ON σ -UNICOHERENCE

By A. García-Máynez

1. Introduction

In this paper we introduce the concepts of σ -unicoherent and locally σ connected spaces. We give several equivalent formulations of σ -unicoherence in the class of connected and locally σ -connected spaces. We prove, incidentally, that every connected, locally σ -connected and σ -unicoherent space is unicoherent. John H. V. Hunt ([2]) exhibits an example of a Peano space (that is, a connected, locally connected and locally compact metric space) which is unicoherent but not σ -unicoherent. So, not every connected, locally σ -connected unicoherent space is σ -unicoherent. However, all Euclidean spaces \mathbb{R}^n and all unicoherent Peano continua are σ -unicoherent.* If we drop the assumption of local connectednesss, it is possible to find a closed connected subset of \mathbb{R}^3 which is σ -unicoherent but not unicoherent (see example 3.4 below).

2. Preliminary definitions

Let X be an arbitrary topological space. A sequence C_1, C_2, \cdots of subsets of X is a σ' -partition of X if the C_i 's are mutually disjoint, their union is X and for at least two different indices i, j, C_i and C_j are non-empty. A σ -partition of X is a σ' -partition C_1, C_2, \cdots of X such that C_i is non-empty for every i. A σ' -partition is closed (resp. compact) if all of its elements are closed (resp. compact). X is σ -connected if it has no closed σ' -partition. X is locally σ -connected if for each $x \in X$ and each neighborhood V of x, there is a σ -connected neighborhood W of x contained in V. A subset A of X σ -separates X if X - A is not σ -connected. Finally, X is σ -unicoherent if X is connected and for every pair H, K of closed σ -connected subspaces of X with union X, the set $H \cap K$ is σ -connected.

3. Equivalent formulations of σ -unicoherence

We start this section with a lemma:

3.1 Let C be a closed and σ -connected subspace of a connected and locally σ -connected space X. If R is a component of X - C, then X - R is σ -connected.

Proof. Clearly, every region in a locally σ -connected space is σ -connected. If $\{R_{\alpha} \mid \alpha \in J\}$ are the components of X - C different from R, then $\Phi \neq Fr \ R_{\alpha} \subset C$ for each $\alpha \in J$. By [1], 1.3, $X - R = C \cup (\bigcup_{\alpha \in J} R_{\alpha}^{-})$ is σ -connected.

^{*} For more general results, see [3].

ON σ -UNICOHERENCE

We can now state the equivalence theorem:

3.2 In a connected and locally σ -connected space X, the following statements are equivalent:

- 1) X is σ -unicoherent.
- 2) If $C \subset X$ is closed and σ -connected and R is a component of X C, then Fr R is σ -connected.
- If V is an open set which σ-separates X, then there exists a component W of V which σ-separates X.
- 4) If S is a region in X and R is a component of $X S^-$, then Fr R is oconnected.
- 5) If K is a closed set separating two points $a, b \in X$ and K_1, K_2, \cdots is a closed σ' -partition of K, then some K_i separates a, b in X.
- If K is a closed set separating X and K₁, K₂, · · · is a closed σ'-partition of K, then some K_i separates X.
- 7) Every closed set K in X separating a pair of points $a, b \in X$ irreducibly is σ -connected.
- If L is a closed set separating X, then some σ-component of L separates X.
- Proof.

1) \Rightarrow 2) By 3.1, X - R is σ -connected. Hence R^- and X - R are closed σ -connected sets with union X. By hypothesis, $FrR = R^- \cap (X - R)$ is σ -connected.

2) \Rightarrow 3) Let $\{V_{\alpha} | \alpha \in J\}$ be the components of V and assume, on the contrary, that each $X - V_{\alpha}$ is σ -connected. Let A_1, A_2, \cdots , be a closed σ' -partition of X - V. By 2), each $Fr V_{\alpha}$ is σ -connected. If

$$J_i = \{ \alpha \in J \mid Fr \ V_\alpha \subset A_i \},\$$

then $J = J_1 \cup J_2 \cup \cdots$. Defining $A_i^* = A_i \cup (\bigcup_{\alpha \in J_i} V_{\alpha})$, we obtain a closed σ' -partition of X, contradicting the fact that X is σ -connected.

3) \Rightarrow 4) Let $V = X - FrR = R \cup (X - R^{-})$. According to 3.1, no component of $V \sigma$ -separates X. Therefore, X - V = FrR is σ -connected.

4) \Rightarrow 5) Let S be the component of X - K containing a and let R be the component of $X - S^-$ that contains b. Our hypothesis implies that FrR is σ -connected. Hence $FrR \subset K_i$ for some i. Since FrR separates a, b in X, the same holds for K_i .

5) \Rightarrow 6) This implication is obvious.

6) \Rightarrow 7) Let C_a , C_b be the components of X - K containing a, b, resp., and let $\{V_{\alpha} \mid \alpha \in J\}$ be the components of X - K other than C_a and C_b . The irreducibility of K implies $Fr C_a = Fr C_b = K$. Proceeding by contradiction, let K_1, K_2, \cdots , be a closed σ' -partition of K. For each i, let $K_i^* = K_i \cup (\bigcup \{V_{\alpha} \mid Fr \mid V_{\alpha} \subset K_i\})$. Each $X - K_i^*$ is connected, since

A. GARCIA-MAYNEZ

 $X - K_i^* = C_a \cup C_b \cup (\bigcup_{j \neq i} K_j) \cup (\bigcup \{V_\alpha | (X - K_i) \cap Fr V_\alpha \neq \Phi\}).$

The union of the first three sets is connected and each V_{α} satisfying $(X - K_i)$ $\cap Fr V_{\alpha} \neq \Phi$ has limit points in $\bigcup_{j\neq i} K_j$. Our hypothesis implies that $K^* = K_1^*$ $\cup K_2^* \cup \cdots$ does not separate X. However, C_a and C_b are different components of $X - K^*$, a contradiction.

7) \Rightarrow 8) Let a, b points in different components of X - L and let K be a closed subset of L separating a, b irreducibly (this is always possible in a connected and locally connected space). By hypothesis, K is σ -connected. Hence the σ -component of L containing K separates a, b in X.

8) \Rightarrow 1) Assume X is not σ -unicoherent. Then there exist two closed σ connected sets H, K such that $X = H \cup K$ and a closed σ -partition $A_1, A_2,$ \cdots of $H \cap K$. Since H is σ -connected, there exists a component C of H - K = X - K whose frontier intersects more than one set A_i . Let $P_i = A_i \cap FrC$ $(i = 1, 2, \cdots)$ and let $\{V_{\alpha} | \alpha \in J\}$ be the components of $X - C^-$. Let us define

$$P_i^* = P_i \cup (\bigcup \{V_\alpha | Fr V_\alpha \subset P_i\}).$$

For some $\alpha \in J$ and different indexes *i*, *j* we must have $P_i \cap Fr V_{\alpha} \neq \Phi \neq P_j$ $\cap Fr V_{\alpha}$, for otherwise,

$$X - C = P_1^* \cup P_2^* \cup \cdots$$

contradicting the fact that X - C is σ -connected (lemma 3.1). Let $L = P_1^* \cup P_2^* \cup \cdots L$ is then a closed set separating X because C and any V_{α} with $Fr V_{\alpha} \cap (X - P_i) \neq \Phi$ for every *i* are different components of X - L. Observe also that each $X - P_i^*$ is connected. 8) implies the existence of a σ -component D of L which separates X. Necessarily $D \subset P_i^*$ for some *i*, say $D \subset P_1^*$. Then X - D is connected, for if

$$X - D = A \cup B$$

were a separation of X - D, where $X - P_1^* \subset A$, then $D \cup B$ would be a σ connected set in P_1^* containing D properly. This contradiction completes the
proof.

3.3 COROLLARY. Every locally σ -connected σ -unicoherent space is unicoherent.

3.4 EXAMPLE. A closed connected subset of R^3 which is σ -unicoherent but not unicoherent.

Let $X = K_1 \cup K_2 \cup \cdots$ be the example described in [1], 4.3. Since X is connected but not σ -connected, X is necessarily σ -unicoherent. Let $H = K_1$ and $K = p(K_1) \cup K_2 \cup K_3 \cup \cdots$, where $p(K_1)$ is the projection of K_1 on the plane z = 0. Clearly $X = H \cup K$, H, K are both closed and connected and $H \cap K = p(K_1)$. This proves X is not unicoherent.

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F.

8

ON σ -UNICOHERENCE

References

- [1] A. GARCÍA-MÁYNEZ, On σ-connected sets, Bol. Soc. Mat. Mexicana 16 (1971), 46-51.
- [2] J. H. V. HUNT, A counter example on unicoherent Peano spaces, Coll. Math. 23 (1971), 263-266.
- [3] E. D. TYMCHATYN AND J. H. V. HUNT, The theorem of Miss Mullikin-Mazurkiewicz-van Est for unicoherent Peano spaces, Fund. Math. 78 (1973), 285–287.