A NOTE ON THE LIMITS OF BRANCHING PROCESSES*

By Luis G. GOROSTIZA

1. Introduction

Little is known about the relation between the limits of the Bellman-Harris
process and the embedded Galton-Watson process in the supercritical case.
However, some information can be obtained in a simple way. In this note we
obtain a functional equation for the joint moment generating function of the
two limits, and derive some results concerning their conditional expectations.

2. Results

See [2] for definitions.
For a supercritical Bellman-Harris population, let
Z: = the population size at time ¢,
G = the offspring lifetime distribution,
£, = the size of the n-th generation,
{px} = the offspring production distribution,
m = Zkp; (>1),
a = the Malthusian parameter (m [§ e **dG(x) = 1),
c=(m—1)/(am® [§ xe ™ dG(x)).
We will assume that Z, = 1, po = 0, pr < 1 for any &, G is non-lattice and G(0+)
= 0.
{Z:, t = 0} is the Bellman-Harris process and {,, n = 1, 2, ---} is the
embedded Galton-Watson process. It is well-known that if Zprklogk < oo,
then the limits

lim,,.c'e™Z, = W, and lim,,.m™", = W,

exist a.s., are positive a.s., absolutely continuous and have mean 1. ([2], p. 9,
52, 172; [3], p. 41).

The question is how are W, and W, related? (Both are defined on the
sample space of all family histories).

PROPOSITION. Let Yw, w,(u1, uz) = Ee”“"* W)y, y, = 0. If Speklogk <
%, then Yw, w, satisfies the functional equation
Yw,wy (w1, w2) = [5 flyw,w,(we™, uym™)]1dG(x),
where f is the offspring production generating function f(s) = Zp.s*.
Observe that this functional equation contains both of the well-known

equations for W, and W; (by seting u; = 0 or u: = 0; [2], p. 10, 172). The
equation for W, was obtained by Athreya [1] in a different way.
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Also, we have E[W,| W] = W, a.s., whence, if Zk’p; < o, Cov (W,, W,) =
o2/(m? — m), where qz is the variance of {p:}. (The condition p; < 1 for any %
is used only in the proof of this result). :

_If G is an exponential distribution, we obtain

1
fw,(Wh)

where fw, is the density of W, yw, (u) = Ee ™™ and :
£ }(x) denotes inverse Laplace transform evaluated at x. (This holds also
if pr = 1 for some k).

As a simple exercise applying the latter result one can show that p, =1 (&
> 1) if and only if W, has the gamma distribution I'(1/(2 — 1), 1/(k — 1)), and
this is the only way that W; can be gamma distributed.

E[W,|Wi] = L {(=dw) V™ (W) as.,

3. Proofs

‘We use the folloWing additional notation:

Z% = the number of descendants at time ¢ of the i-th offspring of element
o,

©, = the set of elements of the n-th generation,

0.’ = the set of n-th generation members that descend from element 6,
¢’ = the size of ©,,

7(6) = the time of death of element 4,

%, = the o-algebra generated by the family tree up the n-th generation.

LEMMA. Let X, = Syeq € “®,n=1,2, ---. If Sppk log k < oo, then
m lim, . X, = Wi as.
Proof. For ¢ > maxses, 7(60), Z: = Sgce, o Z5,

1 - _ 0 . _ .
so ¢ le utZt = Eﬁee,, e ar(6) Ef-l,ﬁ_l c le-u(t—f(ﬂ))thh.

Taking limit as ¢ — o we obtain W, = Syes, €@ 2t W,% as., where the

W% are independent of %, and each other, and distributed as Wi. Hence

E[W,|%#,] = m X, as., and therefore, by martingale theory, m X, a3

E[W1|UnFr] & W
—a(7(§)—B)

Proof of the Proposition. Clearly, X, = e Zsco, Spco’, € , where 8 is
the lifetime of the original parent, and m "¢, = m™' Sgee, m™ "1,
Taking limits as n — o, using the lemma, W, = e ¥ 5,5, W:’ a.s. and W, =
m™! yeo, W, a.s., where the (W%, W/) are independent and distributed as
(Wi, Wa). Therefore Ee™“Witu2W? = Fe e tue™ Wil tumm™iWyh)
By conditioning on &; and 8 the proof is completed.
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Now we take partial derivative with respect to the first argument in the
functional equation and obtain, for u; = 0 and uw, = u, Ee "W, =
f(Ee ") Ee™"™:W,m™ . On the other hand, Ee™*"? = f(Ee™™ ™), so
Ee "W, = f(Ee™ ":)Ee™™ ":Wym™. Therefore, denoting T(u) =
Ee™":W,/Ee™“":W,, we have T(u) = T(um™). Hence T(z) = T(um™) for all
n, and in conclusion T(x) = T(0) = 1 for all u = 0. That is, Ee “":W, =
Ee "W, u=0, or [ e E[W1| W, = x]fw,(x) dx = [T e ““xfw,éx)dx, u =0,
where fw, is the (strictly positive) density of W,. It follows from the uniqueness
of the Laplace transform that E[ W;| W, = x] = x Lebesgue a.s., or E[ W1 | W]
= W, a.s. Using this, we have E W, W, = E W, E[W,| W;] = E W%, so Cov (W,,
W,) = Var W, = o%/(m*® — m) ([2], p. 9). (The latter result may be found also
by taking mixed derivative in the functional equation. On the other hand, the
functional equation does not need to be used; one can start by substituting in
Ee *™:W, the expressions for W, and W, in terms of Wy’ and W5’ given in the
proof of the Proposition).

The proof of the expression for E[W,| W] is similar, but a little more
elaborate. The idea is that if the functions ® and ¥ are defined by ®(u) =
U/ mVEe MW, ¥(u) = ™" VEe "W, u = 0, then one shows that
O(u) /¥ ()™ =1,s0 Ee*"'W, = (Ee “"1W;,)V™ and the result follows.
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