ON COMPACT SPACES WHICH ARE NOT c¢-SPACES

By W. SCHACHERMAYER

Abstract: A compact space K is not a c-space iff the space [0, ] of ordinals
up to the first uncountable one, noted 2, is homeomorphic to a subspace of a
quotient of K (equivalently to a quotient of a subspace of K). 8N, the Stone-

Cech—compactification of N furnishes an example of a compact space that is
not a c-space, but such that [0, £2] is neither homeomorphic to a subspace nor
to a quotient of BN.

In the second part we show that on every compact space that is not a c-
space there exists a {0, 1}-valued o-additive Borel-measure that is not outer
regular (equivalently, not a Radon-measure), thus extending a famous example
of such a measure on [0, 2], constructed by J. Dieudonné.

§1

Following Archangel’skii [1], we call a topological space X a c-space, if every
subset E of X that is countably closed (i.e. if {x.},—1" C E and x is a cluster-
point of {x,}.-1" then x € E) is closed.

The prototype of a space not being a c-space is [0, 2], the compact space of
ordinals up to the first uncountable one, noted £, equipped with the order-
topology, where [0, Q[ furnishes an example of a countably closed but non-
closed subset.

The following proposition shows that compact non-c-spaces are closely
related to [0, Q].

ProPoSITION 1: For a compact Hausdorff-space K the following are equiv-
alent:
(i) K is not a c-space.
(ii) There exists a closed subspace of a quotient of K, homeomorphic to
[0, &1.
(1i)’ There exists a quotient of a closed subspace of K, homeomorphic to

[0, €.

Proof. The property of being a compact c-space is inherited by closed
subspaces and quotients. This is completely trivial for subspaces; for quotient
spaces (i.e. continuous images) assume that m K — K; is a continuous map of
a compact c-space K onto a Hausdorff space K.

Let A, be a subset of K; and x; € A;; then 7 (x;) N 7 '(A;) is not empty
in K. Indeed if it were so (7 *(A;)) would be a closed subset of K, containing
A; but not containing x;.

So by assumption there exists a sequence {yn}.-1” in 7 '(A4:) such that
7 (x1) N {Yn}n=1" # ¢. But then x; € {7(yn)}n=1" which shows that K; is a c-
space too.
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So clearly we have (ii) = (i) and (i)’ = (i) because [0, ] is not a c-space.

To show the other direction we apply an argument of [2]: suppose there
exists a set F in K such that E is countably closed but not closed and let y, €
E\E. Countable closedness of E implies that E is semicompact (i.e. every
countable open cover of E has a finite sub-cover). We define inductively a
“long sequence” {x.}.<q of points of E and {f,}.<a of continuous functions of
K, taking their values in [0, 1] and such that f, (y,) = 1.

Let xo be arbitrary in E and fy: K — [0, 1] such that fo(x0) = 0 while fo(yo)
= 1. Suppose {x,},<. and {f,} <. are chosen. Then let x, be an element in E
such that f,(x,) = 1 for every y < a. (This is possible because

=

is a countable family of open sets. If it would cover E then already a finite
subfamily would cover E; but this is absurd, as o € E, f,(y) = 1 ¥y < a and
the f, are continuous.) Then choose f, such that f.(x,) =0V y < a and f,( o)
= 1. (This is possible by Tietze-Urysohn, because y, is not in the closure of

{xv} Yﬁa)'
After this induction has been effected, define for o € [0, 2] the sets

Fo= Npeo {2} pey=ar
and
Fo = Mp<a {x} pera = Npea {F} p<y<a.

Clearly the {F,}.<q are nonempty, compact, disjoint subsets of K and F, is
reduced to {x,} if « has a predecessor.

Define F = U, F,-F is closed: indeed let {Z;};c1 — Z be a convergent net
in K, such that Z; € F. Let, for every I be a(i) the unique index such that i €
F,;). From the definition of the {f.}.<q it is clear that {«a(i)} s is a convergent
net in [0, ], say it converges to a certain a € [0, Q].

This implies that for every f<ao, {Z}ics finally lies in the set Us < </, =
Up<y=a {*,} . S0 Z = lim Z; lies in F,,by the very definition of F,,.

Now it is clear how to construct the spaces as in (ii) and (ii)”: For (ii) define
on K the equivalence relation %: x #Z y & Ja € [0, ] such that x € F, and y
€ F,.

From the definition of the F, and f, one immediately sees that the quotient
K/# is Hausdorff. Clearly the image of F in K/% is closed and it is easily
verified that is is homeomorphic to [0, 2].

To show (i) = (ii)’ let F be the closed subspace of K and define on F again
the equivalence relation Z; then F/% again is homeomorphic to [0, £].

This completes the proof of Proposition 1.

Example: BN, the Stone-Cech-compactification of N
(a) BN is not a c-space. Indeed {0, 1} ¥ is separable, so it is a continuous image
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of BN. Also {0, 1} ¥ contains a copy of [0, 2] (take a collection {f.}.<q as in the
proof of Proposition 1 to define such an embedding).
(b) BN does not have a quotient isomorphic to [0, 2]. Indeed every continuous
image of BN is separable, while [0, £] is not.
(c) BN does not contain a copy of [0, £2]; in fact it does not even contain a copy
of [0, w], w being the first infinite ordinal (i.e. a non-trivial convergent
sequence).
Indeed suppose {x.}.-1" to be a convergent sequence (to xo say) in BN such
that x, F x. if n # m. In functional-analytic language this may be stated as
follows. The Dirac-measures (., which define simply additive measures on
the o- algebra P(N) of all subsets of N, converge tod(,; on every member of
P(N). Whence by the Vitali-Hahn-Saks-theorem, in its form for simply additive
measures (see for example [3]: Theorem 1.4.8), {8(x,3} n-1" would be uniformly
strongly additive, which is evidently absurd. q. e. d.

Hence it is really necessary in the above proposition to speak about “sub-
spaces of quotients” (resp. “quotients of subspaces”), to get a characterization
of compact non-c-spaces.

§ 2
Our last result in this paper is to show that on a compact non-c-space K one
may always construct a {C, 1}-valued o-additive Borel-measure which is not
outer regular, in a similar fashion as J. Dieudonné did on [0, ] (See, for
example [5], exercise 52.10).
Although the result is, of course, related to the above characterlzatlon of
compact non-c-spaces, the proof is completely independent of it.

ProprosITION 2: Let K be a compact Hausdorff-space which is not a c-
space. Then there is a o-additive, {0, 1}-valued Borel-measure p on K which
is not a Radon-measure.

Proof: Let E be countably closed but not closed in K and let x, € E\E. Let
& be an ultra-filter of closed sets in E (in its induced topology), that converges
to xo. Note again that the countable closedness of E implies that E is
semicompact, i.e. every countable open cover of E has a finite subcover. So .«
has the countable intersection property (i.e. if {A,},—1" € ./ then N,—1"A, +

¢).

Let F be any closed subset of K. Then &/ lies finally in F or in its complement
F. Indeed suppose FN A # ¢ and F N A # ¢ for every A € , then {F N
A} 4c.s is a filter of closed subsets of E strictly finer than .«/.

Clearly also for every open set (G and for every set of the form U;—" N;—;
H;; where H;; are either open or closed subsets of K, we have the same
property that .o finally lies in it or in its complement. Note that the family of
the latter sets forms an algebra. Define p on the sets B of this algebra by

p(B) = 1if A lies finally in B
w(B) = 0 if not.

m(i)
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Clearly p is additive and if B, is a decreasing sequence in this algebra such
that u(B,) = 1 for every n, then there are A, € & such that A, C B,; as Ny
A, # ¢ we get Np—” B, # ¢, which readily shows the ¢-additivity of u. By the
Carathéodory-procedure p has a o-additive extension to the Borel-algebra %
of K, which clearly is 0-1-valued too and will also be denoted p.

But p is not a Radon-measure: indeed u({x0}) = 0 while for every open
neighborhood U of xo we have u(U) = 1; so u is not outer regular.

The last proposition shows that every compact Radon-space (i.e. where
every c-additive finite Borel-measure is a Radon-measure) is a ¢-space. Con-
versely it was shown by the author [6], that every Eberlein-compact, satisfying
a mild cardinality restriction, is a Radon-space, a fact which also follows from
the independent work of G. Edgar [4].

But the problem to characterize topologically the class of (compact) Radon-
spaces seems very hard, as is also indicated by the recent example of M. Wage
[7], showing that this class is not stable under forming finite products.
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