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FIXED POINTS UNDER THE ACTION OF UNIPOTENT 
ELEMENTS OF SLn IN THE FLAG VARIETY* 

BY J. A. VARGAS 

1. Introduction and notation 

All varieties and algebraic groups are taken over an algebraically closed field 
k of arbitrary characteristic. G is a connected semisimple group, V its variety 
of unipotent elements and PA the variety of Borel subgroups of G. 

Let X = { (B, x) I x E B} C PA X V. Springer basically proved that if G has a 
separable universal covering, then the projection f:X-+ Vis a desingularization 
[8]. We study the fibers ofit when G = SLn and YI= iJ, the variety of full flags 
on an n dimensional space, we denote these fibers by PAu = iJu, identifying the 
latter with the flags fixed by u. 

For an arbitrary semisimple group there exist characterizations of the regular 
and subregular elements of Vin terms of these fibers [7]. 

In our case, let u E SLn, we write u ~A= (A1, • • •, Aa) if the Jordan blocks 
of u are of sizes A1 ~ • • • ~ Aa. We also write A' = µ = (µ1, •••,/Lb) for the 
partition of n dual to A, (u is regular when a = 1, ·subregular when a = 2 and 
A2 = 1). 

We associate a Young. diagram with A; . blocks in the i th column to the 
element u, so that there are dim ker(u - l)i blocks in the first j rows of the 
diagram. To such a diagram there correspond standard tableaux obtained by 
placing the numbers 1, • • • , n one in each block so that they increase up and 
to the left. 

THEOREM 1.1. The number of irreducible components of iJu is the number 
of tableaux for the Young diagram of u. These components are equidimen
sional. 

This is proved in [8]. We give a proof of it in section 2 from which a 
description of the components of iJu is also given. 

In section 3, the components of iJu of the form P / B with P parabolic are 
determined and it is found that they exhaust the components exactly when u 
is regular, subregular or the identity. 

In section 4, the elements of one hook type are introduced and it is proved 
that their components are rational, smooth and finite unions of orbits under 
the centralizer. Their intersections turn out to have the same properties, their 
dimensions are also calculated. 

Finally, section 5 presents an example in SL6 of a component with singular
• ities. 

N. Spaltenstein [5], [6] has independently obtained results overlapping with 
the present work and with [8], in particular Theorem 1.1 and the example in 
section 5. 

• This is essentially the author's Ph.D. thesis written at UCLA under R. Steinberg in 1976. 
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2. A description of the components of ITu 

In this section, Vis an n dimensional vector space over k, G = SL( V), G = 
GL(V) and u E End(V) is nilpotent, 1 + u being unipotent in G. 

We assume u ~A= (Ai, • • •, Aa). One can choose spaces Vi, • • •, Vb such 
that V = V1 EB • • • EB Vi with ub = 0 and ub-i :i6 0 which satisfy the conditions 
ker u i = V1 EB • • • EB Vi for all i, with a sequence of linear maps each given by 
u: Vi - Vb-1 - • • • - V2 - V1 - 0, all injective except for the last one. Thus, 
im u; = u;(V;+1 EB••• EB Vb). Here dim V; = /li, dim ker u; = /li +•••+µ;,dim 
im ui = /li+1 + • • • + /lb, with /l = "J\.'. 

Let m{"'A) be the number of components of ITu, Z(u) the centralizer of u in G 
and Z(u) the centralizer in G. 

Z(u) then fixes each ker u;_ We define H" = Z(u) n av, n •. • n Gv", where 
(;V; is the subset of G fixing V;. Following Steinberg we prove 

THEOREM 2.1. (a) Hu is connected. If we identify Vi+1 with a subspace of Vi 
via u and if x E av, n • -• n av,,, then x E Z(u) iff the action of x on V; 
extends the action of x on V;+1, in that case x stabilizes the flag ub~ivh C 

• •. C u 2 Vi C u Vz C V1 of Vi of type (µ1,, • • •, µ1) and x acts on V; via the pull 
back by (ui-i)- 1 on ui- 1V;. 

(b) Ifµ;> µ;+1 and the line L c (ker u n im ui- 1) = ui~1v;, but Lg; im ui, 
i.e., L ~ u;V;+1, then u induces u' on V/L and u' ~ i/l, where i/l is obtained 
from /l replacing /li by µ; - 1. 

(c) The orbits of Hu on V1 are the set theoretic differences ui-lV; - uiVi+1-

(d) The irreducible components ofiJ" have the same dimension. IfiJ; is the 
subset of iJuprojecting into ui-lV; - uiV;+1, then iJ; is locally closed and has 
m( ;µ') irreducible components. Hence ITu has ~m(;µ') irreducible components. 

dim ITu = ~i<j min{A;, Aj} = ½ ~;(µ/ - µ;). 

Proof (a) Hu is connected being the group of units of an algebra. On V;, 
ux = xu iff x and uxu~ 1 have the same effect on uV;. 

(b) and (c) are clear. 

(d) It is easy to see that dim ITu is as stated. 

Let g:iJ; - &P(V) be the projection, then g(6;) = lines in ui- 1V; - u;V;+1, 
this is an orbit of Hu- Let K = H/-, the stabilizer of a fixed line L(as in (b)) in 
Hu. 

We identify g(6;) with Hu/K. 
The fibers of B; are all of the form Bu, with u' ~ ;µ'. Hu acts on Bu
Let A be the set of flags ( W1, • • • , Wn) in iJ; with W1 = L. 
Let Y be a component of A. Here, Bi= Hu(A). The set Hu(Y) is clearly 

irreducible. 
We claim that Hu( Y) is an irreducible component of Bi. For this it suffices 

to check that dim Hu(Y) = dim ?Su and that Hu(Y) is closed in Bi, which will 
also prove the equidimensionality of the components. 
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By induction and the dimension of the fibers of g we have dim Hu( Y) = dim 
Y + (µ,; - 1) = dim ~u - (µ,; - 1) + (µ,; - 1) = dim ~u-

The set of flags Hu(Y) consists of the flags F with g(F)- 1(F) E Y, a closed 
condition, where we used the previous identification. 

Since K is connected, it acts trivially on the components of A. Hence the 
bijection H,,(Y) - Y, and m(µ,) = ~m(;µ,'). Q.E.D. 

This also proves Theorem 1.1 because standard tableaux satisfy the recursion 
in (d), [l]. 

The completeness of Grassmannians guarantees that g: ~ - .9( V) is closed. 
Let X be a fixed component of~"' g(X) is then closed and irreducible. In 

fact, g(X) = {LE &'(V) IL k (ker u n im U 8)} for some s. We write the number 
1 in the last block of the (s + l)th row of the diagram of u, so that the action 
induced by u on V/L with a line L k (ker u n im u•), L ~ im u•+1, is that of a 
nilpotent u' whose diagram is obtained from that of u deleting the block where 
1 was put. If L as above is fixed, the elements of X with W 1 = L correspond to 
a component Z of ~u'• By induction, there is a standard tableau for Z which is 
completed to one for X adding 1 to each number there and the new block with 
the number 1. 

PROPOSITION 2.2. Given u and a tableau for it, the component X of ~u 

corresponding to it is the closure in ~ of the set 4 of flags W1 C W2 C • • • C 
Wn such that 

(a) u( W;+d C W; for i = 0, l, • • •, n - land 

(b) W;+1 C W; + im u1- 1, where i + l occurs in the Ph row of the diagram. 
Here Wo = (0) and u 0 = l. 

Proof: The flags satisfying (a) clearly belong to ~u- Conversely, if u(W;) 
C W; for all i and assuming W;+1 = W; + (v), we have u(v) = cv + w, the 
nilpotence of u giving c = 0, i.e., u( W;+1) C W;. 

If 1 occurs in_ the ( s + l )th row of the diagram, then the set of flags in X with 
W1 C (ker u n im U 8 ), W1 ~ im us+I is dense in X by 2.1. 

The flags with W1 = L fixed as above satisfying (a) and (b) correspond to 
the flags in V / L satisfying the analogous version of (a) and (b) for the induced 
u '. The closure A contains the closure of this set which is the subset of X with 
W1 = L inductively; and as L covers (ker u n im us) - im us+i this describes 
a dense part of X. Hence A= X. Q.E.D. 

3.P/B 

We fix a Borel subgroup Bo, which we assume consisting of all upper 
triangular matrices of G, and call standard the parabolic subgroups of G 
containing Bo. 

If UP is the unipotent radical of P, then u E Up iff all Borel subgroups of P 
are in &6u. 

The conjugacy classes of parabolic subgroups are given by unordered parti
tions "A = ("A1, • • •, A.a) and each has exactly one representative which is 



4 J. A. VARGAS 

standard consisting of all matrices in G of the form· 

* 

0 

* 

where the diagonal blocks are of sizes A1, • • •, Aa. Here Up is the collection of 
matrices as above with identity matrices as diagonal block~. We write the Levi 
decomposition P = MUP, where M ~ G n IL GLA;• 

The parabolic subgroups with conjugate Levi factors are called associates, 
they are those with the same ordered partition. 

We state a theorem of Richardson [ 4] which holds for an arbitrary connected 
semisimple group, in (c) below he assumes that the number of unipotent 
conjugacy classes is finite, which is no longer necessary in view of [3], where 
that finiteness is proved for reductive groups. 

THEOREM 3.1. With the above notation. 

(a) There exists a dense open subset of Up such that each of its elements is 
contained in finitely many G-conjugates of Up. 

(b) The union of all G-conjugates of UP is a closed and irreducible subset 
A of G of dimension dim G - dim P /Up. 

(c) A contains a unique dense class C of the same dimension as its own. 
Here C n Up is dense in Up and forms a single class under P. 

( d) If u E C as above, then dim PAu = dim P / B. 

(e) Z(u) acts transitively on the finite set of conjugates of Up containing u. 

Let f:PA- G/Bo be the isomorphism of varieties given by f(xBox- 1) = xBo. 

LEMMA 3.2. The following are equivalent: 

(a) u is regular in Up 

(b) u E Up and dim P/B = dim PAu, where Bis Borel in P. 

(c) g Po/Bo is an irreducible component of PAu, where B = g Bo g- 1, 

P = g P0g- 1 and Po is standard. 

Proof: (a)==> (b) is 3.1 (d). (b) ==> (c) because f(P/B) = {gpg- 1g Bo IP E Po} 
=g Po/Bo. 

As P/B is a component of PAu, u E Up. Also dim P/B = dim PAu by the 
equidimensionality of the components of PAu. Thus, r + 2 dim P / B = r + 2 dim 
PAu = dim Za(u) 2:: dim Zp(u) and if Cp(u) is the conjugacy class of u in P, then 
dim Cp(u) = dim P - dim Zp(u) 2:: dim P - r - 2 dim P/B = dim UP, i.e., u 
is regular in Up. Hence (c) ==> (a). Q.E.D. 
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The equality r + 2 dim !!Ju= dim Za(u) used above holds in SLn; in general, 
it also holds when the characteristic is "very good" [8]. 

LEMMA 3.3. (a) If u is regular in Up, then each element of the conjugacy 
class of u in G is contained in a constant finite number m of conjugates of 
up. 

(b) If Pis standard parabolic, then there is a bijection between the distinct 
conjugates g1UPg1-1, • • •, gmUPgm-1 of UP containing u and the distinct 
components g1P/ Bo, • • •, gmP/Bo of f14u which are translates of P/Bo. 

Proof: (a) is clear and (b) follows from it and the fact that Pis the normalizer 
of UP in G. 

LEMMA 3.4. Let the standard parabolic subgroup P be associated with the 
unordered partitions= (s1, • • •, s1). Let u ~ A be regular in Up. Then A = 
fl', where fl is the ordered partition of s. 

Proof: We choose a basis so that the situation is as at the beginning of this 
section, e.g. M = G n II GL(V;) with V = V1 EB .. · EBV1, our basis being the 
union of bases { ViJ} for each V;. 

We rearrange the basis as follows: take the first vector of the basis of V; as 
i = 1, ... , t, then take the second vector when it exists as i increases, etc. 

Let u be the unipotent element of G which is in upper triangular Jordan 
canonical form with respect to the new basis whose blocks correspond to the 
span of the V;j withj fixed so that u ~ fl'. Clearly u E Up. To prove that u is 
regular in Up it is enough to verify the equality dim P/Bo = dim f14u, Since u 
~ fl' = (fl1', •••,fl/), it follows that 

(1) dim !!4u = ~i<j min {fl/, flf} = fl2' + 2fl:/ + · • · + (q - l)flq'. 

Also dim P / Bo is the number of positive roots of a Levi subgroup of P. Thus, 

(2) dim P/Bo = [1 + 2 + · · · + (fl1 - 1)] + • • · + [1 + 2 + · · · + (fl1 - I)] 

But fl2' is the number of parts of fl of size > 1, hence fl2' equals the sum of all 
one's in (2), fla' is the number of parts of fl of size> 2, hence 2fla' equals the sum 
of all two's in (2), etc. Hence dim P/Bo = dim !!Ju. Q.E.D. 

3.5. Proposition: If u ~ A, then the components of f14u of the form gP / Bo 
with g E G and P standard parabolic are in bijection with the standard 
parabolic associates of partition A'. 

Proof: Z(u) is connected and acts transitively on the finite set of conjugates 
of UP where u is regular, hence m = 1 in 3.3. The conclusion follows from the 
lemmas. Q.E.D. 

It is known [7], that all components of !!4u are of the form in 3.5 when u is 
regular, subregular or the identity. An easy combinational argument now 
proves the converse: 

COROLLARY 3.6. All irreducible components of !!4u are of the form gP / Bo 
with P standard parabolic iff u is regular, subregular or the identity. 
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4. One hook case 

In this section, u is a nilpotent element of End (V). We say that it is of one 
hook type when "u ~A.= (A.1, A2, •••,A.a) with A.1 > 1 and A2 = 1, i.e., when its 
Jordan decomposition has exactly one block of size bigger than 1. 

Given the Young diagram of u one has a basis of V such that each block 
corresponds to a basis vector and u acts sending it to the block above it or to 
zero if no such block exists. 

Let b be the number of rows in the diagram, then uh = 0 and ub-i #- 0. For 
u nilpotent we have u(ker ui+i) C im u n ker u; for i = 0, I, . • •, b..:..: 1. In our 
case we also have im ub-i = im u n ker ui and then 

(3) u (ker u;+i) C im ub-i for i = 0, I, • • •, b - I 

We now fix a basis { Wi, • • •, Wn} for V as above ordered so that the 
subindices of the w; are given by 

.-----.--~-~-~ 

1 b+ 1 n 

2 

b 

It is easy to see that the centralizer Z(u) in GL(V) consists of the invertible 
matrices of the form 

0 

0 

* 

0 

* 

We now invoke some results of Ehresmann [2], we also use a notation which 
is close to his: <§d,n is the Grassmannian of all d dimensional subspaces of V; 
for a sequence 1 :s i1 < i2 < • • • < im < n, we define the variety of flags of type 
(i1, • • ·, im) as the closed subvariety of <§; n X • • • X <§; n of all elements 

1, m' 
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( W;1 , • • • , W;J with W;1 C • • • C W ;m. This is a rational, irreducible and ho
mogeneous projective variety of dimension i1(i2 - ii)+ i2(i3 - i2) + •. • + im(n 
- im). 

We fix a flag Fi CA C • • • C Fn-1 C V = Fn. For a given i with 1 :5; i :5; n -
1 and a given sequence 1 :5; a 1 < • • • < a; :5; n we define the Schubert variety 
[a1, • • ·, a;] C <§;,n of all Wi with dim (W; n Fa) ~ j. It is irreducible of 
dimension (a1 - 1) + (a2 - 2) + • • • + (ai - i). 

a1, • • •, a" 

LetS= be the Schubert 

variety of all flags W" C W/l C • • • C WY of type (a, /3, • • • , y) such that for each 
i, j, • • ·, k we have dim( W" n Fa) ~ i, dim( W/l n Fb) ~ j, • • ·, dim( Wr n 
Fck) ~ k. Then Sis irreducible if each integer appearing in a row occurs in the 
row below it either in the same column or else in a column to the right of the 
previous occurrence, in that case 

(4) 

where i = l, 2, • • • , a and j, • • • , k take the values of those indices which 
appear for the first time. 

If the flags are of type (1, 2, • • •, n), then each irreducible Schubert variety 
has one new integer in each row and thus can also be described by a permu
tation on n letters. 

In SLn, the Weyl group is the symmetric group on n letters and the Schubert 
variety S corresponding to the permutation w is the image in G/B ~ 38 ~ ff of 
BnwB, the closure of the double coset of nw, a representative of w, where B is 
the stabilizer of F1 c F2 c · · · C Fn-1-

THEOREM 4.1 Let u be a one hook type nilpotent element of End( V). Then 
the centralizer of u has finitely many orbits in each component of ~u- In the 
correspondence of tableaux and components we associate. 

n 
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to the collection of fiags W1 C W2 C • • • C Wn-1 satisfying 

im ub- 1 C W;, C ker u 

(5) im ub- 2 C W.:2 C ker u 2 

Proof: Let A be the set of flags (5). It is a closed subvariety of ij, (3) above 
guarantees that A C iju. 

Let (!) = (!)(a1, • • •, O'.b-1; /31, • • •, /3b-1) be the subset of A of all flags with im 
ub-j !:;;; w .. ;, im ub-j g w,,11, Wpj !:;;; ker uj and Wp,+l g ker uj. It is stable under 
.Z(u). If (!) ~ 0 then 

(6) 1 :S 0'.1 :S i1 :S /31 < a2 :S i2 :S /32 < ... < O'.b-1 :S ib-1 :S /3b-l < n 

We now show that (!) is an orbit of the centralizer. For this purpose, we fix a 
flag W1 C W2 C • • • C Wn in (!) and describe it by a matrix M as follows: 

M-~:1:~ Mth Q-[o ;J and 

lb ab X b identity matrix. Here we require that W1 be the span of the (b + 
l)th column, •••,that Wa1-1 be the span of the (b + l)th through (b + a1 -
l)th columns, that Wa1 be spanned by Wa1-1 and the first column, etc. so that 
each of the first b columns of Mis used as soon as possible. In this ordering of 
the columns of M we would have obtained the same order for another (!) with 
the same a-sequence. 

For a fixed flag, the matrix M can be simplified so that we can assume that 
the (b - 1) X (n - b) matrix N of the last rows of P has at most one nonzero 
entry in each row, that this entry is 1 and that for the lth row of N it does not 
occur if /31 + 1 = a1+1 and that when it occurs it does so in the (/31 + 1 - l)th 
column, this for l = I, 2, • • •, b - 2. Also that the last row of N is zero. 

The computation 

0 

0 

where S is so that 

[
O ... OJ 

P+S= 
N 

shows that M can be transformed into a canonical matrix of (!) by the action of 
.Z(u) proving that (!) is indeed an orbit of the centralizer. If the matrices in the 
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left member of (7) are :multiplied from right to left, one sees at the first step 
that R - QP has an inverse. 

Here dim iY11 = 1 + 2 + • • • + ((dim ker u) - 1). We next compute the 
dimension of<(?= (!)(ii, • • •, ib'--1; i1, • • •, ib~i). 

Let io = 0, i,, == n and W1 c W2 c • • • c W;; a flag in <(?_ Here (im ub-J + 
W;j_)/W;j-i is a line inker u1/W;j_ 1• 

Let iYJ be the variety of flags of type (1, 2, • • •, i1 '- z1- 1) in a vector space bf 
dimension dim ker u1 - i;-1-

Let p1: <(J __,. ir1 be the natural projection. Thenp 1(<(J} is the subvariety 81 of 
ir1 of all flags whete W;1 contains a line, ail fibers of Pi are of the same form, 
viewing them as flags in V/W; 1 and projecting any of them in i52 we obtain 82: 

The subvariety of flags W1 C • • • C W;2-; 1 containing a line. In this way, we 
have subvarieties S; of i5; with Sb = iY b, dim <(? = ~J-1 dim S1 and with S1 of type 

[
l ] 
l-'- l l 
• • • '• • • for j < b, where r = i1 - i1-1 - 2 and 
l - r, l - r + 1, ... , l 
1, l - r, l - r + 1, ... , l 

l = dim ker zl - i;-1. Thus, dim S1 = (l - 1) + (l - 2) + ... + (l - r - 1), by 
(4), this is a sum of decreasing consecutive integers. For S1 it begins at dim ker 
u - 1 and ends at dim ker u - i1 + 1, for S2 it begins at dim ker u2 - i1 - 1 = 
dim ker u - i1 and ends at dim ker u2 - i2 + 1, • • •, for Sb-1 it ends at dim ker 
ub-I - ib-1 + 1, dim Sb= dim iSb = l + 2 + • • • + (n - ib-1 - 1) and n - ib-1 
- 1 == dim ker ub-l - ib-1- Hence dim iSu = dim <(?_ 

Each element of <(? satisfies (a) ~nd (b) in Proposition 2.2 for the given 
tableau. We now claim that A = <(? and hence that A is irreducible. More 
precisely, tB.e closure of the orbit (!) = (!)(a1, • • •, ab-1; /31, • • •, /3b-1), which is a 
union of orbits, consists of those orbits whose a-sequence is obtained from that 
of (!) by decreasing its entries and whose /3-sequence is obtained by increasing 
its entries. 

Having fixed an a-sequence, at the beginning of this proof we associated 
matrices to flags in orbits with that a-sequence. We also found a canonical 
matrix for each orbit. The matrices obtained from a canonical one allowing 
arbitrary elements of k after a leading one in the submatrix N and replacing 
those leading one's by nonzero elements of k are seen to be in the same orbit, 
whose closure then contains the canonical matrices of the orbits with the same 
acsequence and with entries in its /3~sequence bigger than or equal to the 
corresponding ones of (!), and hence the complete orbits. The proof interchang
ing the roles of a a:i;id /3 is similar. 

This completes the proof. Q.E.D. 

REMARK 4.2. We call (i1, i2, • • •, ib-1) the component of iSu as above. The 
components of the form P / B of sectibn 3 are those where the sequence 
complementary to ii, iz, • • •, ib-1, n consists of consecutive integers. 
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COROLLARY 4.3. The number of orbits under Z(u) in iju is finite. Each orbit 
is of the form C9(0:1, • • •, O:b-1; /31, • • ·, /3b-1) = C9 with l s 0:1 s /31 < 0:2 S /32 < 
. • • < O:b-1 s /3b-1 < n. The closure of C9 consists of the orbits whose a-sequence 
(resp. /3-sequence) is obtained from that of C9 by increasing (resp. decreasing) 
some of its entries. C9 is contained in the components (i1, • • •, ib-1) with O:j s ij 
s {3j for all j. Any intersection of components is the intersection of two 
components, it is irreducible and a union of orbits under the centralizer. Any 
nonempty orbit is dense in some intersection of components. 

Proof: All this is clear, e.g., C9(o:1, • • •, O:b-l; /31, • • •, /3b-1) is dense in 
(0:1, • • •, O'.b-1) n (/31, • • •, /3b-1) 

THEOREM 4.4. The components (0:1, • • •, O:b-1) and (/31, • • •, /3b-1) of iju have 
nonempty intersection J when A1 s B1 < A2 s B2 < • • • < Ab-1 s Bb-1, where 
A;= min{o:i, /3i} and R = max{o:;, /3;}. Then 

dim J = dim C9(A1, • • ·, Ab-1; B1, • • ·, Bb-1) = dim iju - rJ.:"l (Bj-Aj). 

Proof: We write Bo= 0 and Bb = n. Let ijj be the variety of flags of type (1, 
2, • • •, Bj - Bj-1) in a vector space of dimension dim ker uj - Bj-1, this for 1 
s j s b. Let S1 be the projection of C9(B1, • • •, Bb-1; Bi, • • •, Bb-1) and T1 that 
of C9(A1, • • •, Ab-1; B1, • • •, Bb-1) in ij1. For each orbit, the fibers are of the 
same form and define projections S2, T2 respectively in ij2, etc. until finally Sb 
~Tb~ ijb. 

Since dim iju = dim C9(B1, • • ·, Bb-1; B1, • • • Bb-1) = rJ-1 dim sj and 

dim C9(A1, • • •, Ab-I; B1, • • • Bb-1) = rJ-1 dimTj, 

it suffices to show that dim Tj = dim Sj - (Bj - Aj) for all 1 s j s b - l. 
The Schubert varieties Sj and Tj are respectively of types 

' l- 1, l 

['.~::.l..... ] and 
l - r, l - r + l, • • ·, l 
l, l - r, l - r + l, • • ·, l 

l - q, l - q + l, • • ·, l 
l, l - q, l - q + l, • • ·, l 

l, l - r, l - r + l, l - r + 2, • •• , l 

with the same l and r, and q is so that in the second symbol 1 leads 1 + (Bj = 
Aj) rows. Thus, by (4) 

(8) dim Sj = (l - 1) + (l - 2) + ... + (l - r - 1) 

(9) dim Tj = (l - 1) + (l - 2) + . · . + (l - q - 1) + (l - q - 3) 
+ (l - q - 4) + ... + (l - r - 2) 

In these sums, the number of summands is the same, the first few terms are 
equal, and each of the last Bj - Aj terms of (9) is a unit less than the 
corresponding term in (8). The conclusion follows. Q.E.D. 



FIXED POINTS IN THE FLAG VARIETY 11 

THEOREM 4.5. The closure A of any orbit (() = (()(a1, • • •, tl'.b-1; /11, • • •, /1b-1) 
is rational and smooth, i.e., every intersection of irreducible components of 
lYu is rational and smooth. 

Proof: For the nonsingularity, it is enough to see that one point in each 
orbit under Z(u) in A is simple in A. 

For this purpose, let { W1, • • •, Wn} be a basis of V such that the action of u 
is given by 

Let (()' = (()(y1, • • •, Yb-1; 81, • • •, 8b-1) be an orbit in A. As in the proof of 
Theorem 4.1, it is possible to modify {w1, • • •, Wn} replacing each Wb+i with 
i > 0 by itself or by Wb+i + Wj with j < b and then permuting the resulting 
vectors to obtain a basis { V1, • • •, Vn} of V such that the flag Fo: Vi C V2 C • • 
• C Vn with each V; = (vi, • • •, v;) belongs to(()'. 

Let Ube the big cell of lY adapted to Fo: n consists of all flags W1 c W2 c • 
• • • C Wn with each W; spanned by the first i columns of the matrix M. 

1 
0 

a21 1 
M= 

1 
an1 an2 ann-l 1 

where the coordinates are with respect to { Vi, • • •, Vn}. In this way, k[U] = 
k[aii], a polynomial algebra; and Fo is the origin in this affine space. 

Let I be the ideal of U n A in k[U]. The conditions Wp; C ker ui and im ub-i 
C Wa for 1 s j s b - I give some elements of I as follows. , . 

The space ker u' has a basis consisting of a subset of {vi, • • •, Vn} together 
with some other vectors of the form Ve - Vd, while im ub- 1 = ( vri> • • •, vr). 

Assuming 0 'F f!'J' C A we have 

1 s YI s 0'.1 s /11 s 81 < Y2 s tl'.2 s /12 s 82 < .•. < Yb-I s O'.b-1 s /1b-l s 8b-l• 

In particular, 

(10) Pj-1 < Yi s {1j for 2 sj s b - I 

Let T(U) and T(U n A) be the tangent spaces at Fo to U and U n A 
respectively. 

The inclusion Wp; C ker ui implies that if l s Pi> then for the entries in the 
1th columns of M we have b - j independent linear equations of the form ar1 

= O or aq1 = a.1 with q 'F s, which give linear polynomials of I whose differentials 
set equal to zero decrease dim T(U) by (b - l)/11 + (b - 2)(/12 - /11) + • • • + 
(/1b-l - /1b-2) = /11 + /12 + • • • + /1b-l units. 
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The condition im ub-i c W~ implies that Vy· is a linear combination with . , J 

certain coefficients of the first ai columns of M. 
Each of these linear equations is equivalent to n scalar equations of which 

the first ai serve to find the coefficients just mentioned, which turn out to be 
a collection of zeroes, a 1 and several polynomials in the llxy with no constant 
term. The remaining n - Ol.j scalar equations give elements of I, they are 
polynomials whose leading forms are linear, as they are allatr; with t > Ol.j. 

Hence setting the differentials of these elements of I equal to zero further 
reduces dim T(O) by at least (n - ai) - (b - j) units for 1 s.j s. b - 1 because 
at most b - j equations from before are redundant by (10). 

Thus, [codim T(O n A) in T(O)] ~ (/31 + /32 + · · · + /3H) + [(n - a1) - (b 
-1)] + [(n - a2) - (b- 2)] + •·· + [(n- ab-I) -1] =LJ.:l (/3i- ai) + [n
(b - 1)] + [n - (b - 2)] + • • • + [n - 1]. But dim iJu = 1 + 2 + • • • -i-(n - b) 
and dim O = 1 + 2 + ... + (n - 1). Hence [codim T(O n A) in T(O)] ~ dim 
0 - dim iJu + Lj.:-l (/3i - aj) = dim O - dim A by Theorem 4.4, which proves 
the nonsingularity of A. 

The leading forms of those polynomials in I whose differentials we have used 
give some of the a;i in terms of dim (0 n A) remaining coordinates. Thus O n 
A is isomorphic to affine space and A is rational. Q.E.D. 

The two opposite extreme cases covered by the one hook case are the 
subregular elements and the elements given by one root, i.e. those of type (2, 
1, 1, • • •, 1). We write in the latter case. 

1 1 

x= 1 + u = , so that x E center of U, 

1 

where U is the unipotent radical of B. Using the imbedding xr: Ga - U from 
the additive group into U corresponding to the root y = (1, n) we can write x 
= Xy (1). 

Each component of iJx = flJx is a generalized Schubert variety given by the 
condition im u C W; C ker u. There are n - 1 of them as 1 s. i < n. As seen 
before, such a component is described by a permutation a such that 1 and n 
appear as neighbors in that ord~r in the sequence a(l), a(2), ... , a(n:), and the 
other integers appear in totally reversed order. • 

If for such a, a(i) = 1, then a makes negative all positive roots except for (1, 
i + 1), (2, i + 1), • • •, (i - 1, i + 1); (i, i + 1); (i, i + 2), •• •, (i, n), hence we see 
directly that l(a) = 1 + 2 + • • • + (n - 2) = dim iJx• Also, a- 1 is a permutation 
of maximal length among those keeping (1, ,i) positive. 

This can be interpreted observing that Xy(l)y nJJ = y xy(l) nJJ for ally E 
U, where nw is a representative of w in the W eyl group of G, so that xy(l)y nuB 
= y nuB if{ Xy(l)nuB = nuB, i.e., xy(l) fixes all elements of the Bruhat cell 
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U nwB iff xy(l) fixes one of them, like nwB, and this occurs when nw-1xy(l)nw 
EB, that is when w- 1(y) > 0. Thus, :!IJx consists of a union of Bruhat cells and 
the components are the closures of those of maximal dimension. 

The closure of an orbit under the centralizer of u in f!;J x is the generalized 
Schubert variety BnwB with w a permutation such that in the sequence w(l), 
w(2), • • •, w(n) the number 1 occurs before n (not necessarily as neighbors) 
and the other intergers occur in totally reversed order, so we obtain. 

COROLLARY 4.6. If w is as above, then BnwB is smooth. 

5. A component with singularities 

The earliest case of a component of 6u with singular points occurs in SL 6 

with u ~ (2, 2, 1, 1) so that dim 6u = 7, it has tableau 

To see this, let { v1, • • •, VG} be a basis for V such that the action of u is given 
by v1 ___,. 0, V3 ___,. 0, V5 ___,. v2 ___,. 0 and VG___,. V4 ___,. 0. , 

Let Q be the big cell of fj adapted to this basis: it consists of the flags W 1 C 
W2 C • • • C WG with W; supplementary to span of { Vi+!, • • •, VG}. The elements 
of Q can be described by strictly lower triangular matrices requiring that each 
W; be the span of the first i columns. We take the appropriate coordinate 
functions as affine coordinates for 5:2. -

Let Z be the subvariety of Q given by 

1 
a 1 0 
b O 1 
C X l\' 1 
0 0 /3 0 1 
0 0 f3x 0 y l 

where the letters can take arbitrary values in. k. This is the trace of our 
component in n. 

Let 5:2' be the big cell adapted to the new basis given by w1 = v2, w2 = V4, w 3 

= vi, W4 = V3, Ws = Vs, WG = VG, Then our component Z has trace in Q' containecl 
in the affine subspace pf 5:2' given by 

1 
x3 1 0 
41 x4 1 
X2 Xs xG 1 
0 0 Xs x7 1 
0 0 xg X10 Xn 1 

including the origin there, the ideal I(Z n 5:2') in k[m is Up (X1Xs - X2X4, X 1X 8 
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+ X2X1 - X1X~1, Xr,X1 + X4Xs - X~~1, X~9 + X1Xs - X3X4Xs, X1X1 + 
X4X10 - XaX4X1) :X4P. Call it J. 

It is not difficult to see that any polynomial in I having nonzero linear form 
has that form equal to cX9 with c E k so that if T is the tangent space to Z at 
the origin. of n ', then dim T ===: 10 and the point is singular. N. Spaltenstein [5] 
independently proved that the singular locus of the component in question is 
isomorphic to 9 1 X 9 1 X 91, (and that it is homogeneous in a sense made 
precise there), all this over the complex field. 

CENTRO DE INVESTIGACION DEL IPN, MEXICO 14, D. F. 
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