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0. Suppose that some random, identically distributed quantities appear at the 
renewal epochs of a renewal process independently of each other and of that 
process. We observe the consecutive quantities and want to stop the process 
when a possibly large value occurs. Our decision about stopping must be made 
up to a time T, which is assumed to be random, not known to us in advance. 
More precisely, we look for a stopping rule to maximize the probability that at 
the moment of stopping we get the quantity which is largest among all those 
which have appeared and will appear up to the time T. This problem (see 
below for the rigorous formulation) is a natural generalization of Problem III 
in [I], where the random quantities appear according to a Poisson process and 
Tis fixed non-random. A similar problem has been formulated independently 
in [6]. The approach used in this note is an elaboration of the one in [1]. It is 
proved that a solution of our problem exists and its form (unfortunately not 
very explicit) is found. We outline also a general method which sometimes 
permits to obtain the solution in a simpler form. As an example, we consider 
the exponential distributions case, where everything can be calculated explic
itly and the obtained results seem quite interesting. 

1. Assume that we are given: 
a) 6, l2, • • • , a sequence of independent, identically distributed random 

variables with a continuous distribution function F, 
b) p1, p2, •••,a sequence ofi.i.d. positive random variables with a continuous 

distribution function G, 
c) T, a positive random variable with a distribution function H. 
Moreover, we assume that 
d) l1, l2, • • •, p1, p2, • • •, Tare independent. 
The p's are interpreted as time periods between consecutive appearances of 

the fs. 
Denote Rn = P1 + • • • + Pn for n E N, Ro = 0, and let N(t) be the 

corresponding counting process, i.e. N(t) = max {n ~ 0: Rn :S t} for t ~ 0. 
Furthermore, we denote by lJn the a-field generated by the random variables 
l1, • • • , ln, PI, • • • , Pn, Tx[o,Rn] ( T), (n E N), where X • is the characteristic 
function of the event •, and by 5s we denote the class of all stopping times with 
respect to the (increasing) family mn)nEN• ~n is interpreted as the class of all 
events which are known at the moment when ln occurs. 

We will consider the following problem: 

(P) Find a stopping time.,.* E 5:s, such that 

P(.,.* :s N(T), l,• = l1 V • • • V lN<n) 

= sup,e,J<P('T :S N(T), l, = l1 V • • • V lNm). 
35 
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THEOREM. Assume a), b), c), d). Problem (P) can be reduced to an optimal 
stopping problem for some Markov chain with some reward function. A 
solution of (P) exists and has the following form: • 

(1.1) T* = inf {n: !n = !1 V • • • V ~. (Rn, F(!n)) EI'}, 

where I' is a subset of R+ X [0, 1]. 

Proof. First, observe that F(!n) is uniformly distributed on [0, 1] and {!n::?: 
!m} = {F(!n) ::?: F(!m)} a.s., therefore we may additionally assume that !1, !2, 
• • • are uniformly distributed themselves. 

Define Yn = P(n :S N(T), !n = !1 V • • • V !N(TJ I iJ,.). We have 

= X(En-E1v•··v€..)E(Lk-n xk-"P(Rk-n :$ t - (r1 + ''' + r,.), 

Rk-n+l > t - (r1 + '•' + rn))]e=TI Txco,r1+ ... +rn](T))]r1+•••+rn=Rn.x""En 

where the symbol ]e=-T (and, analogously, ]r1+ ... +rn=Rn.x-~) means that having 
calculated the probability we substitute Tin the place of t. 

Let g(t, x) denote the moment generating function of N(t), i.e. 

g(t, x) = E(?(tl) for x E [0, 1], t::?: 0, 

g(t, x) = 0 for t < 0. 
(1.2) 

Then, the conditional expectation in the expression above is equal to 

E("jJ-o xlxcT2:.r1+ ... +rnJP(N(t - (r1 + '' • + r,.)) = J)]t=TI TX[o,r1+•••+rnJ(T)) 

= E(g(T - (r1 + ''' + r,.), x)I Txco,r1+ ... +r,J(T)) 

1 
= Xc1>r1+ ... +rnl P(T ) E(g(T - (r1 + • • • r,.), x)) > r1 + • • • + r,. · 

hence we get 

1 
Y,. = XCEn-EiV"·V(n,T>RnJ 1 _ H(R,.) 

(1.3) • E(g(T- (r1 + •'' + rn), x))]r1+ ... +rn-Rn,-En 

= XCEn=EJV•"V(,.,T>RnJ l _ !(R,.) Ji: g(t - R,., !,.) dH(t). 

It is clear that if we define Y .. = 0, then for each T E ~ 

(1.4) 

therefore our problem (P) can be formulated now as follows: find a T* E !;J to 
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maximize E(Y,). Next, we observe that if for any -r E ~ we define -r' = inf {n 
~ -r: n :S N(T), gn = !1 V • • • V gn} (we adopt the usual convention: infcf> = 
+oo), then -r' is, clearly, a stopping time w.r.t. (?Yn)nEN and E(Y,) :S E(Y.,, ). This 
means that we may confine the stopping times to those belonging to ~o, where 

~o= {-rE~:-r=n=>n:SN(T),~n=g1V ·•• Vgn,nEN}. 

Now, as in [1], we define the consecutive moments when "leaders" appear, 
i.e. 

-r1 = {+l ~ff pi :S TT' Tk+l = inf {n: n :S N(T), n > Tk, ~n ~ g,k}, k EN 
00 l Pl> 

It is evident that Tk E ~o for k E N. 
Calculations quite similar to those we have done above (and therefore 

omitted) show that 

if m > Tk, y ~ g,k, and = 0 otherwise, where G *n denotes the distribution 
function of Rn. Thus, if we define ?Y,0 as the trivial u-field, and 

(1.5) 

where 8 and a are labels for the initial and the final states, respectively, we see 
that (XkhENu(oJ is a Markov chain with respect to the u-fields {?Y,k)kENU(OJ • The 
state space of this chain is (N X !R+ X [O, 1]) U {8} U {a}, and the transition 
function is 

p(n, r, x; m X [O, s] X [O, y]) 

= P( Tk+l = m, Rm === s, gm === y 1-rk = n, Rn = r, gn = x) 

if n < m, x :Sy, H(r) < 1 

otherwise. 

a is an absorbing state, and it is clear what the transition probabilities involving 
8 and a should be. • ' 

Now, it is easy to see th8rt our problem can be reduced to the problem of 
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optimal stopping of the chain (XkheNu(oJ, with the, reward function defined as 

(1.6) f(n, r, x) = f(r, x) = 1 _ ~(r) J:-'" g(t - r, x) dH(t) 

if H(r) < 1, and = 0 if H(r) = l; /(8) = /(a) = 0, 

Indeed, to any -r E ~o we can associate a stopping time CJ with respect to 
(~Tk)keNucoi, defining CJ= k on the set {-r = Tk < +oo}, k = 1, 2, • • •, &nd CJ= 
+oo on {-r = +oo }. By (1.3), (1.5), (1.6) we have E(YT) = E(/(X.)). 

Recall that the optimal stopping problem for Markov chains is solved by the 
following procedure (cf. e.g. [ 4]): If P is the operator connected with the 
transition function then we define / 1 = f (f being the reward function), fn+i = 
max (f, Pfn), f"' = lim,,__."' fn, and r* = {/=/*}.An optimal (finite a.s.) stopping 
rule exists iff the first hitting time of the set r* by the chain is a.s. finite. That 
first hitting time is optimal. 

In our case, 

(1.7) Pf(n, r, x) = J f(s, y)p(n, r, x; dm, ds, dy) 

1 
= 1 - H(r) n ft"' Jfi-r f(s + r, y) Lk=l xk-l dG*k(s) dH(t) dy, 

Pf(a) = 0 = /(a), consequently the set r* must have the form r* = (N X r) U 
{a}, where r C !R+ x [0, l]. The state a is attained by the chain (Xk) with 
probability one, so an optimal stopping rule (for the problem of stopping the 
chain) exists. lt is evident now ~hat the solution of (P) exists and is given by 
(1.1).·rhe theorem is proved. • 

Note that by a trivial modification of (1.1) we obtain an optimal stopping 
rule which is a.s. finite. 

2. In the general case there is no effective way of finding the set r. However, 
sometimes (Xk) and f satisfy the conditions of the:so called "monotone case" 
([3]) and then much more can be said about the bptimal stopping rule. One 
should consider the set ll * = { Pf :S f} . If this set is such that 
1 ° for each state z, Pz(3Jk Ell*) = 1, 
2° for each z Ell*, Pz(3Jk $ ll*) = 0, 
where Pz is the probability connected with the chain starting from z, then the 
first hitting time of ll * is optimal for stopping the chain (Xk) with the reward 
function f (cf. [l], [2], [5]). 

In our case 1 ° is always satisfied, since a E ll *, and it is clear that we should 
investigate the inequality (cf. (1.7)) 

(2.1) 1 _ ~(r) J! J1"' Jfi-r f(s + r, y) Lk=l xk-1dG*k(s) dH(t) dy :S f(r, x). 

Let ll denote the set of pairs (r, x) for which this inequality is satisfied. 
Taking into account that our chain "goes to the right and upwards" we obtain 
the following 
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Criterion: if the set t:,. has the form 

t:,. = {(r, x) ER+ X [O, 1]: 1 2::: x 2:::: x(r), r ER+} 

where x( •) is a non-increasing function, then 

(2.2) 

is the solution of (P). 
As an example we will consider the case of exponentially distributed random 

variables. Assume that T has the exponential distribution with parameter µ 
(µ > 0). Straightforward calculations give (cf. (1.6), (1.7) and (1.2)) 

def 

f(r, x) = µ ft"' g(t, x)e-µ 1 dt = E(?<T>) = f(x), 

1 
Pf(n, r, x) = l _ x f; f(y) dy(l - f(x)), 

where we have used the fact that 

~oo k-la*k( ) 1 - g(t - r, X) 
L.,k=l X t - r = ----"----

1 - X 

If, in addition, we assume that pi, p2, • • • are exponentially distributed with 
parameter;\ (;\ > 0) then we have 

µ µ ;\(1 - x) + µ 
f(x) = ;\(l _ x) + µ, Pf(n, r, x) = ;\(l _ x) + µ log µ 

Thus, inequality (2.1) has the form log ;\(l - x) + µ ::=; 1 and, remembering 
µ 

that x E [O, 1], we get t:,. = R+ X [xo, 1], where 

(2.3) Xo = ( 1 - (e - 1) ~) +. 

In this case even more can be obtained, namely, it is easy to calculate the 
"the maximal reward", i.e. the probability that using the optimal stopping rule 
we get the maximal g. To this end, let -r* be given by (2.2). Now 

= r:=l L::'=1 P(N(T) = m)P(F(t1) < Xo, • • ·, F(tn-1) < Xo, 

F(tn) 2:::: Xo, F(tn) = F(tn) V ••• V F(tm)) 

_ ~oo ~m ( A )m µ X n-l I (1 X )m-n+l - L.,m=l L.,n=l -- -- 0 - O . 
;\+µ ;\+µ m-n+l 
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Hence, if .xo = 0 then 

µ, A+µ, 
Pmax =-,--log--, 

/\+µ, µ, 

and if Xo > 0 then 

P _ °""' _µ,_ n-i (-A-)n-i l A(l - xo) + µ,. 
=-u~, ~ ' ~ /\+µ, /\+µ, µ, 

µ, log A(l - xo) + µ, = I . 
A(l - xo) + µ, µ, e 

Denote a = ~. In the proposition below we summarize our· results obtained 
µ, 

for the exponential case. 

PROPOSITION. Suppose that T and Pn are exponentially distributed with 
parametersµ,, A respectively. 

1 ° If a :5 e - 1 then -r* = 1 is the solution of problem (P), and the probability 

that using this policy we obtain the maximal l is - 1-log (1 + a). 
l+a 

2° If a > e - 1 then -r* = inf {n:F(ln) 2: xo} is the solution of problem (P), 

where x0 is given by (2.3), and the corresponding probability is I. 
e 

It is rather striking that in all reasonable cases (a > f? - 1) the maximal 
probability does not depend on A, µ,! 

CENTRO DE INVESTIGACION DEL JPN, MEXICO, D. F. AND 

UNIWERSYTET WARSZAWSKI, POLAND. 
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