
SUBGROUPS OF FINITE INDEX OF A CLASS OF 
ABELIAN VARIETIES 

BY HORACIO TAPIA-RECILLAS* 

Let k be a field complete with respect to a (non-trivial) non-archimedean 
valuation with order function ord: k - R. Let eJ be the valuation ring, U the 
group of units, .It the maximal ideal and k = eJ I .It be the residue field. 

Let A = Proj (R) be an abelian variety of dimension g ~ l over k, where R 
is a graded ring of theta functions (cf.§ 1 below) such that the group A(k) of 
its k-rational points is isomorphic to (k*)g ;r for some multiplicative subgroup 
r of (k*)g. 

The reduction R_ modulo the ideal .:It of the ring of theta fupctions R is a 
graded ring and A = Proj (R ) is an abelian variety over k. Taking an 
appropriate basis for R, one can assume that the projective coordinates of the 
points of A(k) are in O but not all of them in .It. By reducing the proj~cji_ve 
coordi~t~ of each PE A(k) m~ulo .It, one gets aE1,ap p:A(k) - A(k), 
where A( k) denotes the group of k-rational points of A. 

The purpose of this note is to prove the following result which is a general
ization of a theorem for elliptic curves to the case of abelian varieties which 
have the above uniformization property for special r. The result for elliptic 
curves was obtained by J. Tate, cf. [l], [2]. 

THEOREM. If A n.s. denotes the non-singular part of A and U(k) = 
p- 1(.A,._s (k)), then: 

i) U ( k) is a subgroup of A ( k) of finite index. A set of generators for the 
group A (k)/U(k) is given. 

ii) the reduction map p: U ( k) - An.s. ( k ) is a group homomorphism with 
kernel U1 = {P EA(k):p(P) = p(O)}. 

iii) there is an isomorphism betl!:}!!en !fte grouJ!! (1 + .lt)g and U1(k). 
iv) there is a bijection between An.s.(k) and (k*)g. 

In §1 we recall some general facts about uitrametric theta functions and the 
uniformization of abelian varieties over k. In §2 we consider a special type of 
those abelian varieties described in §1 and give the proof of the results stated 
above. For more details of the results mentioned in §1 see [ 4]. I thank Zenaida 
E. Ramos for many helpful conversations. 

§1 Generalities 

Let k, 0, U, .It, and k be as described above. For any integer g ~ 1 let ( aij) 
be a g x g matrix with entries in k satisfying the following Riemann conditions: 
( aij) is symmetric and (ord aiJ) is positive definite. 

Let VJ= ( a,1 , ••• , aJg) and QJ = aii for j = l, 2, • • •, g. Note that each QJ E .It. 
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For m ~ 0 let Rm be the set of Laurent power series 0( x) = ~a1x 1 in the g 
variables xi, • • •, Xg with coefficients in eJ' which converge for every element 
and which satisfy the following functional equation: 

j= 1, 2, • • •,g. 

(we use the vector notation i.e. I= (ii, • • •, ig) E Z 8 , x = (xi, • •• , Xg) and if 
y= (yi, ··•,Yg),xy= (xiYi, ··•,Xgyg). 

It can be shown that Rm is a k-vector space of dimension (4m)c, and R = 
EBo"' Rm is a finitely generated k-algebra (independently of the characteristic of 
k). We call R the graded ring of ultrametric theta functions associated with 
the matrix (av). It can also be shown that the scheme A = Proj ( R) is an 
abelian variety of dimension g over k, and if A (k) denotes the group of k
rational points of A there is a canonical homomorphism <I>: ( k *) c /I' - A ( k) 
where r is the subgroup generated by the elements Vj = (aji, ••• , ajg), j = 
1, 2, .. •, g (for details cf. [4]). 

Now we take the case when the matrix ( aij) is such that each av i ¥- j is a 
unit in the ring eJ'. We call this case the "diagonal" case. In this case, it can be 
shown that the k-algebra R of theta functions is generated by Ri . A canonical 
basis for Ri is given by the 4g theta functions 0a(x) = ~a 1x 1 where a = 
( <Xi , • • • , <Xg) is such that <Xi E {-1, 0, 1, 2} and a1 = [ITf=i q/;<2t1+a)] •U1 with 
I= (ii, •. • , ig), ij = 4tj + <Xj (i.e. ij = <X.j mod. 4) and u1 being a unit in U (u1 is 
given explicitly by 

Let Rm denote the set of elements O(x) = ~ciJx1 which are reductions, 
modulo the maximal ideal uf/,!!_f the aj_ements O(x) = ~a 1x 1 in Rm (the bar 
means reduction mod~lo uf/). Rm is a k-vector sp~ce of dimension (4m)g. In 
particular, a basis for R i is given by the reductions 0 a ( x) of the canonical basis 
{0,x(x)} of Ri described above. The monomials x 1 which appear in Oa(x) are 
just those for which: ij =-<Xj if ai .= -1, 0, 1 and !I_ = ± 2 if <Xj = 2. 

It can be shown that R = EBo"' Rm is a graded k-algebra generated byRi and 
A = Proj ( R) is an abelian variety over k. 

If PE A(k) has projective coordinates (xa(P)), we may normalize them 
such that each Xa(P) E eJ' but not all of them are in .At. Then if P = (xa(P)) is 
~ element of A(kl, by red~ing each Xa(P) mod'!!o At one gets an element 
P in the group A (k) of k-rational points of A whose coordinates are 
Xa(P) = Xa(P). Thus we have a reduction map p:A(k) - A(k),p(P) = P. 

Let U(k) denote the set of elements PE A (k) whose coordinate xo, ... ,o(P) 
is in the group U of units of eJ' (each <Xi= 0, i = 1, 2, • • • , g). In [4, § II] it is 
shown that if P E U(k) then each coordinate Xi(P) = Xo, ... ,1, ... ,o(P) is in 

(i) 

U, i = 1, 2, • • • , g, and that the canonical homomorphism <I>:(k* )g /I' - A (k) 
indu~s an isomorphism between uc and !!. (k). 

If An.s. denotes the non-singular part of A, it is readily seen that U ( k) = 
p-i(An.s. (k)), and by the above isomorphism it follows that U(k) is a subgroup 
of A(k). 
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Remark. In [ 4] the following results are proved: 
i) using the isomorphism between Ug and U ( k) it is shown that the canonical 
homomorphism cf>: ( k * )g ;r - A ( k) is injective in general, and that in the 
diagonal case this homomorphism is surjective. 
ii) we have a stronger result: if the valuation group of the valuation of k is 
contained in the field of rational numbers and if ( aij) is a g X g matrix __ 
satisfying the Riemann conditions such that au i =;f j is not necessarily a unit 
in the valuation ring, then the canonical homomorphism cf>: ( k * V /I' - A ( k) is 
bijective. 

The main step in the proof of this result is to reduce this case, by an isogeny 
argument, to the diagonal case of i). 

§2 The Proof of the Theorem 

In this section we deal only with the "diagonal" case. 
Recall that r is the subgroup of (k* )g generated by the vectors Vj = 

(aj1, • • •, lljg), j = 1, 2, • • • , g of the matrix (a;j) satisfying the Riemann 
conditions, and that qj = a11 is in the maximal ideal.,,{{ for allj = 1, 2, , • • , g. 

Let q be a generator of the maximal ideal .,,{{_ Since qj E .,,{{, q1 = w1qn; with 
w1 E U, n1 > 0 for allj = 1, 2, • • • , g. Then if x = (x1, • • • , Xg) E Og Xi= u;<f' 
with uiE U, Si 2:: 0, it follows that x = (ui'q'', • •. , ug'qg) mod r, where 0 ::5 

r;::5 n; - 1 and each u;' EU 
If P is any point of A ( k), since we are assuming that the canonical map 

cf>: ( k * )g ;r - A ( k) is bijective, multiplying by elements of r if necessary, we 
may assume that there is an element x = (x 1 , • • • , Xg) E (Jg such that 
cf> ( xr) = P, and X; = u;q m,, U; E U, m; 2:: 0. 

By the remark above, it follows that 

X = (u1', ••• 'uj) (q'', 1, •.. '1) ... (1, ... '1, q'g) mod r 

with 0 ::5 ri ::5 ni - 1, u;' E U and if Pi denotes the point 
cf>((l, • • • , q, .. ·, l)r) of A(k) then 

(i) 

P = cf>((ui', • • •, ug')I')-P{' , •• P/g 

i.e., P = P1 r, • • • P/c mod U(k); 
Notethattheset {(qi'',•·· ,q/") Ug,0::5r;::5ni-1} isfinite,andsoOg/Ug 

is also finite. Since cf> is bijective, it follows that A ( k) / U ( k) is finite too. 
In order to _prove assertion (ii) of the theorem it is enough to show that 

Xa(PQ) = Xa(P Q) for all a. 
Let Xi(P) = x0, ... ,1, ... ,0(P) for i = 1, 2, • • • , g. We claim that ifxi(PQ) = 

(i) 

x;(P Q) for i = 1, 2, • • • , g then x,,(PQ) = Xa(P Q) for all a. This is a 
consequence ofj;he ~llo~ng fact: 

An element PE An.s.( k) is determined by its coordinates 

x;(P), i = 1, 2, • • • , g. 
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In order to see this, let Bi(x) = 80, ... ,1, ... ,o(x) and B-i(x) = 80, ... ,1, ... ,o(x) for i 
00 00 

= 1, 2, • •., g. By normalizing these functions we may assume that 8;(x) = 

Xi+ • • • , 8-/x) = x;- 1 + • • • , and have reductions O;(x) = x;, (}_;(x) = x;- 1. 

_F~ ap.y_/3 = (/11, _:··, /3g), /3; E {-1, 0, 1, 2} we have Oo2g-1013 = 

Fp( 80 , 8; , 8_;) ~here F 13 is a homog~neo~ pol~omial _of degree 2g with 
coefficieng; in k. Then we have xp(P) = _ff13(x;(P), X-;(P)). Wf!_ also have 
x;(P)x-;(P) = 1. Thus the coordi~tes x;(P) determine each x13(P). 

Now, the relation x;(PQ) =x;(P Q), i = l, 2, •··, g follows at once from 
the following identities for the reductions of theta functions: 

(*) Oo(xy)Oo(xy-1 ) = Oo(x)28o(Y)2 

O;(xy) Oo(xy- 1 ) = O;(x) Oo(x)O;(y )Bo (y). 

These identities are obvious from the form of the reductions of the theta 
functions Ba , cf. §1 above. _ 

Thus the reduction map p: U(k) - An.s.(k) is a homomorphism whose 
kernel is obviously { P EA (k) : P = O}. 

Remark 1. It can also be proved that an element PE U(k) is determined 
by its coordinates x;(P), i = l, 2, • • • , g. The idea is as follows: for any /3 = 

(/31 , ••• , /3g), /3; E {-1, 0, 1, 2} one has the relation 002g-1 013 = F13(0o, 0;, 
0_;) as above. Lift the homogeneous polynomial F13 to a polynomial F13 with 
coefficients in 0, so that one has 802g-1 813 = F13(8o, 8;, 8_;) + CG 13(8a) where 
CE .It (independent of /3), G13 is a polynomial with coefficients in (I)' and the 
Ba's are the canonical basis for R1 (recall that R1 generates R). If PE A(k), it 
follows from the above relation that: 

(a) 

In a similar way one sees easily that 

(b) X;(P)x-;(P) = 1 + CG;(xa(P)), 

where CE .It and G; is a polynomial with coefficients in (I)' (the same C may be 
taken in (a) and (b)). 

Now let P, Q E U(k) be such that x;(P) = x;(Q) for i = l, 2, • • ·, g. Since 
x13(P), x13( Q) are in (I)' for all /3 and x;(P) E U for all i, it follows from the 
relation (b) that x_;(P) = x_;(Q) mod C, and from (a) thatx 13(P) = x13(Q) mod 
C. Repeating the argument one has x13(P) = x13(Q) mod en for all n > 0. 
Therefore x13(P) = x13( Q) for all /3. 

Remark 2. The relations(*) above for the reductions of theta functions can 
be lifted to the following relations in the ring R: 

Bo(Xy)Bo(xy-1 ) = 8o(X)2 8o(y)2 + F(Oa(X),Oa(y)) 

8;(xy) Bo(xy-1 ) = O;(X )Bo(X )8;( y )Oo (y) + G(Ba (x ), Ba ( y )), 

where F and G are homogeneous polynomials with reduction zero. For a more 
detailed proof of remark 1 and more relations among theta functions cf. [ 4]. 
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To prove assertion (iii) let:!._= (x1 ,...:. • •, Xg), x; E (1 + .;ft) and P = <I>(xI'). 
Then one sees ~asily that x;(g) = Xi(O) = 1 for all i = 1, 2, ... , g. Since the 
coordinates x;(P) determine P, it follows that PE ker p = U1{Jj,). C~nversely, 
if P = <I>(xr) E U1(k) with x = (x1, • • • , Xg), x; E 0, thenx;(P) = x; = 1, i.e. 
x; E ( 1 + .;ft) for all i = 1, 2, • • • , g. Thus tl,le canonical homomorphism <I> 
induces an isomorphism between (1 + .;ft)C al!._d U!Jk). 

'!:_o prove _!he last a~ertion (iv), let X: A,.,. ( k) - ( k * )8 be defined by 
"A(P) = (x1(P), • • •, Xg(P)). It follows from the identities(*) above that "A is 
a homomorphism, which obviously has trivial kernel and is surjective. 

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F. 
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