A NOTE ON THE LIMITS OF BRANCHING PROCESSES*

BY LUIS G. GOROSTIZA

1. Introduction

Little is known about the relation between the limits of the Bellman-Harris. process and the embedded Galton-Watson process in the supercritical case. However, some information can be obtained in a simple way. In this note we obtain a functional equation for the joint moment generating function of the two limits, and derive some results concerning their conditional expectations.

2. Results

See [2] for definitions.

For a supercritical Bellman-Harris population, let

 Z_t = the population size at time *t*,

 $G =$ the offspring lifetime distribution,

 ξ_n = the size of the *n*-th generation,

 ${p_k}$ = the offspring production distribution, $m = \sum k p_k$ (>1),

 α = the Malthusian parameter (*m* $\int_0^{\infty} e^{-\alpha x} dG(x) = 1$),

 $c = (m - 1)/(\alpha m^2 \int_0^{\infty} x e^{-\alpha x} dG(x)).$

We will assume that $Z_0 = 1$, $p_0 = 0$, $p_k < 1$ for any k, G is non-lattice and $G(0+)$ $=0$.

 ${Z_t, t \geq 0}$ is the *Bellman-Harris process* and ${\xi_n, n = 1, 2, \cdots}$ is the *embedded Galton-Watson process.* It is well-known that *if* $\sum p_k k \log k < \infty$, *then the limits*

$$
\lim_{t\to\infty} c^{-1}e^{-\alpha t}Z_t = W_1 \quad and \quad \lim_{n\to\infty} m^{-n}\xi_n = W_2
$$

exist a.s., are positive a.s., absolutely continuous and have mean I. ([2], p. 9, 52, 172; [3], p. 41).

The question is how are W_1 and W_2 related? (Both are defined on the sample space of all family histories).

PROPOSITION. Let $\psi_{W_1,W_2}(u_1, u_2) = E e^{-(u_1 W_1 + u_2 W_2)}$, $u_1, u_2 \ge 0$. If $\Sigma p_k k \log k$ ∞ , *then* ψ_{W_1,W_2} *satisfies the functional equation*

$$
\psi_{W_1,W_2}(u_1, u_2) = \int_0^{\infty} f[\psi_{W_1,W_2}(u_1 e^{-\alpha x}, u_2 m^{-1})] dG(x),
$$

where f is the offspring production generating function $f(s) = \sum p_k s^k$ *.*

Observe that this functional equation contains both of the well-known equations for W_1 and W_2 (by seting $u_1 = 0$ or $u_2 = 0$; [2], p. 10, 172). The equation for W_1 was obtained by Athreya [1] in a different way.

[•] This work was partially supported by CONACYT grant PNCB-000060

Also, we have $E[W_1 | W_2] = W_2$ a.s., whence, if $\sum k^2 p_k < \infty$, Cov $(W_1, W_2) =$ $\sigma^2/(m^2 - m)$, where σ^2 is the variance of $\{p_k\}$. (The condition $p_k < 1$ for any k is used only in the proof of this result) .

. If G is an exponential distribution, we obtain

$$
E[W_2|W_1] = \frac{1}{f_{W_1}(W_1)} \mathscr{L}^{-1}\{(-\psi_{W_1})^{1/m}\}(W_1) \text{ a.s.},
$$

where f_{W_1} is the density of W_1 , $\psi_{W_1}(u) = E e^{-uW_1}$, and $\mathscr{L}^{-1}(-)(x)$ denotes inverse Laplace transform evaluated at x. (This holds also if $p_k = 1$ for some k).

As a simple exercise applying the latter result one can show that $p_k = 1$ (k $>$ 1) if and only if W_1 has the gamma distribution $\Gamma(1/(k-1), 1/(k-1))$, and this is the only way that W_1 can be gamma distributed.

3. Proofs

We use the following additional notation:

 $Z_t^{\theta i}$ = the number of descendants at time t of the i-th offspring of element *(),*

 Θ_n = the set of elements of the *n*-th generation,

 Θ_n^{θ} = the set of *n-th* generation members that descend from element θ ,

 ζ_n^{θ} = the size of Θ_n^{θ} ,

 $\tau(\theta)$ = the time of death of element θ ,

 \mathcal{F}_n = the σ -algebra generated by the family tree up the *n-th* generation.

LEMMA. Let $X_n = \sum_{\theta \in \Theta_n} e^{-\alpha \tau(\theta)}, n = 1, 2, \cdots$ *If* $\sum p_k k \log k < \infty$, *then*

m $\lim_{n\to\infty} X_n = W_1$ a.s.

Proof. For $t > \max_{\theta \in \Theta_n} \tau(\theta), Z_t = \sum_{\theta \in \Theta_n} \sum_{i=1}^{\xi^{\theta}_{n+1}} Z_t^{\theta_i}$

so
$$
c^{-1}e^{-\alpha t}Z_t = \sum_{\theta \in \Theta_n} e^{-\alpha \tau(\theta)} \sum_{i=1}^{\xi^{\theta} n+i} c^{-1}e^{-\alpha(t-\tau(\theta))}Z_t^{\theta i}
$$
.

Taking limit as $t\to\infty$ we obtain $W_1 = \sum_{\theta \in \Theta_n} e^{-\alpha\tau(\theta)} \sum_{i=1}^{\xi^{\theta} n+1} W_1^{\theta_i}$ a.s., where the $W_1^{\theta i}$ are independent of \mathcal{F}_n and each other, and distributed as W_1 . Hence $E[W_1|\mathcal{F}_n] = m X_n$ a.s., and therefore, by martingale theory, $m X_n \frac{a.s.}{a.s.}$ $E[W_1 | \bigcup_n \mathcal{F}_n] \stackrel{a.s.}{=} W_1.$

Proof of the Proposition. Clearly, $X_n = e^{-\alpha\beta} \sum_{\theta \in \Theta_1} \sum_{\theta' \in \Theta_n^{\theta}} e^{-\alpha(\tau(\theta')-\beta)}$, where β is the lifetime of the original parent, and $m^{-n}\xi_n = m^{-1} \sum_{\theta \in \Theta_1} m^{-(n-1)}\xi_n$. Taking limits as $n \to \infty$, using the lemma, $W_1 = e^{-\alpha \beta} \sum_{\theta \in \Theta_1} W_1^{\theta}$ a.s. and $W_2 = m^{-1} \sum_{\theta \in \Theta_1} W_2^{\theta}$ a.s., where the $(W_1^{\theta}, W_2^{\theta})$ are independent and distributed as (W_1, W_2). Therefore $E e^{-(u_1 W_1 + u_2 W_2)} = E e^{-\sum_{k=1}^{\infty} (u_1 e^{-\alpha k} W_1^{\theta} + u_2 m^{-1} W_2^{\theta})}$.

By conditioning on ξ_1 and β the proof is completed.

Now we take partial derivative with respect to the first argument in the functional equation and obtain, for $u_1 = 0$ and $u_2 = u$, $E e^{-uW_2} W_1 =$ $f'(Ee^{-um^{-1}W_2})Ee^{-um^{-1}W_2}W_1m^{-1}$. On the other hand, $Ee^{-uW_2} = f(Ee^{-um^{-1}W_2})$, so $Ee^{-uW_2}W_2 = f(Ee^{-u m^{-1}W_2})Ee^{-u m^{-1}W_2}W_2m^{-1}$. Therefore, denoting $T(u) =$ $E e^{-uW_2} W_1/ E e^{-uW_2} W_2$, we have $T(u) = T(u m^{-1})$. Hence $T(u) = T(u m^{-n})$ for all *n*, and in conclusion $T(u) = T(0) = 1$ for all $u \ge 0$. That is, $E e^{-uW_2} W_1 =$ $Ee^{-uW_2}W_2, u \ge 0$, or $\int_0^{\infty} e^{-ux}E[W_1 | W_2 = x] f_{W_2}(x) dx = \int_0^{\infty} e^{-ux} x f_{W_2}(x) dx, u \ge 0$, where f_{W_2} is the (strictly positive) density of W_2 . It follows from the uniqueness of the Laplace transform that $E[W_1 | W_2 = x] = x$ Lebesgue a.s., or $E[W_1 | W_2]$ $= W_2$ a.s. Using this, we have $E W_1 W_2 = E W_2 E[W_1 | W_2] = E W_2^2$, so Cov (W₁, W_2) = Var $W_2 = \sigma^2/(m^2 - m)$ ([2], p. 9). (The latter result may be found also by taking mixed derivative in the functional equation. On the other hand, the functional equation does not need to be used; one can start by substituting in $Ee^{-uW_2}W_1$ the expressions for W_1 and W_2 in terms of W_1^{θ} and W_2^{θ} given in the proof of the Proposition).

The proof of the expression for $E[W_2|W_1]$ is similar, but a little more elaborate. The idea is that if the functions Φ and Ψ are defined by $\Phi(u)$ = $u^{1/(m-1)}Ee^{-uW_1}W_2$, $\Psi(u) = u^{m/(m-1)}Ee^{-uW_1}W_1$, $u \ge 0$, then one shows that $\Phi(u)/\Psi(u)^{1/m} = 1$, so $Ee^{-uW_1}W_2 = (Ee^{-uW_1}W_1)^{1/m}$, and the result follows.

CENTRO DE INvESTIGACION DEL **IPN,** MEXICO, D.F.

REFERENCES

- [1] K. B. ATHREYA, *On the supercritical one-dimensional age-dependent branching process*, Ann. Math. Statist., **40,** (1969), 743-763.
- [2] K. B. ATHREYAAND P. NEY, Branching Processes, Springer-Verlag, Berlin, 1972.
- [3] K. B. ATHREYA AND N, KAPLAN, *Convergence of the age distribution in the one-dimensional supercritical age-dependent branching process,* Ann. Probability, 4, 1, (1976), 38-50.