A NOTE ON THE PERFECTION OF THE FUNDAMENTAL GROUP OF THE CLASSIFYING SPACE FOR CODIMENSION ONE REAL ANALYTIC FOLIATIONS

BY SOLOMON M. JEKEL

Let $B\Gamma_1^{\omega}$ be the classifying space of the groupoid Γ_1^{ω} of germs of local real analytic orientation preserving homeomorphisms of \mathscr{R} . Then $B\Gamma_1^{\omega}$ is a K(G,1), [1], [2]. In this note we give a new proof of the result of A. Haefliger:

THEOREM. $G = \pi_1(B\Gamma_1^{\omega})$ is perfect. That is $H_1(B\Gamma_1^{\omega}, Z) = 0$.

Our proof is in the spirit of the calculation of G made in [2]. From the presentation of G given there we give an explicit formula for every generator as a commutator. Recall G is the free group on the components of Γ_1^{ω} modulo "composition when defined". That is, the generators are maximally extended local orientation preserving homeomorphisms of \mathcal{R} . There is a relation $F \cdot G$ = $F \circ G$, where $F \bullet G$ is the product in the free group and $F \circ G$ is the composition of F and G as functions, whenever the range of F intersects the domain of G. Moreover every generator of G represents a nontrivial element of G [2].

Note, we will write composition of homeomorphisms from *left to right* in the sequel.

Proof: Let S be the set of generators of G. Let $T_{\alpha} \in S$ correspond to (the maximal homeomorphism) translation by $\alpha \in \mathcal{R}$. Let $E_{\beta} \in S$ correspond to the exponential map $x \to e^{\beta x}, \beta > 0$ and to $x \to -e^{\beta x}, \beta < 0$. Let L_{γ} correspond to the linear map $x \to \gamma \cdot x, \gamma \in \mathcal{R}, \gamma > 0$. Let A(p, q) correspond to the affine map $x \to px + q$, $p, q \in \mathcal{R}, p > 0$. Let [Q, R] denote the commutator $Q \circ R \circ Q^{-1} \circ R^{-1}$, $Q, R \in S$. Let X^{-1} denote the inverse component of $X, X \in S$.

The following lemmas are trivial.

LEMMA 1:
$$T_{\alpha} = [A(a, 1), A(b, 1)]$$
 where $\frac{1}{a} - \frac{1}{b} = \alpha, a, b > 0.$

LEMMA 2: $L_{\gamma} = E_{\ell n(\gamma)}^{-1} \circ T_1 \circ E_{\ell n(\gamma)}, \gamma > 0.$

Lemma 3 is the well known linearization theorem of S. Sternberg formulated to fit our context [4].

LEMMA 3: Let $Q \in S$ be a homeomorphism such that $Q(0) = 0, 0 \in \mathcal{R}, Q'(0)$ $= \gamma \neq 1$. Then there exists an element $K \in S$ such that K(0) = 0 and $K \circ Q \circ K^{-1}$ $= L_{\gamma}$.

To prove the theorem let $X \in S$. If $X = T_{\alpha}$ then we are done by lemma 1. Otherwise choose a point p in the domain of X such that $X'(p) = a \neq 1$. Let q = X(p). Then

(1)
$$Y = T_p \circ X \circ T_{-q}$$
58

is a component with Y(0) = 0, Y'(0) = a. By lemma 3 there is a $K \in S$ such that

$$K \circ Y \circ K^{-1} = L_a$$

By lemma 2,

(3)
$$L_a = E_{\ell n(a)}^{-1} \circ T_1 \circ E_{\ell n(a)}.$$

Formulas (1), (2) and (3) together yield

$$X = T_{-p} \circ (E_{\ell n(a)} \circ K)^{-1} \circ T_1 \circ (E_{\ell n(a)} \circ K) \circ T_q.$$

Hence we obtain the following commutator formula: Consider $X \in S$ with X(p) = q, X'(p) = a and let K be a conjugating homeomorphism of $T_p \circ X \circ T_{-q}$. Set $Q = E_{\ell n(a)} \circ K$. Then

$$X = [A(a_0, 1), A(a_1, 1)]$$

$$\cdot [Q \circ A(b_0, 1) \circ Q^{-1}, Q \circ A(b_1, 1) \circ Q^{-1}] [A(c_0, 1), A(c_1, 1)]$$

where

$$\frac{1}{a_0} - \frac{1}{a_1} = -p, \quad \frac{1}{b_0} - \frac{1}{b_1} = 1 \quad \text{and} \quad \frac{1}{c_0} - \frac{1}{c_1} = q.$$

We remark that in an analogous manner we can prove that the fundamental groups of the classifying spaces in codimension greater than 1 vanish, using Sternberg's linearization theorem in \mathcal{R}^n , n > 1, [3].

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F.

References

 A. HAEFLIGER, Homotopy and Integrability, in Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 197 (1971), 133-163.

[2] S. JEKEL, On two theorems of A. Haefliger concerning foliations, Topology 15 (1976), 267-271.

[3] -----, Loops on the classifying space for foliations, to appear.

[4] S. STERNBERG, Local Cⁿ transformations of the real line, Duke Math. J. 24 (1957), 97-102.