ON COMPACT SPACES WHICH ARE NOT c-SPACES

BY W. SCHACHERMAYER

Abstract: A compact space *K* is not a *c*-space iff the space $[0, \Omega]$ of ordinals up to the first uncountable one, noted Ω , is homeomorphic to a subspace of a quotient of K (equivalently to a quotient of a subspace of K). βN , the Stone-Cech-compactification of *N* furnishes an example of a compact space that is not a c-space, but such that $[0, \Omega]$ is neither homeomorphic to a subspace nor to a quotient of BN .

In the second part we show that on every compact space that is not a cspace there exists a $\{0, 1\}$ -valued σ -additive Borel-measure that is not outer regular (equivalently, not a Radon-measure), thus extending a famous example of such a measure on $[0, \Omega]$, constructed by J. Dieudonné.

§1

Following Archangel'skii [l], we call a topological space *X* a *c-space,* if every subset *E* of *X* that is countably closed *(i.e.* if $\{x_n\}_{n=1}^{\infty} \subset E$ and *x* is a clusterpoint of $\{x_n\}_{n=1}^{\infty}$ then $x \in E$) is closed.

The prototype of a space not being a c-space is $[0, \Omega]$, the compact space of ordinals up to the first uncountable one, noted Ω , equipped with the ordertopology, where $[0, \Omega]$ furnishes an example of a countably closed but nonclosed subset.

The following proposition shows that compact non-c-spaces are closely related to $[0, \Omega]$.

PROPOSITION 1: *For a compact Hausdorff-space K the following are equivalent:*

- (i) *K is not a c-space.*
- (ii) *There exists a closed subspace of a quotient of K, homeomorphic to* [0, OJ.
- (ii)' *There exists a quotient of a closed subspace of K, homeomorphic to* $[0, \Omega]$.

Proof: The property of being a compact c-space is inherited by closed subspaces and quotients. This is completely trivial for subspaces; for quotient spaces *(i.e.* continuous images) assume that $\pi: K \to K_1$ is a continuous map of a compact c-space K onto a Hausdorff space K_1 .

Let A_1 be a subset of K_1 and $x_1 \in \overline{A_1}$; then $\pi^{-1}(x_1) \cap \overline{\pi^{-1}(A_1)}$ is not empty in *K*. Indeed if it were so $\pi(\pi^{-1}(A_1))$ would be a closed subset of K_1 , containing A_1 but not containing x_1 .

So by assumption there exists a sequence $\{y_n\}_{n=1}^{\infty}$ in $\pi^{-1}(A_1)$ such that $\pi^{-1}(x_1) \cap \overline{\{y_n\}_{n=1}^{\infty}} \neq \emptyset$. But then $x_1 \in \overline{\{\pi(y_n)\}_{n=1}^{\infty}}$ which shows that K_1 is a cspace too.

So clearly we have (ii) \Rightarrow (i) and (ii)' \Rightarrow (i) because [0, Ω] is not a c-space.

To show the other direction we apply an argument of [2J: suppose there exists a set *E* in *K* such that *E* is countably closed but not closed and let $y_0 \in$ $E\setminus E$. Countable closedness of *E* implies that *E* is semicompact *(i.e.* every countable open cover of *E* has a finite sub-cover). We define inductively a "long sequence" $\{x_\alpha\}_{\alpha\leq\Omega}$ of points of *E* and $\{f_\alpha\}_{\alpha\leq\Omega}$ of continuous functions of *K*, taking their values in [0, 1] and such that $f_a(y_0) = 1$.

Let x_0 be arbitrary in *E* and $f_0: K \to [0, 1]$ such that $f_0(x_0) = 0$ while $f_0(y_0)$ $= 1$. Suppose $\{x_i\}_{i \leq \alpha}$ and $\{f_i\}_{i \leq \alpha}$ are chosen. Then let x_α be an element in *E* such that $f_{\gamma}(x_{\alpha}) = 1$ for every $\gamma < \alpha$. (This is possible because

$$
\left\{f_{\gamma}^{-1}\left(\left[0,1-\frac{1}{n}\right]\right): \gamma < \alpha, n \in \mathbb{N}\right\}
$$

is a countable family of open sets. If it would cover *E* then already a finite subfamily would cover *E*; but this is absurd, as $y_0 \in \overline{E}$, $f_y(y_0) = 1 \ \forall \gamma < \alpha$ and the *f_x* are continuous.) Then choose *f_a* such that $f_a(x) = 0 \forall \gamma \le \alpha$ and $f_a(y_0)$ $= 1$. (This is possible by Tietze-Urysohn, because y_0 is not in the closure of $\{x_{\gamma}\}_{\gamma\leq\alpha}$).

After this induction has been effected, define for $\alpha \in [0, \Omega]$ the sets

$$
F_{\alpha}=\cap_{\beta<\alpha}\ \overline{\{x_{\gamma}\}_{\beta<\gamma\leq\alpha}},
$$

and

$$
F_{\Omega} = \cap_{\beta < \Omega} \ \overline{\{x_{\gamma}\}_{\beta < \gamma < \Omega}} = \cap_{\beta < \Omega} \ \overline{\{F_{\gamma}\}_{\beta < \gamma < \Omega}}.
$$

Clearly the ${F_\alpha}_{\alpha \leq \alpha}$ are nonempty, compact, disjoint subsets of K and F_α is reduced to $\{x_{\alpha}\}\$ if α has a predecessor.

Define $F = \bigcup_{\alpha \leq 0} F_{\alpha} \cdot F$ is closed: indeed let $\{Z_i\}_{i \in I} \to Z$ be a convergent net in *K*, such that $Z_i \in F$. Let, for every *i* be $\alpha(i)$ the unique index such that $i \in$ $F_{\alpha(i)}$. From the definition of the $\{f_{\alpha}\}_{\alpha\leq \Omega}$ it is clear that $\{\alpha(i)\}_{i\in I}$ is a convergent net in [0, Ω], say it converges to a certain $\alpha_0 \in [0, \Omega]$.

This implies that for every $\beta < \alpha_0$, $\{Z_i\}_{i \in I}$ finally lies in the set $\bigcup_{\beta \prec \gamma \le \alpha_0} F_\gamma =$ $\bigcup_{\beta \leq \gamma \leq a_0} {\overline{x_\gamma}}$. So $Z = \lim Z_i$ lies in F_{a_0} by the very definition of F_{a_0} .

Now it is clear how to construct the spaces as in (ii) and (ii)': For (ii) define on *K* the equivalence relation $\mathcal{R}: x \mathcal{R} y \Leftrightarrow \exists \alpha \in [0, \Omega]$ such that $x \in F_a$ and *y* $\in F_{\alpha}$.

From the definition of the F_{α} and f_{α} one immediately sees that the quotient K/\mathscr{R} is Hausdorff. Clearly the image of F in K/\mathscr{R} is closed and it is easily verified that is is homeomorphic to $[0, \Omega]$.

To show (i) \Rightarrow (ii)' let *F* be the closed subspace of *K* and define on *F* again the equivalence relation \mathcal{R} ; then F/\mathcal{R} again is homeomorphic to [0, Ω].

This completes the proof of Proposition l.

Example: {3N, the Stone-Cech-compactification of N (a) βN is not a c-space. Indeed $\{0, 1\}^R$ is separable, so it is a continuous image

62 W. SCHACHERMA YER

of *f3N.* Also $\{0, 1\}^R$ contains a copy of $[0, \Omega]$ (take a collection $\{f_\alpha\}_{\alpha \leq \Omega}$ as in the proof of Proposition 1 to define such an embedding).

(b) βN does not have a quotient isomorphic to [0, Ω]. Indeed every continuous image of βN is separable, while [0, Ω] is not.

(c) βN does not contain a copy of $[0, \Omega]$; in fact it does not even contain a copy of $[0, \omega]$, ω being the first infinite ordinal *(i.e.* a non-trivial convergent sequence).

Indeed suppose $\{x_n\}_{n=1}^\infty$ to be a convergent sequence (to x_0 say) in βN such that $x_n \neq x_m$ if $n \neq m$. In functional-analytic language this may be stated as follows. The Dirac-measures $\delta_{(x_n)}$, which define simply additive measures on the σ - algebra $P(N)$ of all subsets of *N*, converge to $\delta_{\{x_0\}}$ on every member of *P*(N). Whence by the Vitali-Hahn-Saks-theorem, in its form for simply additive measures (see for example [3]: Theorem 1.4.8), $\{\delta_{x_n}\}_{n=1}^{\infty}$ would be uniformly strongly additive, which is evidently absurd. *q. e. d.*

Hence it is really necessary in the above proposition to speak about "subspaces of quotients" (resp. "quotients of subspaces"), to get a characterization of compact non-c-spaces.

§ 2

Our last result in this paper is to show that on a compact non- c -space K one may always construct a $\{0, 1\}$ -valued σ -additive Borel-measure which is not outer regular, in a similar fashion as **J.** Dieudonne did on [O, OJ (See, for example [5], exercise 52.10).

Although the result is, of course, related to the above characterization of compact non-c-spaces, the proof is completely independent of it.

PROPOSITION 2: *Let K be a compact Hausdorff-space which is not a c*space. Then there is a σ -additive, $\{0, 1\}$ -valued Borel-measure μ on K which *is not a Radon-measure.*

Proof: Let E be countably closed but not closed in K and let $x_0 \in E \backslash E$. Let $\mathscr A$ be an ultra-filter of closed sets in E (in its induced topology), that converges to x_0 . Note again that the countable closedness of E implies that E is semicompact, *i.e.* every countable open cover of E has a finite subcover. So $\mathscr A$ has the countable intersection property *(i.e.* if $\{A_n\}_{n=1}^{\infty} \in \mathcal{A}$ then $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$ ϕ).

Let F be any closed subset of K. Then $\mathscr A$ lies finally in F or in its complement F. Indeed suppose $F \cap A \neq \emptyset$ and $F \cap A \neq \emptyset$ for every $A \in \mathcal{A}$, then $\{F \cap A \neq \emptyset\}$ A _{*A* \in *A*} is a filter of closed subsets of *E* strictly finer than \mathcal{A} .

Clearly also for every open set *G* and for every set of the form $\bigcup_{i=1}^{n} \bigcap_{j=1}^{n(i)}$ $H_{i,j}$ where $H_{i,j}$ are either open or closed subsets of K , we have the same property that $\mathscr A$ finally lies in it or in its complement. Note that the family of the latter sets forms an algebra. Define μ on the sets B of this algebra by

 $\mu(B) = 1$ if *A* lies finally in *B*

 $\mu(B) = 0$ if not.

Clearly μ is additive and if B_n is a decreasing sequence in this algebra such that $\mu(B_n) = 1$ for every *n*, then there are $A_n \in \mathcal{A}$ such that $A_n \subseteq B_n$; as $\bigcap_{n=1}^{\infty}$ $A_n \neq \phi$ we get $\bigcap_{n=1}^{\infty} B_n \neq \phi$, which readily shows the σ -additivity of μ . By the Caratheodory-procedure μ has a σ -additive extension to the Borel-algebra $\mathscr B$ of K, which clearly is 0-1-valued too and will also be denoted μ .

But μ is not a Radon-measure: indeed $\mu({x_0}) = 0$ while for every open neighborhood *U* of x_0 we have $\mu(U) = 1$; so μ is not outer regular.

The last proposition shows that every compact Radon-space *(i.e. where* every er-additive finite Borel-measure is a Radon-measure) is a c-space. Conversely it was shown by the author [6], that every Eberlein-compact, satisfying a mild cardinality restriction, is a Radon-space, a fact which also follows from the independent work of G. Edgar [4].

But the problem to characterize topologically the class of (compact) Radonspaces seems very hard, as is also indicated by the recent example of M. Wage [7], showing that this class is not stable under forming finite products.

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F.

REFERENCES

- [1] A. ARCHANGEL'SKII, General topology and its applications, 1 (1971), p. IX.
- [2] H. H. CORSON, *The weak topology of Banach spaces,* Trans. Amer. Math. Soc., **101** (1961), 1-15.
- [3] J. DIESTEL AND J. J. UHL, *Vector measures,* Mathematical Surveys, **15,** Arner. Math. Soc. Providence, R. I., 1977.
- **[4]** G. EDGAR, *Measurability in Banach-spaces,* preprint, 1977.
- [5] P.R. HALMOS, Measure Theory, Van Nostrand, Princeton, N. J.-Toronto-New York-London, 1950.
- [6] W. ScHACHERMAYER, *Eberlein-compacts et espaces de Radon,* Ann. Sci. de !'Univ. Clermont, **61** (1976), 129-145.
- [7] **M.** WAGE, *A Radon-space whose square is not Radon,* preprint, 1977.