NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUOUS DEPENDENCE FOR VOLTERRA OPERATOR EQUATIONS

BY RUBEN FLORES AND ZDENEK VOREL

Let G be a non-empty open subset of the space $C([a, b], R^m)$ of continuous functions on a compact interval with sup norm and consider functions

$$
T_n: G \to C([a, b], R^m)
$$

for $n = 0, 1, 2, \cdots$, which have the following properties:

- (1) $z_i \in G$ for $i = 1, 2$, implies $(T_n z_1)(a) = (T_n z_2)(a)$ and there exists $z \in G$ such that $(T_n z)(a) = z(a)$.
- (2) $z_i \in G$ for $i = 1, 2, t \in [a, b), z_1(s) = z_2(s)$ for $a \le s \le t$, imply $(T_n z_1)(t)$ $=(T_nz_2)(t)$ (causality).
- (3) T_n is almost continuous in G (cf [1], i.e. for every $z \in G$ and $\epsilon > 0$ there is a $\delta > 0$ such that $x \in G$, $x(a) = z(a)$, $|x - z| < \delta$ imply $|T_n x - T_n z| < \epsilon$.
- (4) T_n is almost locally compact, i.e. for every $z \in G$ there is a $\delta > 0$ such that if $S = \{x \in G : x(a) = z(a), |x - z| < \delta\}$ then TS is relatively compact in $C([a, b], Rⁿ)$. The following result was proved in [2]:

THEOREM 1: Let x_0 be a unique fixed point of T_0 , let $r > 0$ be such that the closed ball $\overline{B}(x_0, r) \subset G$ and define a function $Z:C([a, b], R^m) \to C([a, b],$ R^m) as follows: $Zx = x$ if $x \in B(x_0, r)$ or if $|x(a) - x_0(a)| > r$; $(Zx)(t) = x(t)$ for $a \le t \le t_x$, where $t_x = \inf \{ s \in [a, b]: |x(s) - x_0(s)| > r \};$ $(Zx)(t) = x_0(t)$ $+ x(t_x) - x_0(t_x)$ for $t_x \le t \le b$ if $x \in C([a, b], R^n), |x(a) - x_0(a)| \le r, x \in$ $(\overline{B}(x_0, r))^C$. Assume that there is a natural p such that

(5)
$$
\lim_{n\to\infty} (T_n-T_0)(ZT_n)^p x \to 0 \text{ uniformly for } x\in B(x_0,r).
$$

Then for every $\epsilon > 0$ there is a fixed point x_n of T_n in $B(x_0, \epsilon)$ for n sufficiently large.

The following example shows that condition (5) is not necessary for continuous dependence of fixed points.

Example 1. Consider a sequence of ordinary differential equations

(6)
$$
\dot{x} = f_n(x), \quad n = 1, 2, 3, \dots
$$
,
where $f_n(x) = nx^{\frac{n-1}{n}}$ for $x \ge 0$
 $f_n(x) = 0$ for $x < 0$

with initial conditions $x_n(0) = 0$, solutions x_n being considered on the interval $[0, 1]$. It is easy to see that for every natural *n* there is a continuum of solutions of (*b*) whose graphs lie all between the graphs of $y_1(t) = 0$ and $y_2(t) = t^n$, $0 \le$ $t \leq 1$.

CONTINUOUS DEPENDENCE FOR VOLTERRA OPERATOR EQUATIONS 35

Equations (6) generate operators T_n on $C([0, 1], R^1)$, $(T_n x)(t) = \int_0^t f_n(x(s)) ds$ for every natural *n*, $0 \le t \le 1$, $x \in C([0, 1], R^1)$, which satisfy conditions (1) through (4). From the definition of f_n it follows that for every $r > 0$ there is an $x \in B(0, r)$ such that $T_n(ZT_n)^px(t) = n \int_0^t {\min[g(s), r]}^{1-1/n} ds$ where *g* depends on *n*, *p*, *r*, *x*, is continuous increasing in [0, 1], $g(0) = 0$, and, for *n* sufficiently large assumes the value r for arbitrarily small $t \in (0, 1]$. This shows that for every $r > 0$ there is an $x \in B(0, r)$ such that the norm of left hand side of (5) tends to $+\infty$ with $n \to +\infty$.

The following plausible argument will lead to a sufficient and necessary condition for continuous dependence. In (5) , assume that for every fixed natural *n* $Z \circ T_n$ is a contraction in $B(x_0, r)$. Assume that (5) holds for some natural $p = p_1$. Clearly, (5) holds for every natural $p \geq p$, and $\lim_{p\to\infty} (Z^{\circ})$ T_n ^p B(x₀, r) consists of the unique fixed point x_n of T_n in $B(x_0, r)$. It follows that

$$
\lim_{n\to\infty}(T_n-T_0)x_n\to 0.
$$

We shall prove **in** a more general setting that (9) is sufficient and necessary for $x_n \longrightarrow x_0$.

THEOREM 2. *Let Sn be a function from a complete metric space Minto itself for n* = 0, 1, 2, \dots *Let* S_0 *be continuous and compact (i.e. if A is a bounded* set in M then $S_0(A)$ is compact. Let x_0 be the unique fixed point of S_0 in M and let B be a closed ball in M with center at x_0 . Assume for every n S_n has *a fixed point* x_n (not necessarily unique) in B. Then $x_n \to x_0$ iff the distance $d(x_n, S_0x_n) \to 0$ *as* $n \to \infty$.

Proof. If $d(x_n, x_0) \to 0$ then $d(x_n, S_0x_n) \leq d(x_n, x_0) + d(x_0, S_0x_n)$ tends to 0 as $x_0 = S_0 x_0$ and S_0 is continuous.

If $d(x_n, S_0x_n) \to 0$, then there is a subsequence $\{x_{n_k}\}\)$, such that $S_0x_{n_k}$ converges to some element $y \in M$ as S_0 is compact and $\{x_{n_k}\}\$ is bounded. But $d(x_{n_k}, y) \leq d(x_{n_k}, S_0x_{n_k}) + d(S_0x_{n_k}, y) \to 0$ by the continuity of *S*₀.

 $y = \lim_{k} S_0 x_{n_k} = S_0 y = x_0$, as x_0 is the unique fixed point of S_0 . The same argument is valid if instead of the original sequence $\{x_n\}$ one considers its arbitrary subsequence. Thus an arbitrary subsequence of $\{x_n\}$ contains a subsequence converging to x_0 , which proves that $x_n \to x_0$.

UNIVERSIDAD DE SONORA,

UNIVERSITY OF SOUTHERN CALIFORNIA AND CENTRO DE INVESTIGACION DEL IPN.

REFERENCES

- (1) L. W. NEUSTADT. *On the solutions of certain integral-like operator equations.* Arch. Rational Mech. Anal., **38,** 2 (1970), 131-160.
- [2] Z. VOREL, *On a theorem of L Neustadt*, in Notas de Matemática y Simposia, III Simposio Mexico-Estados Unidos sobre Ecuaciones Diferenciales, Fondo de Cultura Economica, Mexico, 1976.