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1. Introduction 

Little is known about the relation between the limits of the Bellman-Harris. 
process and the embedded Galton-Watson process in the supercritical case. 
However, some information can be obtained in a simple way. In this note we 
obtain a functional equation for the joint moment generating function of the 
two limits, and derive some results concerning their conditional expectations. 

2. Results 

See [2] for definitions. 
For a supercritical Bellman-Harris population, let 

Zt = the population size at time t, 
G = the offspring lifetime distribution, 
~n = the size of the n-th generation, 

{pk} = the offspring production distribution, 
m = ~kpk (>l), 

a= the Malthusian parameter (m Jo e-=dG(x) = 1), 

C = (m - 1)/(am 2 Jo xe-= dG(x)). 
We will assume that Zo = 1, po = 0, Pk < l for any k, G is non-lattice and G(0+) 
=0. 

{Zt, t 2:= O} is the Bellman-Harris process and {~n, n = l, 2, • · ·} is the 
embedded Galton- Watson process. It is well-known that if ~pkk log k < oo, 

then the limits 

exist a.s., are positive a.s., absolutely continuous and have mean I. ([2], p. 9, 
52, 172; [3], p. 41). 

The question is how are W1 and W2 related? (Both are defined on the 
sample space of all family histories). 

PROPOSITION. Let l¥W1,W2(u1, U2) = Ee-<uiWi+uzW2>, U1, U2 2:::: 0. If~pkklogk < 
oo, then i/;w1,w2 satisfies the functional equation 

lfW1,W2(u1, U2) = Jo f[fw1,w/u1e-=, U2m- 1)]dG(x), 

where f is the offspring production generating function f(s) = ~PkSk. 

Observe that this functional equation contains both of the well-known 
equations for W1 and W2 (by seting u1 = 0 or u2 = O; [2], p. 10, 172). The 
equ_ation for W1 was obtained by Athreya [l] in a different way. 
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Also, we have E[W1 I W2] = W2 a.s., whence, if "i:.k2pk < oo, Cov (W1, W2) = 
a2 /(m 2 - m), where a2 is the variance of {pk}. (The condition Pk < 1 for any k 
is used only in the proof of this result) . 

. If G is an exponential distribution, we obtain 

E[W2IW1] = fw/Wi) .Z- 1{(-1P~,J11j(W 1) a.s., 

where fw1 is the density of Wi, l/lw1 (u) = Ee-uw,, and 
.Z- 1 { } (x) denotes inverse Laplace transform evaluated at x. (This holds also 
if Pk = 1 for some k). 

As a simple exercise applying the latter result one· can show that Pk = 1 (k 
> 1) if and only if W1 has the gamma distribution r(l/(k - 1), 1/(k - 1)), and 
this is the only way that W1 can be gamma: distributed. 

3. Proofs 

·we use the.following additional notation: 

Z/Ji = the number of descendants at time t of t4e i-th offspring of element 
(), 

E>n = the set of elements of the n-th generation, 
0/ = the set of n-th generation members that descend from element fJ, 

~ 9 = the size of 0n9, 

T(fJ) = the time of death of element fJ, 
!Fn = the a-algebra generated by the family tree up then-th generation.-. 

LEMMA. Let Xn = "i:,IIE8n e-QT(B), n = 1, 2, .... If'2.pkk log k < oo, then 

m Iim,,,_.,. Xn = W1 a.s. 

Proof. For t > maxeean T(fJ), Z, = "i:.eee,, "2.!t 1 Z/i, 

Taking limit as t-+ oo we obtain W1 = "i:.eean e-aT(9) "i:.t;+ 1 W/i a.s., where the 
W/i are independent of !Fn and each other, and distributed as W1. Hence 

E[Wd!Fn] = m Xn a.s., and therefore, by martingale theory, m Xn a.s. 

E[W1 I Un!Fn] ~- W1. 

Proof of the Proposition. Clearly, Xn = e-o.fl "2.ee01 "2.e·e0~ e-Q(T(fl>-/J>, where /3 is 
the lifetime of the original parent, and m-n~n = m- 1 "2.8e0 1 m-<n-l>~/. 

Taking limits as n-+ oo, using the lemma, W1 = e-Q/J"i:.eea1 Wi° a.s. and W2 = 
m- 1 "2.ee01 W/ a.s., where the (Wi°, W/) are independent and distributed as 
(W1, W2). Therefore Ee-<u1W1+u2W2) = Ee-I:11ee.<u1e-.Pw/+u2'71-IW/'>_ 

By conditioning on ~1 and /3 the proof is completed. 
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Now we take partial derivative with respect to the first argument in the 
functional equation and obtain, for U1 = 0 and U2 = u, Ee-uW2W1 = 
r (Ee-um-lW2)Ee-um-lW2W1m- 1. On the other hand, Ee-uWa = f(Ee-um-lW 2), 80 

Ee-uW2W2 = f (Ee-um-lW2)Ee-um-lW2 W2m- 1• Therefore, denoting T(u) = 
Ee-uW2Wi/Ee-uW 2W2, we have T(u) = T(um- 1). Hence T(u) = T(um-n) for all 
n, and in conclusion T(u) = T(0) = 1 for all u ~ 0. That is, Ee-uw 2W1 = 
Ee-uW2W2, u ~ 0, or Jo e-""'E[W1 I W2 = x]fw2(x) dx = Jo e-""'xfwix> dx, u ~ 0, 
where {w2 is the (strictly positive) density of W2. It follows from the uniqueness 
of the Laplace transform that E[ W1 I W2 = x] = x Lebesgue a.s., or E[ W1 I W2] 
= W2 a.s. Using this, we have E W1 W2 = E W2E[W1 I W2] = E Wl, so Cov (W1, 
W2) = Var W2 = a2/(m 2 - m) ([2], p. 9). (The latter result may be found also 
by taking mixed derivative in the functional equation. On the other hand, the 
functional equation does not need to be used; one can start by substituting in 
Ee-uw 2W1 the expressions for W1 and W2 in terms of W/ and Wl given in the 
proof of the Proposition). 

The proof of the expression for E[W2I W1] is similar, but a little more 
elaborate. The idea is that if the functions <I> and it are defined by <l>(u) = 
u1f(m-l)Ee-uW1W2, 'Y(u) = ~/(m-l)Ee-uW1W1, u ~ 0, then one shows that 
<l>(u)/i'(u) 11m = 1, so Ee-uW 1W2 = (Ee-uW1W1)11m,and the result follows. 
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