
LIMIT THEOREM FOR CERTAIN RANDOM MOTIONS OF Ir1 

BY LUIS G. GOROSTIZA 

1. Introduction 

We consider in this paper a general type of random motions of Euclidean 
space Rd that are motivated by certain physical phenomena. The object of the 
paper is to obtain a functional central limit theorem for such random motions. 
In Section 2 we define the motions, and state the limit theorem; this result 
contains as a special case the central limit theorem for random displacements 
of Rd ([18], [16], [9]). Section 3 concerns the proof of the theorem. In Section 
4 we consider the physical problem that led us to this investigation, and discuss 
how the limit theorem may possibly yield approximations of boundary crossing 
probabilities for certain problems in seismological engineering. 

2. Random motions and limit theorem 

Let 

Rd= d-dimensional Euclidean space (d ~ 1), 

W = the group of rigid motions of Rd, 

o/L = the group of (proper and improper) rotations of Rtl, 

'Y = the group of parallel translations of Rd (isomorphic to Rd). 

It is well-known that an element g E W may be written as g = v(g)u(g) (with 
v(g) acting first), where u(g) E o/L and v(g) E 'Y. If we represent translations v 
E 'Y by column-vectors V, and rotations u E o/L by orthogonal matrices U, then 
the product g(n) = g1 • • • gn, with g; = V;U;, U; E 11/i, V; E r, i = 1, · · ·, n, is 
written as g(n) = v(n)u(n), with u(n) E o/L and v(n) E 'Y represented respectively 
by the matrix U(n) = U1 • • • Un, and the vector V(n) = ~7=1 U0 • • • U;-1 V; 
(Uo is the identity matrix I, henceforth omitted in such expressions). 

Let g; = {g;(t), t ~ 0}, i = 1, 2, • • ·, be a sequence of W-valued random 
functions that are independent and identically distributed (i.i.d.). (Rd has the 
norm II XII = (~1=1 xr) 112, X = (x1, ••• 'Xd); (§ is topologized by the operator norm; 
Wis separable and complete). We assume that the trajectories of the rotation 
and translation components of the g; are right-continuous and have left limits 
everywhere. Let T;, i = 1, 2, • • ·, be random times, i.i.d., and independent of 
the g;. A probability space (Sl, §-, P) exists on which all this is defined. 

On (Sl, §-, P) we define a W-valued random function cf> = {c[>(t), t ~ 0} as 
follows. Let So = 0, Sn = ~7=1 T;, n ~ 1, and N(t) = max {n:Sn :S t}, t ~ 0; then 

c[>(t) = g1(T1)g2(T2) ••• gN(t)(TN(t))gN(t)+1(t - SN(t)), t ~ 0 

(which is interpreted as c[>(t) = g1(t) for t < T 1, a convention maintained 
throughout). cf> means that g 1 acts on Rd from time Oto time 81, and for j > 1, 
gi acts on Rdg1(T1) • • • gj-1(Tj-1) from time Sj-1 to time Si. 
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Using the above representations, we write 

cf,(t) = u(t)u(t), 

with u(t) E 6lL and v(t) E r represented respectively by the matrix 

U(t) = U1(T1) ''' UN(t)(TN(t))UN(t)+1(t - SN(t)), 

and the vector 

Ui-l(Ti-1) V;(T;) 
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+ U1(T1) ''' UN(t)(TN(t)) VN(t)+1(t - SN(1J), 

where U;(t) and V;(t) are the representations of Ui(t) and u;(t) such that g;(t) 
= u;(t)u;(t). It is easy to see that the trajectories of the processes U = {U(t), t 
~ 0} and V = {V(t), t ~ 0} are right-continuous with left limits. 

Our aim is to establish a functional central limit theorem for the translation 
process V, for small durations of the g; actions. For this purpose, we consider 
the sequence 

{cf>n(t) = vn(t)un(t), t ~ 0}, n = 1, 2, · · ·, 

corresponding to the following normalizations: T; is replaced by T;/n (hence 
N(t) becomes N(nt)), and the translation component is multiplied by n 112. 
Thus, un(t) E 6lL and if(t) Er are represented respectively by the matrix 

un(t) = ui,1 ... ui.N(nt)U~(t), t~ 0, 

and the vector 

vn(t) = n 112 ~;:g_,t) U!,1 ..• m,i-l~,i + n 112U~,1 ••• U!,N(nt)~(t), t~ 0, 

where 

U!,; = U;(T;/n), Pn,; = V;(T;/n), i ~ I; 

We assume the following conditions: 

I. P[ U1 (0) W ~ W] < 1 for all nontrivial subspaces W of Rd, if d ~ 2, and 
P[U1(0) = 1] < 1 if d = 1. 

2. E sup~s,;tll U1(s) - U1(0)llq :5 (Kt<5+3! 2J)q, for each t and q ~- I, and some 
8, 0 < 8:;; ½. 

3. V;(t) is twice continuously differentiable with bounded second derivative 
uniformly over U, V;(O) = 0 (hence there are no translation jumps), and 
E II V1(0)ll2+8 < oo for some 8 > 0 ( denotes right-derivative with respect to 
time). 

4. T; is not identically 0 (but may have an atom at 0), and ET/+
8 < oo for 

some 8 > 0. 

5. {E sup~s,;1 II Vi(s)/s 112} 1 is uniformly bounded. 
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Without an irreducibility requirement such as Condition 1, the process cf, 
may concentrate on a proper subspace of Rd, if d ~ 2, or not change direction, 
if d = l. Condition 1 implies that I - EU1(0) is nonsingular ([9], Lemma 1). 
Some of the requirements in the other conditions are stronger than necessary, 
in order to simplify calculations here. 

To simplify the notation in the theorem, we denote U = U1(0), V = V1(0), 
and T= T1. 

Some final notation. ~ means weak convergence, B is standard d-dimen­
sional Brownian motion, tr, -i, and I are trace, inverse, and transpose of a 
matrix. 

Under the above conditions, we have the following functional central limit 
theorem. • 

THEOREM. yn ~ aB as n- oo, where 

Remarks. 

1) ~ refers to weak convergence of probability measures on D[O, oo )d with 
the Skorohod topology (see [11], and references in [8], [9]). This space is 
needed in the proof. 

2) With T = l, the theorem contains the functional central limit theorem of 
[9], and a2 has the same form. 

3) The special case T = l and t = l yields a central limit theorem that 
contains the results obtained by Tutubalin [18] in 1967 for d = 2 and 3, and by 
Roynette [16] in 1974, for d ~ 3, both under the condition that the closed 
subgroup generated by the support of the rotation distribution is SO(d), which 
implies that rotations converge, and without identifying a 2. These results are 
also special cases of the theorem obtained by the author [9] (1973), as a special 
case of a functional central limit theorem, which itself is a special case of the 
present theorem. Moreover, to prove the convergence of the translation com­
ponents it is not necessary to use the convergence of the rotation components, 
and in fact the rotations may not converge (see [9]). -

4) Observe that ford= 2 the present process and that of [8] have a common 
special case, but in [8] a 2 has a different expression; it is easy to verify that the 
two are equal. 

5) Other works of related interest are [13] (random products of random 
matrices), and [l], [3], [4], [5], [6], [17], which contain other recent results on 
random displacements of Rd. 

3. Proof. 

The proof employs basically the same methods of [7], [8], [9], [10]. The main 
thing to notice is that yn has essentially the same space structure as the 
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process in [9], and the same time structure as the process in [8]; but there are 
also differences (e.g., in [8] position was a piecewise linear function of time, 
and now it may be nonlinear). Therefore our procedure consists in first 
preparing the problem so that the previous methods may be used, and then in 
combining those methods in an appropriate way. The preparation consists in 
replacing {V"} by simpler processes {V"} that converge to the same limit, and 
to which the methods apply. Once this is done, a consideration of the proofs of 
both [8] and [9] convinces one that {V"}, and hence also {Vn}, converges 
weakly to aB, with some constant a; then it remains to compute a 2, which is 
actually the only thing that we need to do. Here we will carry out the 
replacement of {V"} by {V"}, and leave the reader to see how to combine the 
techniques of the previous works to obtain a2. Forthe sake of brevity, we also 
let the reader think about the function spaces, topologies, and weak conver­
gence theory that are relevant to the proof (see [7], [8], [9], and bibliography 
therein, specially [2]); therefore we make no explicit references to the things 
we are using. 

Let • 

·[r(t) = U1(0) ... UN(nt)+1(0), t;;;:: 0, 

vn(t) = n- 112 }::,ig_•t) U1(0) ... U;-1(0)V;(O)T;, t;;;:: 0. 

LEMMA. ( un, V") ~ if and only if ( ir, V") ~, and in case of convergence 
the limits coincide. 

Proof. It suffices to show that for any E > 0 and T > 0, 
a) P[supo,eis, II un(t) - C,-n(t)II .::: E] - 0 as n - co, and 
b) P[supo,ets,11 V"(t) - V"(t)II.::: e]- 0 as n ➔ co. 

Proof of a): We have 

11 un(t) - O-n(t)II 

= II u::,1 ••• u::,N(nt)m(t) - U1(0) ••• UN(nt)(O)UN(nt)+1(0)II 

S I:r..<rtJ II U;(T;/n) - U;(0)II -f-II UN(nt)+1(t - SN(nt)/n) - UN(nt)+l(0)II, 

where we used the fact that rotations have norm 1. Hence 

P[supo,ets, II if(t) - On(t)II .::: 2EJ 

s P[supo,et:,;,11 UN(nt)+l(t- SN(nt)/n) - UN(nt)+1(0)II.::: E] 

For the first term on the right, we have 

P[supo,ets, II UN(nt)+1(t - SN(ntJfn) - UN(nt)+l (0)II.::: E] 

S P[max1sksN(n,)+l supsk_ifnstsSk/n II Uk(t...., Sk-1/n) - Uk(0)II.::: e]; 
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since N(t)/t - l/ET1 a.s. as t - oo, then (as in [7], Proposition 1), denoting 
v = l/ET1, for 8 > 0 we have 

lim SUPn P[maxi:,;k,;;N(M)+l sups._ifn,;1:SS.1nll Uk(t - Sk-i!n) - Uk(O)II :=:: E] 

S 1 - lim infn (1 - P[SUPo,,tsT 1/n II U1(f) - U1(0)1l :=:: E])n(vr+&) 

• P[sup0,etsT 1/n II U1(t) - U1(0)II < E]; 

but 

P[sup0,et:,;T 1/nll U1(t) - U1(0)l1 < E]- 1, 

by right-continuity of rotations; and 

because 

indeed, 

= n Jo P[sup0,etsx1nll U1(t) - U1(0)II :=:: E]P[T1 E dx] 

s nE-l Jo E SUPO,etsx/n II U1(t) - U1(0)II P[T1 E dx] 

s KE- 1n-<8+112>ET/+ 3! 2 (Condition 2); 

the last part goes to Oas n - oo. 

For the second term, 

P[~f:.<fT1 II U;(T;/n) - U;(O)II :=:: E] s E-1E ~f:.<t1 II U;(T;/n) - U;(O)II 

= E-1EN(n-r)II Ui(Ti/n) - U1(0)II (use [7], Corollary 2) 

s E-1[EN(n-r)1'] 11P[E II Ui(Ti/n) - U1(0)llq]l/q (Holder, 1/p + 1/q = 1) 

s E-1[EN(n-r)1'] 11PKn-<8+3! 2>[ET/ 8+3! 2>q]11q (Condition 2, p large integer, and o 
such that (8 + 3/2)q s 3) 

= E-1K[E(N(nT)/nY']1;pn-<&+112>[ET1<&+a12Jq]1/q; 

the last expression goes to Oas n - oo, because {E(N(n-r)/nY'}n is bounded 
(see [7]). 

Proof of b): We have 

11 V"(t) - vn<t)II 

S n112II ~(t)II 

+ n 112II I:~f'> (U!,1 • • • U!,;-1V:,; - U1(0) • • • U;-1(0)V,{O)T,/n)II 
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$ n112II VN(nt)+1(t - SN(nt>ln)II 

+ n112 ~ff.<yt> II V;(T;/n) - V;(O)T;/n II 

+ n- 112 }:fi,'f 1> ~;:} II Uj(TJ/n) - {h(O)ll 11 V;(O)II T;. 

P[sup0,stc,.T II V"(t) - vn(t)II 2: 3e] 

$ P[sup0,st,,.T n 1I2II VN(nt)+1(t - SN(nt)/n)II 2: E] 

+ P[n 112 ~t'f'> II V;(T;/n) - V;(O)T;/nll 2: E] 
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+ P[n- 112 ~t(fT) ~;:} 11 {h(T1/n) - Uj(O)II II ½(O)II T; 2: E]. 

For the first term, similarly as above, 

lim SUPn P[supo,,;tc,.T n 112II VNcnt)+1(t - SN(nt)/n)II 2: E] 

$ 1 - fun infn (1 - P[supo,,;t<T;/n n 1I2II V1(t)II 2: E]t<•H~) 

• P[supo,,;t,,.T1/n n 112II Vi(t)II < E] 

S 1 - fun infn (1 - P[su~tsT 1/n II V1(t)/tll T1 2: n1I2E]t'"'~ 1 

• P[ SUPo,,;tsT1/n II Vi (t) /t II T1 < n112E ], 

which is O because P[supo,,;isT 1;n II Vi(t)/t II T1 < n112E]--+ 1 (Condition 3), and 

P[supo,,;tsT 1/n II Vi(t)/tll T1 2: n112E] = o(n- 1), 

srnce 

= n Jo P[sup0,stsx/n II Vi(t)/tll X :='. n1I2E]P[T1 E dx] 

S E- 2 Jo (JAn supo,,;ts.,;/n II Vi(t)/tll 2 dP)x 2P[T1 E dx], 

where An= [sup0,sisx/n II Vi(t)/t II x 2:: n112E], and the last expression goes to Oas 
n --+ oo, due to Conditions 3, 4 and 5, and the dominated convergence theorem. 

For the second term, 

P[n 112 ~t'fTJ II Vi(T;/n) - ½(O)T;/n II=== e] :5 P[ ~t(fTJ Tl 2:: Mm 312] 

(Taylor, and Condition 3, Mis a constant) 

:::; (Mrn 312)- 1E ~t<yT> Tl= (Mm 312)- 1EN(n-r)Ti2 (use [7], Corollary 2) 

= (ME)- 1n- 112ET/N(n-r)/n, 
which goes to Oas n--+ oo, because {ETi2N(nr)/n}n is bounded. 
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For the third term, 

P[n- 112 ~~<fT> ~j:} II llJ(T 1/n) - Uj(0)II II V;(O)II T; 2: e] 

:s (m 1I2)- 1E ~~<fT' ~j:t II Uj(T 1/n) - Uj(0)ll 11 Y;(O)II T; 

:s (m 1I2)- 1 EN(m·) 2II U1(Ti/n) -. U1(0)II T2E II Y1 (0)II 

(independence, and [7], Corollary 2) 

:s (en1I2)- 1[EN(m·) 2PJ1IP[E II U1(Ti/n) - U1(0)llq] 11q(ET1q) 11qEII ¥1(0)11 

(Holder, 1/p + 1/ q = I, and independence) 

:s Ke-1[EN(n-r) 2P]11Pn-<8+2>(ET 1 (S+3! 2>q)11q(ET1q) 11qE II Y1(0)II 

(Condition 2, p large integer, and o such that (o + 3/2)q :s 3) 

= Ke-1[E(N(n-r)/n) 2P]11Pn- 8(ET1<8+3! 2>q)11q(ET1q) 11qE II Yi(O)II, 

which goes to O as n - oo. 
The lemma is proved. 

Observe that V" ~ if and only if V" ~, and in case of convergence the limits 
coincide. Hence we need only to study the process 

t 2: 0, 

where we have denoted U1 = Uj(0), and Vj = YJ(O). This is done by combining 
appropriately the methods of [8] and [9], and after a certain amount of work, 
the conclusion is that V" ~ aB, where a2 is as given in the theorem. (Observe 
the similarities of the roles of Vj here and T1 in [9], and T1 here and -r1 in [8]). 

Notice that the convergence of {Vn} is proved without recourse to conver­
gence of { un} . 

4. An application to seismology 

Here we discuss a simple application of the limit theorem to a problem in 
seismological engineering. We only wish to put forth the general idea. The 
practical application of this idea for engineering use would require further 
investigation on the rates of convergence. 

The following problem occurs in engineering. The motion of the ground due 
to an earthquake is modelled by a stochastic acceleration Z = {Z(t), t 2: 0}, the 
ground motion induces a random motion X = {X(t), t 2: 0} with respect to the 
ground at a given point in a structure, and this phenomenon is represented by 
an equation of the formAX(t) = - Z(t), t2: 0, where A is a differential operator. 
It is desired to obtain information about the boundary crossing problem for X, 
i.e., about the probability that some appropriate function of the displacement 
and velocity of the given point in the structure shall exceed, in a given time 
interval, a level or boundary function beyond which damage might occur. One 
approach is to do experimental analysis, using for Z data of past earthquakes, 
which it is hoped are representative of future earthquakes in a given area. 
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Another approach is to do mathematical analysis, using for Z a simple random 
process (or generalized random process, such as white noise) that permits to 
solve the differential equation; in this case Z should contain relevant statistical 
information about earthquakes in a given area. It would be more satisfactory 
if Z resembled earthquake ground acceleration as much as possible, and the 
differential equation could be solved. This is not possible in general, but 
approximations can be obtained by means of the limit theorem, in the following 
way. We describe the earthquake acceleration by a sequence of processes {Zn} 
such that (with a normalization included) Zn converges to a process Zin some 
sense; here Zn represents the "real" earthquake ground acceleration, and Z is 
an asymptotic idealization. Suppose also that the corresponding sequence of 
responses {Xn}, which satisfy AXn = - Zn, converges weakly: Xn => X, and that 
the differential equation holds in the limit: AX = - Z. Suppose further that 
this limit differential equation can be solved. Then, by the theory of weak 
convergence, not only X is an approximation of the "real" response Xn, but 
also the solution of the boundary crossing problem for X is an approximate 
solution of the boundary crossing problem for Xn. 

Concerning earthquake models, it seems, from literature on seismology (e.g. 
[12], [14], [15]), that a certain type of earthquake ground motion may be 
represented adequately as a succession of i.i.d. random velocity waves of i.i.d. 
random durations. This leads us to consider the following random motion of 
Rd. Let F0 be a fixed frame of reference; we will follow the displacement of the 
origin with respect to Fo. Let {U1(t), V1(t), 0 :St :S T1} be the first wave; Vi(t) 
is translation of the origin, and U1(t) is (proper) rotation about the moving 
origin. At time T1 the frame is rotated by U1(T1) and its origin is at V1(T1); let 
Fr 1 denote this displaced frame. The second wave, {U2(t), Vi(t), 0 :S t :S T2}, 
acts on Fr 1 in the same way as the first wave on Fo; hence, referred to Fo, the 
displacement of the origin under the second wave is given by V1(T1) + 
U1(T1) Vi(t - Ti), T1 :S t :S T1 + T2. And so on. Therefore the motion of the 
origin is given by the translation component V of cJ, studied above. Recall that 
yn denotes the normalized process n 112V with the T; divided by n. So, if our 
structure is placed at the origin, we must study AXn = - i:m (right derivative). 
By the limit theorem we know that vn => aB, and we expect that Xn => X, and 
that X satisfies AX= -aB, where B denotes white noise, and a2 is given in the 
theorem. 

For a specific illustration we assume the earthquake takes place in the plane 
R 2, and we consider a one-dimensional linear oscillator excited by Vt (one 
component of 0). The oscillator's displacement relative to the ground, Xn, 
satisfies 

Xn + 2hX.n + po2Xn = - Vt, Xn(O) = Xn(O) = 0, 

where h 2':'. 0 and po > 0 are constants. The solution of the differential equation 
is 

Xn(t) = p- 1 Ji! e-h(t-sl[h sinp(t - s) - p cosp(t - s)]Vt(s) ds, 

Xn(t) = Jb e-h(t-sl[(p - h 2p- 1) sinp(t - s) + 2h cosp(t - s)]V1n(s) ds - Vin(t), 

wherep = po(l - h2po-2)112. (In the undamped case, h = 0 andp = Po). 
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We know that V1 n ~ uB, where Bis now one-dimensional standard Brownian 
mot_ion. Xn and Xn are continuous functions of Vt, therefore Xn ~ X and Xn 
~ X, where (by integration by parts) 

X(t) = - op- 1 JS e-h<t-s) sinp(t - s) dB(s), 

.X(t) = u JS e-hU-•>[hp- 1 sin p(t - s) - cos p(t - s)] dB(s). 

Hence X satisfies 

X + 2hX + pa2X = -uB, X(O) = X(O) = 0. 

This equation is, except for the parameter u, essentially the same one as that 
considered in [15], but here, rather than being proposed as a mathematical 
model for the oscillator excited by an earthquake ground acceleration idealized 
as white noise, the equation represents an asymptotic model that approximates 
the "real" situation. Moreover, the acceleration uB contains in u the precise 
and necessary information about the earthquakes that is needed in this model; 
this information should be obtained from earthquake ground motion statistics 
(or methods for obtaining it may be devised). 

Observe that the limiting earthquake velocity process, uB, depends on the 
velocity waves only through expectations of random variables that are deter­
mined by information from the "starts" of the waves ( V and U in the expression 
of a 2), and the exact shapes of the whole waves are irrelevant. 

It is of interest in engineering to study the boundary crossing problem for 
the random function (see [15J) R = [(pX)2 + (.X + hX) 2]112 . Therefore we 
consider the process Rn= [(pXn)2 + (Xn + hXn)2J112. Clearly, Rn~ R, and in 
particular, for fixed T > 0 and a (continuous) boundary function f, 

P[supo,,;t,s,(Rn(t) - f(t)) > OJ - P[supo,,;1,s,{R(t) - f(t)) > OJ 

(if the underlying Borel set has boundary of limit measure zero). Thus the 
boundary crossing probability for the asymptotic model R is an approximation 
of the boundary crossing probability for the "real" situation Rn. 

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D. F. 
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