
ERGODIC H1 SPACES 

BY ALBERTO DE LA TORREt 

1. Introduction 

Let X be a probability space on which R.n acts as an ergodic flow. Cotlar [ 4] 
proved that one can define Hilbert transforms (n = 1) or Riesz transforms (n 
> 1). These allow to define the space H 1(X) in a fashion analogous to the 
classical case. In this paper we prove that the main properties of H 1(R.n) 
extended to H 1(X). 

For n = 1, the characterization of H 1(X) in terms of maximal functions as 
well as the identification of H 1(X)*, were obtained by Coifman and Weiss [2]. 

In section 3 we extend their results to the general case, n > 1. In section 2 we 
extend to the ergodic case, for n = 1, a decomposition theorem for functions in 
H 1(X), that in the classical case is due to Coifman [1]. 

2. The one dimensional theory 

Let (X, µ) be a probability space. Let (T.), s ER. be an ergodic flow on X; 
i.e., (T.) satisfies: a) Ts+v = T.Tv; b) To= I; c) f(T.x) is measurable on XX R 
whenever f(x) is measurable on X; d) T. is measure preserving for alls; e) the 
only invariant sets are those of measure zero or one. (From now on we will 
identify sets, and functions, that differ only on sets of measure zero). 

LEMMA. Let O C X be a measurable set such that for each x in 0, the set ox 
= {t E R; Ttx E O} is open in R.. Then O can be decomposed in a disjoint 
union of sets, 0 = U I;, where the I;'s are measurable sets such that, for each 
x in I;, the orbit through x is a disjoint union of intervals of length between 
2k and 2k+ 1, and k is an integer depending only on the set l;. (Such as l; will 
be called an "ergodic interval' and the number 2k+1 will be called the 
"length" of the interval). 

Proof. ox being open, decomposes canonically as disjoint union of intervals. 
This decomposition commutes with the action of the flow. This means that if 
y = T .x then the intervals in QY are translations bys of the intervals in ox. Now 
for any integer k, we define the set ik to be the set of points x in X such that 
the interval in ox containing the origin has length between 2k and 2k+ 1• It is 
then obvious that O = U L and the I;'s are ergodic intervals if they are 
measurable. It is also clear that the 1/s are pairwise disjoint. 

To prove that the I;'s are measurable we observe first that, if A is any 
measurable set in X and J is any interval in R, then the set: 

A + J = {y EX; y = T.x, s E J, x EA} 

t Some of the results in this paper are contained in the author's Ph.D. thesis, written under the 
direction ofR. Coifman at Washington University. 
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is measurable. This is an easy consequence of the properties of the flow. In 
particular if Jn = (-rn, 0) then the set 

On = (X - O) n (0 + Jn) 

is measurable and so is the "left boundary" of 0 i.e., the set ao = n'i'On. If we 
define now a function d:il0 - (0, oo) by d(x) = sup {t; Tix E 0} we have that 
dis measurable. (Just observe that d- 1(b, oo) = ao n (0 + (-oo, b)). Therefore 
for any integer k, the set Ak = d- 1[2\ 2k+1) is measurable. But the ergodic 
interval Ik, of length 2k+1, is nothing but the set Ak + (0, d(x)), which is 
measurable. 

Definition. Let if; be in L1 (II?) and fin L1 (X), the convolution off and if; is the 
function. 

. f*i/;(x) = L f(T-sx)if;(s) ds. 

It is clear that f*lf is in L 1(X) and II f*i/; Iii:::: II f Iii II if; 111-(The context makes clear 
in which space we are taking norms). 

It was shown by Coifman [1] that any function in H 1(fR) can be decomposed 
in sum of functions a;, where each a; is supported on an interval l;, has average 
zero and I a;(s)I < I I; 1-1 for any s. From such a decomposition one can get the 
main results about H1(fR). Our program is to show that this can also be done 
in the ergodic case. • 

Definition. An ergodic atom A is a function A, living on an ergodic interval 
I and such that: 
a) II A lloo::,; (µ,(J))-l 
b) t'(J) is finite 
c) For all x in I, fJox A(T.x) ds = 0, where lox is the interval on JX that 
contains the origin. Let if; be a C"' function with support in (-1, 1) and H a 
positive number. If f is in L1(X) we define 

M(H, if;)f(x) = sup l(f*i/;,)(Tix)I 
jtj<,<H 

and 

m(if;)f(x) = lim M(H, if;)f(x) 
h--,oo 

We also define a maximal operator independent of the particular if; by 

M(H)f(x) = sup M(H, if;)f(x)-A(i/;)-1 

where the sup is over all C"' functions, with support in (-1, 1), and A(i/;) is a 
normalizing factor defined as: 

(2.1) 

Finally, Mf(x) = lim M(H)f(x). 
H--,oo 
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Remark. The operator M allows us to estimate integrals of the type 
f f(T.x)1/;(s) ds, where 1/; is a C"' function with support in (a - h, a + h) and 
such that N ~ h, I 1"'(s)I < h- 1 and I 1""(s)I < h- 2 for alls. In fact if we define 
q,(u) = h1/;(a - uh), then q, has support in (-1, 1) and 

(2.2) I J f(T.x)1/;(s) dsl = I fo</>h(Tax)I :S Mf(Ta+sX)•A(q,) 

for any s, Is I < h. A simple computation gives A(q,) ~ f 1/;. 
It is shown in [5] that in the case of/?', the maximal function M characterizes 

H 1. Therefore we define H 1(X) as follows: 

Definition. H1(X) = {/E L1(X) s.t. Mfe L1(X)}. We norm this set byll/llH1 
=IIMflh-

More notation. For fin L1(X) and a fixed x in X, the function of s, f,,(s) = 
f(T .x) is a locally integrable function in R. In the case X = JR and T .x = x + s 
we can consider all the operators defined in the general case, which we will 
represent by the same symbols. The context will make clear which operator 
we are dealing with. We will make frequent use of the following identity. 

(2.3) (Of) (T ;x) = (O{x)(s) 

where O is any operator commuting with the action of the flow. 

PROPOSITION 2.4. Let A be an ergodic atom, then A is in H 1 and 
II-A ,llw :s C, where C is an absolute constant. 

Proof. We'will use the fact that if a is a real atom (i.e., supp a c J, fa= 0 
and II an ... < I Jl- 1, where Jis an interval) then IIMall1 :SC. See [l]. 

Let now A be an ergodic atom with support in the ergodic interval I. For x 
fixed we can write A,,(s) = ~it'(I)µ.(l)- 1ai,x(s) where the ai,x are real atoms 
supported in intervals of length t'(l). We pick L > t'(I) and n >Land we have: 

fxM(L)A(x) dx = fx(2N)- 1 f<-N,NJM(L)A,,(s)dsdx 

:s Jx(2N)- 1 f<-N,NJ ~M(L)t'(I)µ(I)- 1ai,,,(s) dsdx. 

•• But the atoms a,,,,, whose support is outside (-4N, 4N) do not contribute to 
the value of the integral and we can then assume that our sum is, in the rest 
of the proof, restricted to the atoms with support in (-4N; 4N). Therefore our 
integral is, in absolute value, less than: 

t'(I)µ.(I)- 1(2N)- 1 fx ~ f R M(L)ai,x(s) dsdx 

:SC Jx(2N)- 1µ.(I)- 1~t'(I) dx 

:s C Jxµ.(l)- 1(2N) f <-4N,4NJ x1(T .x) ds dx :s C. 

As a corollary we get that any function of type ~ciAi(x), where the A/s are 
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ergodic atoms and~ I c; I is finite, is in H1 with a norm bounded by~ I c; 1-But 
the important fact is that the converse is also true. 

THEOREM 2.5. If f is in H 1(X) and ff= 0, then f can be written as f(x) = 
l:':c;A;(x), where the A/s are atoms and ~c; :5 C II /IIH1. 

Proof. For 11. > 0 we can consider the set Oi-= { x E X; (Mf) (x) > 11.} . Let Ao 
be the infimum of the A's for which µ(Oi-) < 1. Let (11.k) be a doubly infinite, 
monotone sequence of numbers that converges to oo as k goes to oo and to Ao as 
k goes to -oo. We also assume that Ak+1 < 411.k, all k. Let O(k) = 0(11.k), For x 
fixed we consider the set: 

O(x, k) = {s E /R; Mfx(s) > 11.k}. 

O(x, k) is open, therefore is union of intervals, J(i, k, x), of finite length (since 
µ(O(k)) < 1 and the flow is ergodic). This means that we can proceed as in [I] 
to get a smooth partition of the characteristic function, .Xk,x, of O(x, k). Xk,x = 
~J1¥i,k,x where each i/; lives on an interval, the distance from the support of i/; to 
the complement of O(x, k) is comparable to the size of the support and 

We write then: 

Where 

and 

Observe that 

with 

/x(s) = ~Afx - mj,k,x)t/;j,k,x(S) 

+ /(1 - Xk,x)(s) + ~jmj,k,x1¥i,k,x(S) 

= bk,x(s) + gk,x(s). 

aj,k,x(s) = (fx - mj,k,x)i/;j,k,x(s) 

and each aj,k,x lives in an interval and has average zero. Also, because of (2.2), 
we have 

I mj,k,x I :5 (M/) (x') 
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x' in X - O(k). Therefore: I mi,k,x I :S Ak. 

This means that lgk,x(s) I < Ak for all s. Now if k - oo then µ(O(k)) - 0, 
therefore bk,x - 0 and we have 

fx = limgk,x ,._,., 

while if k - -oo then /x(l - Xk,x) goes to zero, and since /has average zero and 
the flow is ergodic, all the mi,k,x also go to zero. We can then write: 

fx = ~~,., (gk+l,x - gk,x) = ~~,., (bk,x - bk+1,J. 

But since the intervals corresponding to the decomposition of O(k + 1, x) are 
subintervals of those of O(k, x) we can write • 

bk,x - bk+l,x = ~i (ai,k,x - ~j aj,k+1,J, 

where the sum inj is taken over all the ai,k+I,x, whose support is contained in 
the support of ai.k.x· Now for fixed s we have bk,x(s) - bk+1;x(s) = (a;,k,x - ~ 
ai,k+i,xHs) for some particular i. This means that, since bk,x(s) - bm+1,x(s) = 
gk+I,x(s) - gk(S), each of the functions Ai,k,x = (ai,k,x - ~ aj,k+I,x) has support in 
a real interval and I A;,1t,x I :S Ak+1 + Ak :S 5Ak. Now, according to our first lemma 
we know that O(k) = UJ;,k with the J;,,. being ergodic intervals. Observe that 
the orbits of each Ii,k are made ·up· of intervals supporting the A;,k,x. Therefore 
if for each Ii; we define a function A'i,k(X) to be zero outside Ii,k, and to agree 
with the Ai,k,x in the orbits, i.e., A';,,.(T ..x) = A;,k,x(s), we have, first of all the A;,k 
are well defined since everything we have done commutes with translations, 
and second I A;,k I < 5Ak. Since it is clear that each A;,k has average zero on each 
of the intervals forming the orbits, and it is also obvious that /(x) = ~k ~i A';,k 
we have: 

where 

Ai,k = (5A~(J;,k))- 1A';,k. 

To finish the proof we just observe .that ~k ~i 5Akµ(l;,k) = ~k 5Akµ(O(k)) s C 
fxMf(x) dx. 

We are now in position to characterize the dual of H 1. 

Let b be an L 1 function and consider the function 

brl'(x) = sup µ(J)- 1 f 1 I b(y) - m1<.r>b I dy 

where the sup is taken over all ergodic intervals containing x, and where m1<.r> 
is defined as follows: For y fixed we look at the orbit through y, JY = {s ER; 
T.y E J}. Let J(y) be the interval in JY containing the origin. Then m1<.r>b = 
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I J(y)l- 1 Jr(y) b(Tsy) ds observe that if z = TsY, sin J(y), then mr<y) = mr(z), i.e. 
mr<y> is constant on each of the intervals forming the orbits. 

Definition. b in L1(X) is said to be in B.M.O. (or to have bounded mean 
oscillation) if b# EL"'. We norm B.M.O. by setting 11 b IIB.M.o. = 11 b 111 + II b# lloo, 

LEMMA 2.6. If b E B.M.O., then I b I E B.M.O. 

Proof Since 11 b(x) I - I mr(x)b II :::: I b(x) - mi(x)b I we have 

(2.7) µ(J)- 1 Jr 11 b(y) I - I mr<y)bll $ C. 

Therefore it is enough to show that 

µ(I)- 1 Jr II mr<y)b I - mr<y>b I dy $ C 

but this is an easy consequence of (2. 7) and the fact that over the intervals 
forming the orbits mrMb is constant. 

As a consequence of (2.6) we have that for any N > 0, the function bN(x) = 
Max (-N, min (b(x), N)) is in B.M.O. if bis, and II bNIIB.M.o. $ 5 ll.b IIB.M.o. Since 
bN is bounded we can consider 

for any atom x. But using the cancellation properties of atoms we can write 

Jr bN(x)A(x) dx = Jr (bN(X) - mr(x)bN)A(x) dx 

with I being the support of A, and finally: 

I Jr bN(x)A(x)A(x) dx I$ Jr I bN(x) - mr(x)bNI I A(x) I dx 

:::: II bN IIB.M.O. :::: 5 II b IIB.M.O .. 

Using theorem (2.5) we have IJ bN(x)f(x) dx I :::: 5 II b IIB.M.o. II fi1H1 which means 
that b defines a linear functional by < b, f > = lim J bNf and the functional 

N-""' 
norm is less than 5 11 b IIB.M.o .. 

Conversely, it is not difficult to see [3; p. 119] that any linear functional L, 
on H 1 can be represented by a function b in such a way that for any bounded 
function with support on an ergodic interval I, we have 

(2.8) Lf = Jr f(x)b(x) dx. 

Now if A is an atom supported on I we have 

I LA I= JJr A(x)b(x) dxJ = lfr A(x)(b(x) - mr(x)b) dxl. 

If f is any bounded function supported in the ergodic interval I, then 

A(x) = (f(x) - mr(x>f)µ(J)- 111 flloo-l 
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is an ergodic atom so we have 

lf1 lf(x) - m1cx>f)b(x) dxlµ(It 1 II fll., -i 

= If d(x)( b(x) - m1cx>b I dx I µ (It 1 II fll., -i = I LA I :S II LIi , 

Taking the sup over all fin L "'(1) we get 

Ji I b(x) - m1cx>b I dx µ(It 1 :S JI L II, 

Since it is clear that f I b I :S 2 II L II we have that b is in B.M.O. and II b IIB.M.o. 
s 3 IILII-

We can summarize the above discussion in the following theorem. 

THEOREM 2.9. To any continuous linear function L in H 1 corresponds a 
B.M.O. function b s.t. Lf = lim f bN/ for any f in H 1 and conversely, any 

N-+., 
B.M.O. function gives rise to a continuous linear functional. Furthermore the 
functional norm and the B.M.O. norm are equivalent. 

The usual definition of H1 is in terms of the Hilbert transform. We are going 
to show that it is equivalent'to our definition. For fin L\X) we define the 
ergodic Hilbert transform off as 

where N > 0 and 

!N(x) = P.V. f s- 1r,(slv 1)/)T-.x) ds 

(r, is a fixed C"' function, bounded by 1, identically 1 in (-3, 3) and zero outside 
(-4, 4)). In the case X = R we would have 8N(t) = P.V. f s-1(sN-1)/)t - s) ds. 
As usual /N(T.x) = (fx)N(s). It can be seen in [4] that the ergodic Hilbert 
transform is well defined for all /in L1(X). If we define fl1(X) as the space of 
functions in L1(X) for which /is also in L1, and we norm it by setting 11/11. = 
II /ll1 + 11 llh, then we have the following theorem. 

THEOREM 2.10. Hi= H.1 as sets and 3C1, C2 s.t.11/11. :S C1II/IIH1:S C2II/II •. 
Proof. If A is an atom, then a repetition of the argument is (2.4) gives 

II A 11• :S C where C is an absolute constant. By theorem (2.5) we have II /II. :S 
C1II/IIH1• 

We claim that to proof the other part it is enough to show that for any 
locally integrable function g in R, or any N > 0, we have 

(2.11) fc-N,N> MN.i(S) ds s C Jc-20N,20N) (I g(s)I + I i4N(s) I) ds. 



ERGODIC H1 SPACES 

Indeed if (2.11) holds we can write 

Ix (MNf)(x) dx = Ix (2N)- 1 I(-N,N) (MN{x)(s) dsdx 

:S Ix (2N)-l I(-20N,20N) (lfx(s)I 

+ I lx,4N(s)I) ds :S CI x (I /(x)I + I /4N(x)I) dx 

and a limiting argument finishes the proof. 

Proof of (2.11). It was proved in [5] that if g is in H 1(fR) then 

Assume now that g has support in (-1, 1) and average zero, then 

I(-1,1) Mig :S I(-1,1) Mg :SI (lgl + I gl) 

but 

JI g I = I (-2,2) I g I + I1xl>2 I g(x)I 

17 

and it is an easy exercise to check that, since g has average zero, the second 
integral is dominated by the integral of I g I-For the first integral we observe 
that since g has support in (-1, 1) then 

_ 1 1 
gi(s) = It 'T/(t)g(s - t) dt = It g(s - t) dt 

for I s I < 2, since then I t I < 3 and .,,(t) = 1. Therefore we have 

If g does not have average zero, we write g = (g - I g)x<-1,1) + I g• XH,1) and 
use the result above. If g is supported in (-N, N), then we define f(x) = g(xN), 
supported in (-1, 1). Observing that (M1f)(x) = (MNg)(xN) and ({i)(x) = 

(gN) (xN) and changing variables we get 

with C independent of N. Finally if g is locally integrable we choose a C 00 

function 8, bounded by 1 and s.t. 8(s) = 0 for Is I> 4N, 8(s) = 1 if Is I< 3N and 
I 8(x) - 8(y)I :s CN- 1 Ix - y I for x, yin (-BN, BN). We write g = g8 + g(l -
8) = g 1 + g2 and we have that for Is I < N, MNg(s) = MNg 1(s) and g1 has 
support in (-4N, 4N). Therefore 

I<-N,N) MNg = I (-N,N) MNg 1 :SI (-4N,4N) M4Ng 1 :SI (-8N,8N) (l(g 1)4N I + I g 1 I). 
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Finally we compare (g1)41v(s) with g4N(s) for Is I < 8N. 
l(g 1)4iv(s) - g4N(S) •o(s)I = IJ(o(t) - o(s)) • (t - s)- 1r,((t - s)4N- 1g(t) dt I$ C 

J1tl<20N N-l jg(t)I dt. 

Hence 

J1s1<sNl(g1)41v(s) Ids$ f dsisl<BN firi<20NcN-l jg(t)I dt 

+ f1•l<BN I g4N(s) Ids s C f1•1<20N (I g(s) I + I g4N(s) I) ds. 

Coifman and Weiss in [2] identified the dual of H 1 as a different type of B.M.O. 
space. Theorem (2.10) can be used to see that it agrees with our definition of 
B.M.O. 

Definition. A locally integrable function g, defined on II?, is said to be in 
B.M.O. if 

{!(s) = sup I 11-1 JII g(t) - m1gl dt 

is in L 00 (The sup is over all intervals containing s, and m~ = I I 1-1 fJg(t) dt). 
If f is in L1(X) we will say that f is in B.M.O.O. (B.M.O. in orbits) iff fx(s) is in 
real B.M.O. and II fx# lloo is bounded by a constant independent of x. If we norm 
B.M.O.O. by using this constant it is clear that B.M.O.O. is contained in 
B.M.O. and the inclusion is continuous. To prove the converse we make the 
following remarks. First, because of theorem (2.10) one can identify the dual of 
H 1 with the space of functions of the type u + v with u, v in L 00 (X). Second, it 
is proved in[5] that in the real case such functions are always in B.M.O., so by 
looking at the orbits we have the same result in the ergodic case (fin L 00 (X) iff 
fx(s) is in L 00 (11?) uniformly!). Third, we know that (H1)* = B.M.O. 

3. The n-climensional case 

If we have !Rn acting as an ergodic flow in X, we can define a maximal 
operator as in §2, but now we take convolutions with functions with support in 
the unit ball B(0, 1). (Notation: B(0, N) = = {t E Rn; It I < N}. The 
normalization factor A(<j>) is now ~a II Y<j> lloo with a = (a1, • • •, an) being multi 
indexes and I a I < n + l. The role of the Hilbert transform is played by the 
Riesz transforms. For technical reasons we will work with maximal Riesz 
transforms. For H > 0, i = l, 2, • • • n we define 

R*;f(x) = lim R*;,H{(x) 
H---,oo 

where 

and 'T/ is a fixed C 00 

function identically 1 in B(0, 3), supported in B(0, 4) and bounded by 1. 
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We can define H 1(X) = if E L1(X); Mf E L 1(X)} with norm II /IIH1 = II M/lli, 
and we can also define fI 1(X) = if E L1(X); R*d = L1(X)} with norm II /II* = 

II /Iii + ~t II R* dll1-One can get II /IIH1 < CII fll* in exactly the same way as the 
one dimensional case. Unfortunately, theorem (2.5) uses our lemma on decom­
position of a set into ergodic intervals, and the proof of that lemma seems to 
be one dimensional. Still the main results of §2 remain valid. 

THEOREM 3.1. The spaces H 1(X) and fI 1(X) are equal and have equivalent 
norms. 

THEOREM 3.2. The dual of H 1(X) can be identified with the space B.M.O.O. 
i.e., (functions that are in B.M.O. (/Jt on each orbit with uniform norm). 
Remember that g E B.M.O. (Rn) means Ff EL 00 (Rn) where 

g(s) = sup IQ 1-1 fo I g - TnQgl 

with the sup taken over cubes containing sand mQg = IQ i-1 J Qg. 

For the proof of theorem (3.1) we just point out that the same localization 
techniques used in (2.11) work also the other way around to give that, for any 
locally integrable function fin ~ we have 

fB<o.N) R*i,N{(x) dx $Cf B<o,16N)(MsN/)(x) dx 

which implies II /II* :5 C II /IIH1. Full details can be seen in [8]. 

Theorem 3.1 also tells us that H 1(X) can be thought as if E L1(X); Ri{ E 
L1(X), i = 1, • • •, n} where Ri{(x) = lim Ri,H{(x) and Ri,H{(x) = lim {*ki,H,s/(x). 

H-oo HO 

It is then easy to see [5; p 145] that any linear functional in H 1 can be 
represented by a function of the form go + ~1 n R;gi with go, g1, • • • gn in L 00 (X), 
and such a function is in B.M.O.O. So to prove theorem (3.2) we need to show 
that any function in B.M.0.0. gives rise to a continuous linear functional in 
Hl(X). 

Let q, be a fixed C 00 (Rn) radial function supported in B(O, 1). For f, locally 
integrable, we define the area function as 

Sf(s) = lim SH/(s) 
H-,oo 

where 

(SH/(s) )2 = Ifiv-sl<t<H IV (f*q,1)(v)l2t1-n dv dt. 

(1 V(f*cf,t)(v)l2 = 1a:tf + ~1n la~:;f ). 
For fin L1(X) we define (SH/)(x) as (SH/x)(O), and (S/)(x) = lim (SH/)(x). 

H-,oo 

It is known [1] that every function in H 1(Rn) can be written in the form 
~;.\iai(x), where ~Ai can be taken as the H 1 norm of the function and the a/s 
are atoms; i.e. ai lives on a cube Qi, has average zero and I ail< I Qi 1-1. 



20 ALBERTO DE LA TORRE 

LEMMA 3.3. f E H 1(!R") implies II 8/11 :s C 11 /IIH1 • 

Proof. It is enough to show that if a is an atom supported in Q, centered at 
the origin we have II Sa 111 :S C. 

If I u I > Q, the fact that a has average O gives easily that ((8a)(u)) 2 :s 
I Q 12 I u 1-zn-z, therefore 

J1vl>41QI (Sa)(u) du :s J1vl>41QI (I Q 12 I V 1-2n- 2)112 du :s C. 

On the other hand 8 is easily seen to be bounded in L2, which means that 

J1vl<IQl4 (Sa)(v) :SI Ql 112 JI Sal 2 :SI Ql112(JI al2)112 :SC. 

LEMMA 3.4. If f is in H1(X) then 118/111 :s C II /IIH1<XJ· 

Proof. Repeat the argument in (2.11). 

The area function is also related to B.M.O. 
LEMMA 3.5. Let f be in B.M.O. (!Jr), then f1v-s1<H (SH/)(u) du :S co1r where 

Co is independent of s and H. 
Proof Assume s = 0. Since the gradient of a constant is O we can substitute 

f by f - mHf, with mH{ = I B(0, 4HW 1 J B\0,4Hlf Also since I u I < H we can 
substitute f- mH{by (/- mH/)XB<0,4Hl• Now using that Sis bounded in L 2 we 
have 

J1vl<lf (SH/)(u) du :S CH" I B(0, 4HW 112(fo<o,4H) (I/ - mH/12)112 < CH". 

This last inequality is true because /is in B.M.O. and the theorem of John and 
Niremberg [6]. 

Let Y be the class of testing functions and Yo those functions in Y whose 
Fourier transform vanishes in an interval around the origin. Let Yo be the 
class of functions of the form 

F(x) = J Rnf(T-sx)cp(s) ds 

with /E H 1(X), cp E Yo. 

LEMMA 3.6. The class So is dense in Hi(X) = {IE H 1(X); ff= 0}. 

Proof Pick fin Yo s.t. f has support in B(0, 2) and is 1 in B(0, 1). Fork ..;, 
1, 2, •••we consider the function c/)k = lf/1;k(s) - fk(s).If h E H 01(X) we consider 
the sequence h*cpk = Fk. We claim A converges to h in H1. First of all it is 
clear that for i = 1, • • •, n, R;F'k = Rih*cpk, which means that it is enough to .• 
show Fk converges to h in L1(X). Since the operators h ~ h*cpk are uniformly 
bounded in L1(X) it is enough to consider a dense class. Now the class S of 
functions of the type fRn g(T-sX>ri(s) ds with g E L1(X), T/ E Lo is dense in 
Lo 1(X). This is a consequence of the ergodicity of the flow plus the fact that Yo 
is dense in L/(lf?n) [7; p 230]. Let then h be in S, i.e. 

h(x) = f*ri(S) with TJ E Lo, 
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then Fk(x) = h*</:>k(x) = f*(c/>k*T/Hx) but since~ has support away from origin 
and if>k is 1 on 1/k < Is I< k, we have c/>k*T/ =µfork big enough. 

LEMMA 3.7. If cf, is as in our definition of the area function and F1, F2 are 
in So then: 

where 

i = l, 2. 

Proof. Let F; = /i*T/i, T/i E Lo. Now 

To see this we just use Plancherel's theorem plus the fact that ~ is radial, and 
the right hand side becomes 

h~n '1]1(s)112(s) Jo I tsl2(~(tl sl)2 dt' 
t 

and tlie integral in t is independent of 2. The lemma follows from Fubini's 
theorem; 

LEMMA 3.8. If bis in B.M.O.O. and for N > 0, bN = max (-N, min (b(x), N)) 
then for any h in So we have • 

and C is independent of N and h. 

Proof. Lemmas (3.4) to (3.7) insure us that the proof in [5] works in this 
case. We include it for completeness. To simplify the notation we will drop our 
N. 

. We observe first of all that a density argument allows us to extend the 
identity in (3. 7) to our case. Also from lemma (3.5) we get: 

(3.8) ff Hx(w) = sup {H > 0; (SHfx(s))2 :S 100 Co} 

then J{s; Isl< H; Hx(s) > H}I ~ CHn. 

If (3.8) were not true then, for some H, I {s, Is I < H; Hx(s) :s H} I would be 
almost equal to I B(O, H)I which contradicts (3.5). 

If His a positive number we have 

I fxh(x)b(x) dxl :s C Ix Jo ti 'vh(x, t)I I 'v b(x, t)I dx dt 

= C Ix 1zn f1v1<1i Jo ti 'v(hx*cf,t)(v)I I 'v(bx*cf>t)(v)I dtdvdx. 
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Using (3.8) and Fubini's theorem we have: 

~ C Ix Irn I1;,,l<ll Iff,<w) I1v-wl<t tI-n I 'v(/x*cf>,)(v)l 'v(bx*cf>t)(V)I dv dtdw dx 

~ C Ix JrN I1wl<H <sn<T wX) • (SHx(w)b)(T wX) dwdx 

< C.lOCo Ix 11n I1wl<H (Sn<T...x) dwdx 

= 10 C Co II Sfll1 < C II f llH'<Xl 

Since the class So is dense in Ho1, we can extend the linear functional given 
by b, continuously to Hi and we get theorem (3.2). 

McGILL UNIVERSITY, MONTREAL, QUEBEC, CANADA. 

REFERENCES 

[1] R. COIFMAN, A real variable characterization of HP, Studia Math. 51 (1974), 269-274. 
[2] R. COIFMAN AND G. WEISS, Maximal functions and HP spaces defined by Ergodic transfor­

mations, Proc. Nat. Acad. Sci. 70 (1973), 1761-1763. 
[3] R. COIFMAN AND G. WEISS, Extensions of Hardy Spaces and Their Use in Analysis. (To 

appear). 
[4] M. CoTLAR, A unified theory of Hilbert transforms and ergodic theorems, Revista Mat. 

Cuyana 1 (1955) 105-167. 
[5] C. FEFFERMAN AND E. STEIN, HP spaces of several variables, Acta Math. 129 (1972), 

137-193. 
[6] F. JOHN AND L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. 

Math. 14 (1961), 415-426. 
[7] E. STEIN, Singular integrals and differentiability properties of functions, Princeton Mathe-
, • ~tical Series No. 30. Princeton Univ. Press. Princeton, N.J., 1970. 
[8]' A,. DE LA. TORRE, Hardy spaces induced by an ergodic flow, Thesis, Washington University, 

1975. 




