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Let Brt be the classifying space of the groupoid r1w of germs of local real 
analytic orientation preserving homeomorphisms of :!It. Then Brt is a K( G, 
1), [1], [2]. In this note we give a new proof of the result of A. Haefliger: 

THEOREM. G = '11'1 (Brt) is perfect. That is Hi (Brt, Z) = 0. 

Our proof is in the spirit of the calculation of G made in [2]. From the 
presentation of G given there we give an explicit formula for every generator 
as a commutator. Recall G is the free group on the components of rt modulo 
"composition when defined". That is, the generators are maximally extended 
local orientation preserving homeomorphisms of !Jt. There is a relation F•G 
= F 0 G, where F • G is the product in the free group and F 0 G is the composition 
of F and G as functions, whenever the range of F intersects the domain of G. 
Moreover every generator of G represents a nontrivial element of G [2]. 

Note, we will write composition of homeomorphisms from left to right in the 
sequel. 

Proof: Let S be the set of generators of G. Let T,, E S correspond to (the 
maximal homeomorphism) translation by a E !Jt. Let E 11 ES correspond to the 
exponential map x - e11X, /3 > 0 and to x - -e 11X, /3 < 0. Let Ly correspond to 
the linear map x - y-x, y E !Jt, y > 0. Let A(p, q) correspond to the affine 
map x - px + q, p, q E :!It, p > 0. Let [ Q, R] denote the commutator 
QoRoQ- 1oR-1, Q, RES. Let x- 1 denote the inverse component of X, XE S. 

The following lemmas are trivial. 

1 1 
LEMMA 1: Ta.= [A(a, 1), A(b, 1)] where;;- b = a, a, b > 0. 

LEMMA 2: Ly= Et'n(y)-l 0 T1°Et'n(-y), y > 0. 

Lemma 3 is the well known linearization theorem of S. Sternberg formulated 
to fit our context [ 4]. 

LEMMA 3: Let Q E S be a homeomorphism such that Q (0) = 0, 0 E !Jt, Q' (0) 
= y ,;,f 1. Thell there exists an element KE S such that K(0) = 0 and K 0 Q°K- 1 

=Ly. 

To prove the theorem let X E S. If X = T" then we are done by lemma 1. 
Otherwise choose a point pin the domain of X such that X' (p) = a ,;,f 1. Let 
q = X(p). Then 

(1) 
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is a component with Y(O) = 0, Y'(O) =a.By lemma 3 there is a KE S such 
that 

(2) 

By lemma 2, 

(3) 

Formulas (1), (2) and (3) together yield 

X = T-p 0 (Ei'n(a)°K)- 10 T1°(Een(a)°K) 0 Tq. 

Hence we obtain the following commutator formula: Consider X E S with 
X(p) = q,X'(p) = a and let Kbe a conjugatinghomeomorphismofTpoX 0 I'-q. 
Set Q = Ei'n(a>°K. Then 

X= [A(ao, l),A(a1, 1)] 

•[Q 0 A(bo, 1) 0 Q- 1, Q0 A(b1, l) 0 Q- 1][A(co, l),A(c1, 1)] 

where 

1 1 
---= -P, 
ao a1 

1 1 
---=1 
bo b1 

1 1 
and - -- = q. 

Co C1 

We remark that in an analogous manner we can prove that the fundamental 
groups of the classifying spaces in codimension greater than 1 vanish, using 
Sternberg's linearization theorem in ~n, n > 1, [3]. 
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