A NOTE ON THE LIMITS OF BRANCHING PROCESSES*

By LUIS G. GOROSTIZA

1. Introduction

Little is known about the relation between the limits of the Bellman-Harris process and the embedded Galton-Watson process in the supercritical case. However, some information can be obtained in a simple way. In this note we obtain a functional equation for the joint moment generating function of the two limits, and derive some results concerning their conditional expectations.

2. Results

See [2] for definitions.

For a supercritical Bellman-Harris population, let

 Z_t = the population size at time t,

G = the offspring lifetime distribution,

 ξ_n = the size of the *n*-th generation,

 $\{p_k\}$ = the offspring production distribution, $m = \sum k p_k \ (>1),$

 α = the Malthusian parameter ($m \int_0^\infty e^{-\alpha x} dG(x) = 1$),

 $c = (m-1)/(\alpha m^2 \int_0^\infty x e^{-\alpha x} dG(x)).$

We will assume that $Z_0 = 1$, $p_0 = 0$, $p_k < 1$ for any k, G is non-lattice and G(0+) = 0.

 $\{Z_t, t \ge 0\}$ is the Bellman-Harris process and $\{\xi_n, n = 1, 2, \cdots\}$ is the embedded Galton-Watson process. It is well-known that if $\sum p_k k \log k < \infty$, then the limits

$$\lim_{t\to\infty} c^{-1} e^{-\alpha t} Z_t = W_1 \quad and \quad \lim_{n\to\infty} m^{-n} \xi_n = W_2$$

exist a.s., are positive a.s., absolutely continuous and have mean 1. ([2], p. 9, 52, 172; [3], p. 41).

The question is how are W_1 and W_2 related? (Both are defined on the sample space of all family histories).

PROPOSITION. Let $\psi_{W_1,W_2}(u_1, u_2) = Ee^{-(u_1W_1+u_2W_2)}$, $u_1, u_2 \ge 0$. If $\Sigma p_k k \log k < \infty$, then ψ_{W_1,W_2} satisfies the functional equation

$$\psi_{W_1,W_2}(u_1, u_2) = \int_0^\infty f[\psi_{W_1,W_2}(u_1e^{-\alpha x}, u_2m^{-1})] dG(x),$$

where f is the offspring production generating function $f(s) = \sum p_k s^k$.

Observe that this functional equation contains both of the well-known equations for W_1 and W_2 (by setting $u_1 = 0$ or $u_2 = 0$; [2], p. 10, 172). The equation for W_1 was obtained by Athreya [1] in a different way.

^{*} This work was partially supported by CONACYT grant PNCB-000060

Also, we have $E[W_1 | W_2] = W_2$ a.s., whence, if $\sum k^2 p_k < \infty$, Cov $(W_1, W_2) = \sigma^2/(m^2 - m)$, where σ^2 is the variance of $\{p_k\}$. (The condition $p_k < 1$ for any k is used only in the proof of this result).

If G is an exponential distribution, we obtain

$$E[W_2|W_1] = \frac{1}{f_{W_1}(W_1)} \ \mathscr{L}^{-1}\{(-\psi_{W_1})^{1/m}\}(W_1) \text{ a.s.},$$

where f_{W_1} is the density of W_1 , $\psi_{W_1}(u) = Ee^{-uW_1}$, and $\mathscr{L}^{-1}\{ \}(x)$ denotes inverse Laplace transform evaluated at x. (This holds also if $p_k = 1$ for some k).

As a simple exercise applying the latter result one can show that $p_k = 1$ (k > 1) if and only if W_1 has the gamma distribution $\Gamma(1/(k-1), 1/(k-1))$, and this is the only way that W_1 can be gamma distributed.

3. Proofs

We use the following additional notation:

 $Z_t^{\theta i}$ = the number of descendants at time t of the *i*-th offspring of element θ ,

 Θ_n = the set of elements of the *n*-th generation,

 $\Theta_n^{\ \theta}$ = the set of *n*-th generation members that descend from element θ ,

 $\xi_n^{\ \theta} = \text{the size of } \Theta_n^{\ \theta},$

 $\tau(\theta)$ = the time of death of element θ ,

 \mathcal{F}_n = the σ -algebra generated by the family tree up the *n*-th generation.

LEMMA. Let $X_n = \sum_{\theta \in \Theta_n} e^{-\alpha \tau(\theta)}$, $n = 1, 2, \cdots$. If $\sum p_k k \log k < \infty$, then

 $m \lim_{n\to\infty} X_n = W_1$ a.s.

Proof. For $t > \max_{\theta \in \Theta_n} \tau(\theta), Z_t = \sum_{\theta \in \Theta_n} \sum_{i=1}^{\xi^{\theta}_{n+1}} Z_t^{\theta_i}$

so
$$c^{-1}e^{-\alpha t}Z_t = \sum_{\theta \in \Theta_n} e^{-\alpha \tau(\theta)} \sum_{i=1}^{\xi^{\theta_{n+1}}} c^{-1}e^{-\alpha(t-\tau(\theta))}Z_t^{\theta i}.$$

Taking limit as $t \to \infty$ we obtain $W_1 = \sum_{\theta \in \Theta_n} e^{-\alpha \tau(\theta)} \sum_{i=1}^{t_{i=1}^{\theta}} W_1^{\theta i}$ a.s., where the $W_1^{\theta i}$ are independent of \mathscr{F}_n and each other, and distributed as W_1 . Hence $E[W_1|\mathscr{F}_n] = m X_n$ a.s., and therefore, by martingale theory, $m X_n \frac{a.s.}{m} = E[W_1|\cup_n \mathscr{F}_n] \stackrel{a.s.}{=} W_1$.

Proof of the Proposition. Clearly, $X_n = e^{-\alpha\beta} \sum_{\theta \in \Theta_1} \sum_{\theta' \in \Theta_n^{\theta}} e^{-\alpha(\tau(\theta')-\beta)}$, where β is the lifetime of the original parent, and $m^{-n}\xi_n = m^{-1} \sum_{\theta \in \Theta_1} m^{-(n-1)}\xi_n^{\theta}$. Taking limits as $n \to \infty$, using the lemma, $W_1 = e^{-\alpha\beta} \sum_{\theta \in \Theta_1} W_1^{\theta}$ a.s. and $W_2 = m^{-1} \sum_{\theta \in \Theta_1} W_2^{\theta}$ a.s., where the $(W_1^{\theta}, W_2^{\theta})$ are independent and distributed as (W_1, W_2) . Therefore $Ee^{-(u_1W_1+u_2W_2)} = Ee^{-\sum_{\theta \in \Theta_1} (u_1e^{-\alpha\beta}W_1^{\theta}+u_2m^{-1}W_2^{\theta})}$.

By conditioning on ξ_1 and β the proof is completed.

Now we take partial derivative with respect to the first argument in the functional equation and obtain, for $u_1 = 0$ and $u_2 = u$, $Ee^{-uW_2}W_1 = f'(Ee^{-um^{-1}W_2})Ee^{-um^{-1}W_2}W_1m^{-1}$. On the other hand, $Ee^{-uW_2} = f(Ee^{-um^{-1}W_2})$, so $Ee^{-uW_2}W_2 = f'(Ee^{-um^{-1}W_2})Ee^{-um^{-1}W_2}W_2m^{-1}$. Therefore, denoting $T(u) = Ee^{-uW_2}W_1/Ee^{-uW_2}W_2$, we have $T(u) = T(um^{-1})$. Hence $T(u) = T(um^{-n})$ for all n, and in conclusion T(u) = T(0) = 1 for all $u \ge 0$. That is, $Ee^{-uW_2}W_1 = Ee^{-uW_2}W_2$, $u \ge 0$, or $\int_0^{\infty} e^{-ux}E[W_1|W_2=x]f_{W_2}(x) dx = \int_0^{\infty} e^{-ux}f_{W_2}(x) dx$, $u \ge 0$, where f_{W_2} is the (strictly positive) density of W_2 . It follows from the uniqueness of the Laplace transform that $E[W_1|W_2 = EW_2E[W_1|W_2] = EW_2^2$, so $Cov(W_1, W_2) = Var W_2 = \sigma^2/(m^2 - m)$ ([2], p. 9). (The latter result may be found also by taking mixed derivative in the functional equation. On the other hand, the functional equation does not need to be used; one can start by substituting in $Ee^{-uW_2}W_1$ the expressions for W_1 and W_2 in terms of W_1^{θ} and W_2^{θ} given in the proof of the Proposition).

The proof of the expression for $E[W_2|W_1]$ is similar, but a little more elaborate. The idea is that if the functions Φ and Ψ are defined by $\Phi(u) = u^{1/(m-1)}Ee^{-uW_1}W_2$, $\Psi(u) = u^{m/(m-1)}Ee^{-uW_1}W_1$, $u \ge 0$, then one shows that $\Phi(u)/\Psi(u)^{1/m} \equiv 1$, so $Ee^{-uW_1}W_2 = (Ee^{-uW_1}W_1)^{1/m}$, and the result follows.

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F.

REFERENCES

- K. B. ATHREYA, On the supercritical one-dimensional age-dependent branching process, Ann. Math. Statist., 40, (1969), 743-763.
- [2] K. B. ATHREYA AND P. NEY, Branching Processes, Springer-Verlag, Berlin, 1972.
- [3] K. B. ATHREYA AND N, KAPLAN, Convergence of the age distribution in the one-dimensional supercritical age-dependent branching process, Ann. Probability, 4, 1, (1976), 38–50.