo [2] gives an example of a 
separable reflexive space X where A(X) ¥- K(X). Now, a consequence of 
Proposition 5 in this work is the following 

THEOREM: Let X be a Banach space and consider the Banach algebras 
X = L(X)/K(X) and X = L(X)/A(X). Then for every T E L(X) we have: 
spectral radius of ('I') = spectral radius of ('I') = re(T), where 'i' = T + K(X) 
andT= T+A(X). 

This is interesting in view of Enflo's result which assures the existence of 
Banach spaces X for which .4.(X) ¥-K(X). 

For the sake of completeness we give explicitly some elementary definitions. 
Let X be a complete metric space and A a bounded subset of X. Following 
Kuratowski [5], we define y(A), which we shall call the measure of noncom­
pactness of A, to be inf { d > O; A can be covered by finitely many sets of 
diameter ::: d} . 

If A and X are as above and S is a nonempty subset of X, following 
Goldenstein, Gohberg and Markus [3] we define ys(A), which we shall call the 
ball measure of non-compactness of A inS, to be inf {r > O; A can be covered 
by finitely many balls with centers in S and radii :S r}. 

If S = X we simply write yx = y. The reason for this terminology is simple, 
since a complete metric space is compact iff it is totally bounded: y(A) = 0 iff 
y(A) = 0 iff A is relatively compact. 
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If X and Y are complete metric spaces and f :X - Y is a continuous function, 
we say that f is a k-set contraction if for every bounded set A in X, yy(f(A)) s 
kyx(A), and we say that f is a ball-k-set contraction if fr(f(A)) s kyx(A) for 
every bounded set A in X. We define 

y(f) = inf {k; f is a k-set contraction} and 

y(f) = inf {k; f is a ball-k-set contraction} . 

Let X be a normed space and Y be a Banach space. We denote by L(X, Y) 
the Banach space of all bounded linear operators from X to Y, and by K(X, Y) 
the Banach space of all compact linear operators from X to Y. If X = Y we 
simply write L(X) = L(X, X) and K(X) = K(X, X). If Xis a Banach space and 
if g = L(X)/K(X) denotes the Calkin algebra together with the usual norm 
II T II = inf { II T + K II; KE K(X)} (TE L(X)), then it can be shown [7] that 
y( T> s 11 t II . 

Now, let T be a closed, densely defined linear operator on a Banach space X. 
F. E. Browder [1] defined the essential spectrum o'e(T) of T, to be the set of 
>. E o(T), the spectrum of T, such that at least one of the following conditions 

• hold: (1) R(>. - T), the range .of A - T, is not closed; (2) A is a limit point of 
o (T); (3) Ure1 N((>. - T)R) is infinite dimensional, where N(T) denotes the 
nullspace of a linear operator T. Browder proved that Ao $ oe( T) iff for some 
I, > 0, A is in the resolvent set of T for O < II A - Ao II < 8 and the Laurent 
expansion of (A - T)- 1 around Ao has only a finite number of non-zero 
coefficients with negative indices. • 

The main result in [7] is the following: 

THEOREM. (Nussbaum): Let X be a (complex) Banach space and TE L(X). 
If we define the essential spectral radius of T to be 

re(T> = sup {l">-1; A E Oe(T)}, 

then 

re( T) = lim,._.,., ( y( Tn)) 1/n = limn_,,., ( y( Tn)) 1/n = lim,._.,., ( II f n II ) 1/n 

In particular, we see that the spectral radius of the element T of the Banach 
algebra g is precisely the essential spectral radius of the linear operator 
TEL(X). 

2. Another characterizati~n of re(T> 

If X is a metric space we denote the open ball centered at x E X and radius 
r > 0 by Br (x). We let B = B1(0), if Xis normed .. The following concept was 
used by A. Pietsch in [8]: Let X and Y be normed spaces. For every integer n 
:::: 0 we let Fn(X, Y) = {TE L(X, Y); dim (T(X)) s n}, and F(X, Y) = Un;a0 

Fn(X, Y). Then F(X, Y) is the vector subspace of L(X, Y) consisting of all 
linear operators of finite rank. if T E ~(X, Y>. we define the approxima­
tion number of T of order n, as the number an(T> = inf { II T - F II; 
FE Fn(X, Y)}. It is clear that II T II = ao(T) =::: a1(T) =::: • • • =::: an(T> =::: • • • . 
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Now let A(X, Y) be the closure of the set F(X, Y) in L(X, Y). Then we have 

PROPOSITION 1: Let X and Y be Banach spaces. For every T E L(X, Y) we 
define a.(T) = limn-+x a.n(T). 
Then we have: 
(a) O'.n(T) = 0 if{ TE Fn(X, Y). 
(b) a.(T) = 0 if{ Tis approximable, in the operator norm, by linear operators 
of finite rank. In particular A(X, Y) = {TE L(X, Y); a.(T) = 0} k K(X, Y). 
(c) II 1' II s a.n(T) for every n 2::: 0, and hence 111' II s a.(T) s II T II . 
(d) TE L(X, Y) and FE Fn(X, Y) imply that a.n(T + F) = a.n(T), and hence 
a.(T + F) = a.(T). 

Proof (a), (b) and (d) follow immediately from the definitions of O'.n and a.. 
(c) We have from Fn(X, Y) k K(X, Y) that 111' 11 = inf { 11 T + K 11 ; KE K(X, 
Y)} s inf { II T - F II ; FE Fn(X, Y)} = O'.n(T). 

PROPOSITION 2: Let X and Y be Banach spaces. Then: 
(a) a. is a continuous seminorm on L(X, Y) 
{b) a.(T + S) = a.(T), for every TE L(X, Y) and SE A(X, Y). 
(c) If X = Y and if S, TE L(X), then a.(ST) s a.(S) a.(T). 

Proof: (a) In [8; 121-122] it is shown that O'.n(AT) = IAla.n(T) and O'.m+n(S + T) 
S a.m(S) + a.n(T). If we let m, n - oo we obtain a.(AT) = IAia.(T) and a.(S + T) 
s a.(S) + a(T). 
Thus a. is a seminorm on L(X, Y). That it is continuous follows from the 
obvious inequalities la.(S) - a.(T) Is a.(S - T) s 11 S - T 11 . 
(b) Let TE L(X, Y) and SE A(X, Y). Then there is a sequence {Sm} in F(X, 
Y) such that II S - Sm II - 0 as m - oo, and since a. is continuous we have 
from Proposition 1 (d) a.(T + S) = limm-+x a.(T + Sm) = a.(T). 
(c) In [8; 122] it is shown that O'.m+n(ST) S a.m(S)a.n(T). If we let m, n-oo we 
obtain the desired result. 

PROPOSITION 3: Let X be a Banach space and let TE L(X). 
(a) The limit limn-+x (a.(Tn))I/n exists and equals infn>-0 (a.(Tn))11n If we denote 
this limit by a(T), then a(T) s r 0 (T) and a(T} s a(T), where r 0 (T) denotes 
the spectral radius of T. 
(b) If FE F(X) then a(T + F) = a(T). 

Proof: (a) The proof that limn_.x (a.(Tn))11n = infn>-0 (a.(Tn))l/n is a standard 
argument (see, for example, [9; 212]). One only needs Proposition 2 (c) and the 
fact that a.(T) ::=::: 0 for TE L(X), to get the desired result. The inequalities are 
obvious. 
(b) If F E F(X) then we can write (T + Fr = Tn + Fn, where Fn is a linear 
operator of finite rank. Hence from Proposition 1 (d) we have a.((T + Ft) = 
a.(Tn + Fn) = a.(Tn), n 2::: O; and this implies that a(T + F) = a(T). 

PROPOSITION 4: If Xis a Banach space and TE L(X), then 

r.(T) = ~x (a.(Tn))l/n 
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Proof: From Proposition 1 (c) we have ( II 'Jin II fin =5 (a(Tn))1./n (n > O); and 
hence from Nussbaum's theorem and Proposition 3 (a) we obtain re(T) =5 a 
(T). Given r > re(T), it is shown in [7] (Lemma 6) that there is an FE Fn(X), 
for some n ~ 0, such that TF = FT and ra(T + F) =5 r. Combining this with the 
inequality above and with Proposition 3 we obtain r ~ ra(T + F) ~ a(T + F) 
= a(T) ~ re(T). Since we can taker arbitrarily close to re(T), we conclude that 
re(T) = a(T). 

Now, recall that we have A(X) = {TE L(X); a(T) = O} (Proposition 1 (b)), 
A(X) k K(X) andA(X) is a closed two sided ideal of the Banach algebraL(X). 
Consider the quotient algebra X = L(X)/A(X), together with the norm 111' II 
= inf { II T' + S II; SE A(X)}, where 1' = T + A(X). Then Xis a Banach 
algebra, and if A(X) = K(X), theng = X. 

PROPOSITION 5: Let TE L(X). Then: 
(a) 111' II = a(T). 
(b) limn .... ac ( II tn II )11n = limn .... oc ( 11 'l'n II )11n = re(T). i.e., the spectral radius of 
'1' EX and 1' E X coincide. 

Proof. (a) Since a(T) = inf { II T- F II ; FeF(X)} and F(X) k A(X), then we 
have a(T) ~ 111' II . Now, let T/ > 111' II and e > 0 such that T/ > e > 111' II . 
Then there is a SE A(X) such that II T- S II <~-But SeA(X) implies that 

there is a U E F(X) such that II S - U II < ~-

Adding these two inequalities we obtain a(T) =5 11 T - U II =5 II T - S II + 
II S - U II . < e < T/· Since we can choose 11 arbitrarily close to 111' II we 

conclude that 111' II ~ a(T). 
(b) immediate from (a) and Proposition 4. 

3. Some related results 
We start with the following concept due to Kolmogoroff [ 4]: Let X be a 

normed space and F a subspace of X. If A is a bounded subset of X and n ~ 0 
is an integer we define 8n(F; A), which we shall call then-diameter of A in F, 
to be inf {8 > O; A k 8B + G, where G is. a subspace of F with dimension 
=:;; n}. It is clear that &(F; A) ~ 81.(F; A) ~ • • • ~ 8n(F; A) ~ • • •. If F = X we • 
simply write 8n(A) = 8n(X; A), n ~ 0. 

PROPOSITION 6: Let X be a Banach space and F a substance of X. If for 
every bounded set A in X we let 8(F; A) = limn.... .. 8n(F; A), then 8(F; A) = 
YF(A). 

Proof. Let r > YF(A), then there are points Xi,\. ·, XneF such that A k Uf-1 
(x; + rB). If we let G be the subspace spanned by the vectors x1 • • ·, Xn, then 
Gk F, .dim (G) =:;; n and A k rB + G. Thus 8(F; A) =:;; 8n(F; A) =:;; r; and since 
r is arbitrary we must have 8(F; A) =5 j,(A). 

Now let e > 0 be given and let a= 8(F; A},+ e. Then there is an n ~ 0 such 
that 8n(F; A)< a. Hence there exists a subspace G of Fwith dim (G) =:;; n such 
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that A k aB+G. Let xeA., then we can write x = ay + z, yeB, zeG. Thus II z II 

::::: a II y II + II x II ::::: a + II x 11 ; and since xeA. k /3B for some /3 > 0 large 
enough, we must have II z II ::::: a + /3 i.e., zeU = G n (a+ /3)B. Since U is 
totally bounded in G there exists points x1, • • ·, XnEU such that U k V;'=1 
(x; + e(B n G)) k U7=1 (x; + EB). Thus x = ay + zeaB +Uk V;'=1 (x; + (a+ 
e)B), where X1, • • ·, XnEF. Hence y F(A) ::::: a + e = 8(F; A) + 2e. Since E > 0 is 
arbitrary our proof is complete. 

The following result relates the concepts of approximation numbers of order 
n, n-diameters and ball measure of noncompactness. 

PROPOSITION 7: Let X and Y be Banach spaces and let TEL(X, Y). Denote 
by Bx and By the unit balls in X and Y respectively. 
Then: 
(a) an(T) 2:: 8n(T(Bx))(n 2:: 0), and hence a(T) 2: 8(T(Bx)) = y(T(Bx)) = y(T). 
(b) If Y is a Hilbert space, then an(T) = 8n(T(Bx)) (n 2:: 0), and hence 
a(T) = 8(T(Bx)) = y(T(Bx)) = y(T). 

Proof: (a) from [7; 474] we have y(T) = y(T(Bx)). Thus from Proposition 6 
we have 8(T(Bx)) = y(T(Bx)) = y(T). From [8; 148] we obtain 8n(T(Bx)) .::;:: 
an(T), and hence 8(T(Bx))::::: a(T). 
(b) Let p > 8n(T(Bx)), then there is a 8 > 0 with 8n(T(Bx)) ::::: 8 < p and a 
subspace G of H with dim ( G) ::::: n such that T(Bx) k 8By + G. Let P: Y - G 
the orthogonal projection. Given x e Bx we can write T(x) = 8y + z, ye By, 
z e G. Since T(x) - PT (x) is orthogonal to PT(x) - z we.obtain 82 2: II 8 y 112 

= II T(x) - z 112 = II PT(x) - z 112 + II T(x) - PT(x) 112 ~ II T(x) - PT(x) II 2, 

xEBx. Thus we have II T- PT II :::::8, where PTeFn(X, Y); and h~nce an(T)::::: 
II T- PT 11 ::::: 8 < p. Since pis arbitrary we conclude that an(T)::::: 8n(T(Bx)). 

Since Te L(X, Y) is compact iff y(T) = 0, then we see that the identity 
a(T) = y(T) in Proposition 6 (b) is a generalization of the following well known 
result: Let X be a Banach space and Y be Hilbert space. If TEL(X, Y), then T 
is compact iff it can be approximated, in the operator norm, by linear operators 
of finite rank. 

lNSTITUTO DE lNVESTIGACIONES EN MATEMATICAS APLICADAS Y EN 

SISTEMAS. UNIVERSIDAD NACIONAL AUTONOMA .DE MEXICO. 
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