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0. Introduction 

The aim of the present paper is to study difference differential equations of 
advanced type 

(1) x(t) = f(t, x(t), x(t + T)), 

where Tis a fixed positive number, 0 :s t < oo, xis a column vector in Rn, and 
f. JR+ X JR2n - Rn (JR+ = {s E JR Is 2'.: O} ), we focus our attention at the initial 
value problem and related existence theorems, considering these problems in 
a new setting. 

For the meaning of (1) we call attention of the reader to G. Plackzek [1], L. 
Fox, D. F. Mayers, J. R. Ockendon and H.B. Tayler [2], J. Tinberger [3] and 
N. Georgescu-Roegen [ 4]; where such equations arise from actual models. 

A very interesting model is that of S. Sargan [5]: "In this model the x;(t) are 
taken to be the outputs of a set of commodities, or it may be said that the 
actual supply of commodity i at time tis x;(t). This is taken to generate a 
demand for commodity j as a current input which is equal to a1;x;(t), Moreover, 
it is assumed that the rate of increase in the stock of commodity j, which is 
associated with the increase in the level of the activity producing commodity 

i, would be b1; :; . Thus, the total demand for the commodity j can be written: 

}:i'!.1 a1;x;(t) + }:i'!.1 b1; :; + yj(t); 

where yj(t) is the exogenous demand for the /h commodity. If it is assumed 
that supply follows demand with a constant time lag, then the equations take 
the form 

I. The initial value problem 

The authors of recent papers, like S. Doss and S. Nasr [6], S. Sugiyama 
[7], T. Dlotko and M. Kuzma [8], C. Anderson [9], A. Sobolewska [10], T. 
Kato and J. B. McLeod [11], and P. 0. Frederickson [12] think on initial 

• This paper is essentially a condensation of the doctoral thesis of the author, presented to the 
Centro de lnvestigacion del IPN, Mexico, in January 1975, under the direction of Professor Carlos 
Imaz. 
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conditions in the same way we do in ordinary differential equations: as a fixed 
vector in !Rn. So they make the following definition. • 

Definition 1. A solution of (1) is a continuous function on [0, oo) into !Rn, 
with a piece-wise continuous derivative that satisfies (1) and such that 

(2) x(0) = Xo. 

This definition has the inconvenience that even with conditions like lipschitz 
and continuity on t, the problem (1) - (2) is not well posed. So we must 
examine with care the implications of initial conditions like (2). 

Ifwe have 

(3) 

and 

(4) 

i(t) = x(t + 1); 

y(t) = y(t); 

x(0) = Xo 

y(0) = Xo, 

we know that for the ordinary equation (4), it is sufficient to know the value 
of the solution at t = 0, to assure that this solution can be defined on the 
interval [0, e), for some E > 0. It is to be noted that when we specify the value 
of y(t) at t = 0, we also know the value of the vector field y(t) at zero, that is, 
with the above information we know how to start the solution. But if we look 
at the advanced equation (3), we observe that knowing the value of x at zero, 
it is not enough to know the value of the vector field at that point, i.e., we 
d9n't have the starting direction. Ifwe wish to know that direction, a possibility, 
maybe the natural one, is to know the value of x at t = 1. Let us suppose that 
with this additional information we are able to define x at [0, E ], for some E > 
0, then,-in contrast to the ordinary case, in which we can continue the solution 
after e, in this case we would be as at the beginning, i.e., we know the value of 
x at E but not that of the vector field, thus we need to know x at 1 + E. We have 
two possibilities to consider, the first is to specify the value of x at the interval 
[1, 2), so that we can determine its value at [0, 1); the other one is to try to 
determine x on [0, oo) with the aid of the following fact: to define x in a 
neighborhood of zero we need to know x in a neighborhood of 1, and for this 
we need to know the value of x in a neighborhood of 2, and so on. From this, 
we must know at least the values of x at 0, 1, 2, 3, • • • . This latter consideration 
is our choice. 

Definition 2. An initial condition for (1) is a sequence of vectors {xk} %-o-A 
solution for (1) with this initial condition is a function defined in the interval 
[0, oo) with the values in !Rn, piece-wise continuous with a piece-wise continuous 
derivative, that satisfies (1) and 

(5) x(kT) = Xk for k = 0, 1, 2, • • • 

(See figure 1). 
The problem (1) - (5) is well posed, and a way to see this is to show that 

(1) - (5) is equivalent to an ordinary differential equation in a certain Banach 
space. 
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2. The equivalence 

Let S be a complete metric linear space formed with sequences of Rn, and 
G a function from [O, T) X S to S defined by 

(6) 

then the problem (1) - (5) and the problem 

(7) 

with 

(8) 

y(t) = G(t, y(t)), t E [O, T) 

are equivalent in the sense that if x(t) is a solution of (1) - (5) then 

(9) y(t) = {x(t + kT)}%=o, t E [O, T) 

is a solution of (7) - (8), and if y(t) is a solution of (7) - (8) then 

x(t) = Yk(t - kT) if t E [kT, (k + l)T), k = 0, l, 2, • • •. 

where y(s) = {yk(s)}%=o, is a solution of (1) -(5). 

The utility of this fact lies in the possibility of applying the well known facts 
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for ordinary differential equations in a Banach space to differential equations 
of advanced type. 

THEOREM 1: Let f. 1r x R2n--+ Rn be uniformly continuous, and suppose 
there exist positive numbers A1, A2, As, and an n - vector z, such that 

ii) 

for t E R+; x, y, :i, y E Rn 

lf(t, z, z)I S k for tE R+. 

Then, given any bounded sequence, there exists a unique solution of (1) -
(5). 

Proof. Let S = -t .. , the B-Space of bounded sequences with sup norm and G 
defined by (6). Then, for any 

{xk}k-o, {yk}k-=O E -t ... 

II G(t, {xk}k-o) - G(t, {yk}k-o)II 

= ll{f(t + kT, Xk, Xk+l)}k=O - {f(t + kT, Yk, Yk+l)}k+dl 

= SUPk-0,1,2, ... 11 f(t + kT, Xk' Xk+l> - f(t + kT, Yk' Yk+dll 

S (A1 + A2) II { Xk} k-0 - {yk} k•O II • 

So G-~ lips~~tz. Moreover G([o; T) x -t .. ) C -t .. , since 

II G(t, {xkH'-o)II S II G(t, {xk}k-o) - G(t, {z}k-oll + II G(t, {z}k-oll 

S (A1 + A2) dist (z, {xk}k-o) + k = k. 

Analogously, it can be seen that G is a continuous function and satisfies, for a 
fixed sequence, {xk}k-o E -t .. the relation: 

11 G(t, {yk}k-o)II S (X1 + A2)11{yk}k-o - {xk}k=oll + k. 

All conditions for existence and uniqueness in the interval [O, T) are satisfied 
(see J. Dieudonne [13]). This completes the proof of the theorem. 

Observation: If f satisfies the conditions of Theorem 1, then, given 

{xk}k-o, {yk}k=O E -t .. , 

if x(t), y(t), are the solutions of (1) with these initial conditions, we have: 

(11) 

3. Continuous solutions 

An interesting case, specially in actual applications, is that of continuous 
solutions of (1); that is, to find, among the solutions according to definition 2 
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those that satisfy definition 1. If we put this condition into problem (7) we 
have: 

LEMMA 1: For a solution x(t) of (1) - (5) to be a continuous solution it is 
necessary and sufficient that the solution X(t) of (7) - (8) associated to x(t), 
satisfies lilllt---+r X(t) exists, and the boundary condition 

(12) IIX(0) = X(T) 

where II is the shift operator, II: S - S such that 

(13) II (yk}k=O = (yk+I}k-0• 

LEMMA 2: The function X: [0, T] - S satisfies (7)-(12) if and only if 

(14) X(t) = {xo}%-o + L~ ti fl G(s, X(s)) ds 
i=l 

+ fb G(s, X(s)) ds, tE [0, T] 

for some xo E R", where t,.k, is the k iteration of fJ., f,. given by 

(15) 

Proof. It is simple to see that (14) is equivalent to 

(16) X(t) = {xo + f~t+t f(s, x(s), x(s + T)) ds}%=o 

where x(t) is the associated function to X(t) by (10), and from this the lemma 
follows. • 

With lemmas 1, 2, we can prove: 

THEOREM 2: Given f: 11r X /R2n - R" and w: R+ X R+ X R+ - R+, 
continuous functions such that 
i) w is non decreasing in the second and third variables, that is, if s1 ::5 s2, u1 
:===u2then 

(17) w(t, s1, u1) :=== w(t, s2, U2), for fixed t. 

ii) Given t ER+ and n-vectors, X1, x2, Y1, Y2, f satisfies 

(18) I f(t, x1, x2) - f(t, Y1, Y2)l :=== w(t, I x1 - Yi I, I x2 - Y2 I) 
iii) Given a non negative number r, the integral 

O(r) = Jo w(t, r, r) dt 

is convergeiit, 0(0) = 0, and the function O so defined is continuous. 
iv) if we define 

l = sup (r - O(r)), 
reR+ 

l is either a positive number or infinite. 
Then there exists a continuous and bounded solution x(t) with x(0) = x0 , if 
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Xo satisfies 

(19) ,B = Jo I f(s, Xo, Xo)I ds < l. 

Proof: If Xo satisfies (19) there exists a positive real number g such that ,B 
s ! - O(g). Define the subset A of C([0,T]; l,,,), the continuous functions [0,T] 
- l,,, as those functions that satisfy II x(t) - {xo} k=o II s g for all tin [0,T]. Then 
A is convex, closed and bounded. 

For any XE A define the function H[X] by the relation 

(20) 

H[X](t) = {xo}k=o 

+ L~=i ti f6 G(s, X(s)) ds 

+ Jb G(s, X(s)) ds. 

From lemma 2, to find fixed points of His equivalent to solve (7)-(12). We 
now apply the Schauder fixed point theorem to assert the existence of a fixed 
point of Hin A. Using (16) it follows: 

11 H[X](t) - {Xo}%-o 11 

s Jo I f(s, x(s), x(s + T))I ds 

s Jo w(s, I x(s) - Xo I, I x(s + T) ....; Xo I) ds 

+ Jo lf(s, Xo, Xo)I dss 0(!) + ,B s !, 

where x(t) is the associated function to X(t). Obviously H[X] is a continuous 
function fort E [O,TJ, thus, H: A-A. 

Also, if t1 ::::: t2 we have 

IIH[XJt1) - H[X Jti) II 

s supk-0,1,2, ... Jit!~~ I f(s, x(s), ·x(s + T))I ds 

s supk=o,1,2, ... Jit!~ w(s, g, !) ds 

+ supk=o,1,2, ... Jit!~~ I f(s, Xo, Xo)I ds. 

This does not depend on X and it follows from the continuity and integrability 
of w(s, !, !), f(s, Xo, Xo), that the· set H[A] is a family of equicontinuous 
functions, and since the sequence H[X](t) (for fixed t) is uniformly convergent 
to xo + J; f(s, x(s), x(s + T)) ds (where x(t) is the one associated to X) for X 
EA; that is, {H[X](t)I XE A} for each t, is a conditionally compact set. Ascoli's 
theorem (J. Dieudonne [13]) asserts that His a compact operator. 

It follows from the continuity of O and from 0(0) = 0, that for any e > 0 
there exists a~> 0 such that 0(~) < e. For any Xi, X2 EA such that II X1 - X2 II 
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< 8we have: 

IIH[X1](t) - H[X2](t)il 

:S Jo lf(s, X1(s), X1(s + T)) - f(s, X2(s), X2(S + T)I ds 

:S Jo w(s, I X1(s) - X2(s)I, I X1(s + T) - X2(s + T)I) ds 

:S Jo w(s, 8, 8) ds = 0(8). 

This is precisely the statement that His a continuous mapping. The conditions 
of the Schauder theorem are satisfied and the proof of the theorem is complete. 

THEOREM 3. Let the functions f, w, satisfy the conditions of the above 
theorem, moreover, suppose that l is infinite and 
v) There is an-vector z such that 

Jo I f(s, z, z)I ds < oo, 

vi) r - Q(r) > 0 for all r > 0. 

Then, given any n-vector Xo, there exists a unique continuous and bounded 
solution, for which limt--.ooX(t) exists, and it depends together with the whole 
solution continuously on Xo. 

Proof: Suppose that X1(t), x2(t) are two continuous and bounded ~oluti~ns of 
(1), with the same initial condition x1(0) = x2(0) = Xo, and define Oby 

then 

I x1(t) - x2(t)I = I JS [f(s, x1(s), x1(s + T)) - f(s, x2(s), X2(s + T))] dsl 

:S JS w(s, I x1(s) - x2(s)I, I x1(s + T) - x2(s + T)i) ds 

:S JS w(s, 0, 0) ds = Q(O). 

From the above inequality we get O :S 0(0), so we must have O = 0. 
We want to show continuous dependence on initial conditions. For this, let 

us suppose that x1(t), x2(t) are bounded and continuous with x1(0) = x1, x2(0) 
= X2. If we define 

µ = SUP0st<oo I X1(t) - X2(t)i we get: 

I X1(t) - X2(t)i :S I X1 - X2 I + Jo I f(s, X1 (s), X1 (s + T)) 

- f(s, x2(s), x2(s + T)I ds 

:S I X1 - X2 I + Jo w(s, I X1 (s) - X2(s)I, 

I x1(s + T) - x2(s + T)I) ds 

:S I X1 - X2 I + 0(µ), 
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so we must have µ - n(µ) :s I X1 - x2 I, consequently, if I X1 - xz I - 0, µ -
n(µ) - 0, but this only happens ifµ - 0, and this proves the theorem. 

Example: Consider the equation 

i:(t) = f(t, x(t + 1)) = Z e-t-lx(t+I)I, z E Rn 

which satisfies the conditions of theorem 2, with w(t, a) = I z I e- 1(1 - e-a). 
Since 

I f(t, y) - f(t, ji)I :s I z le 1 (1 - e-lrYI), 

we also note that if I z I :s 1 the solution is unique. 
We can also show a theorem with Caratheodory type conditions. 

THEOREM 4. Let f: R+ X R 2n - Rn be a continuous function, and m: R+ -
R+ an integrable one, such that 

I f(s, x, y)I :s m(s) for x, y E ~. s ER+ 

then, given any xo E ~. there exists a continuous and bounded solution of 
(1)-(2). 

COROLLARY: Let f be continuous in (t, x, y) E R+ X R 2n with values in~. 
and bounded by a constant K. Then given a positive number N and any xo 
E ~. there exists a solution of (1) which is continuous in the interval [0, NJ 

Proof: D~fine the function 

g(t, x, y) = a(t)f(t, x, y) where 

and consider the equation 

If we have 

{ 1 if t E [0, N + T) 
a(t) = eN+T-t if t E [N + T, oo) 

x = g(t, x(t), x(t + T)). 

4. The linear case 

(21) i:(t) = A(t) X (t) + B(t) X (t + T) 

where the functions A(t), B(t) are uniformly continuous and uniformly 
bounded, the equivalent ordinary equation in le,, is 

(22) j(t) = O(t)y(t) 

where the linear operator O(t) is given by 
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Then, O(t) is continuous and uniformly bounded, so the problem (22)-(8) 
satisfies the existence and uniqueness condition in the interval [O, T). 

THEOREM 5: Let cl>(t) be the fundamental operator of (22). A necessary and 
sufficient condition for the equation (21) to have a continuous and bounded 
solution, different from the trivial one, is that IlcI>(T) be singular. In fact, the 
number of lineary independent continuous solutions of (21) is equal to the 
number of lineary independent sequences who satisfy {'IT - cl>(T)}X = 0. 

Example: Consider the equation 

(23) x(t) = bx(t + 1), t'n 2 :S b < t'n 3. 

In this case the operator O(t) is equal to the infinite matrix 

(24) () = 

so cI>(t) is defined by 

cl>(t) = 1 

0 

0 

and if Q = cl>(l) - II, we have 

b O O O 0 
0 b O O 0 
0 0 b O 0 
0 0 0 b 0 

bt 
b2t2 b3t3 

2! 3! 

1 bt 
b2t2 

2! 
0 1 bt 

II .E - Q II :S eb - 2 < 1 

consequently Q is an invertible operator. Finally from theorem 5 it follows that 
the only continuous and bounded solution of (23) is the trivial one. 
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