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ORIENTABILITY OF BUNDLES WITH RESPECT TO CERTAIN
SPECTRA

By D. M. Davis*, S. GiTLER*, W. IBERKLEID AND M. E. MAHOWALD*

§1. Introduction

Let BO, be the classifying space for real n-plane bundles, and BO,[¢] be the
space obtained from BO, by killing the homotopy groups in dimensions less
than £. Let MO[t] denote the associated Thom spectrum, localized at the
prime 2.

Given a ring spectrum R with unit, then for any space X, the map X — X
A R given by the unit in R is called the Hurewicz map.

We say that the ring spectrum R with unit orients BO[¢]-bundles if there
exists a map of ring spectra MO[¢] — R. Recall that if « is an n-plane bundle
over X, then “R orients a” means that we have a map X* — R A S” of the
Thom space X* so that S - X*— R A S™ is the Hurewicz map for S™. Thus
if R orients BO[t]-bundles, it orients n-plane bundles trivial over the
(¢t — 1)-skeleton.

Let ar = (E&, pr, X) be the associated bundle of 2-frames, i.e. with fibre V,, .,
the Stiefel manifold of k-frames in n-space. Recall from [12], that «; has an R-
orientation through dimension ¢ if there exists a mapping

X/Er— R A SV,o2)®

so that the composite
(EVar)? > X/Er— R A (EV, )Y

is the Hurewicz map for the homotopy ¢-skeleton of =V, .
Let p(t) be the vector field number, i.e., if # = 4a + b where 0 < b < 3, then
o(t) = 8a + 2°.

Then our main result is:

THEOREM 1.1. Let a be an n-plane bundle over X. Suppose « is trivial over
the (p(t)-1)-skeleton of X. Then oy is R-orientable through dimension 2(n —
k) if R orients BO[p(t))-bundles and n = 0 (mod 2°).

In the course of establishing (1.1), we obtain

THEOREM 1.2. The spectra RP,"** A R and RP,™* A R are stably
homotopy equivalent if n = m mod 2°) and R orients BO[p(t)]-bundles.

* D. M. Davis and M. E. Mahowald were partially supported by N. S. F. grants, S. Gitler was
partially supported by CONACYT grant #1629.
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This result may be helpful in understanding the stable homotopy type of
stunted real projective spaces, (cf. [9]).

As above, for complex bundles we may consider BU,[¢] and the associated
Thom spectrum MU[p(t)] localized at the prime 2. Again we say R orients
BU[p(t)] bundles if there is a map of ring spectra MU[p(¢)] - R. If o is a
complex n-plane bundle over X, we denote by &z the associated bundle of real
k-frames, i.e. with fiber V5, ;. Then similarly to (1.1), we obtain:

THEOREM 1.3. Let a be a complex n-plane bundle over X. Suppose a is
trivial over the (p(t)-1)-skeleton of X. Then &, is R-orientable through
dimension 2(2n — k) if R orients BU[p(t)]-bundles and n = 0 (mod 2°).

The orientation maps M Spin — bo of [3] and MU — BP of [13] give from
(1.1) and (1.3),

COROLLARY 1.4. The associated bundles of real k-frames for spin-bundles
are bo-orientable and those associated to complex bundles are BP-orientable
through the stable range.

The result (1.4) provides a natural construction of the orientation maps for
Sp-bundles produced in a very unnatural way in [7].

We hope that (1.1) and (1.3) will enable us to further exploit the approach
to obstruction theory initiated in [6], [7] and [12].

Using (1.4) and calculation of [RP", SRP* A MU] affords an obstruction
theoretic proof of the strong geometric dimension results of Astey in [1] which
imply the non-immersion results of [2].

§2. Proof of the Results

Let y be the canonical bundle over BOy. Let £ be the Hopf line bundle over
RP** and consider the tensor product bundle y ® £ over BOy X RP*™*, With
Z,-coefficients

H*(BOx X RP*™) = Zj[Wh, - -+, Wn]® Zs[x]/(x")

and we have

LEMMA 2.1. The Stiefel-Whitney class Wy (y ® §) is given by
Wr(y®8) = YN W; ® 2

Proof. By the splitting principle, Wy(y ® §) is the class (x + x1) - -« (x + xn).
We may then write

Wy ® &) = Yooi(x1, « -+, xn) ® 2N
which is (2.1).
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We will denote BOn[p(2)] by Yn. Assume N = 0 (mod 2°¢). Lety be the
induced bundle from y. Consider the tensor product bundley ® ¢ over Yn X
RP*, Since the (p(t)-1)-skeleton of Yy X RP*!is + X RP™, where m = min
(o(£)-1, 2 — 1) and 7 ® ¢ restricted to RP™ is N¢ and N = 0 (mod 2°), it follows
that 7 ® ¢ is trivial over the (p(¢)-1)-skeleton of Yy X RP** and hencey ® ¢
gives rise to a unique mapping:

f

Y~ X RP*¥! 5 Yy

which makes the following diagram

Yn X RP*? —--f—> Y~

(2.2) ) 1)
BOnN X RP*! g—) BOnN

commutative, where g classifies y ® £.
We have the following result due to J. C. Becker [4, (3.11)] and I. M. James

[11].

PRoOPOSITION 2.3. Let a be a vector bundle over X. Then a has k-linearly
independent sections implies that a ® ¢ over X X RP*™ has a never-zero

section.

We use (2.3) to enlarge (2.2) as follows:

Yn X RP*? T /YN
‘ Yn_: X RP k_l'-—fl—bYN—l
(24) ‘ l l
BON_k_X RP*! ——g—l——*BON_l
\ |
BOy X RP* & . BOy

The existence of f, and g, follows since ¥ and v restricted to Y~—z and BOn-
respectively have k-sections, so the restricted associated bundlesy ® ¢ and y
® ¢ have a section by (2.3).
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Passing to stable maps, we may enlarge (2.4) to

Yn/ Yo AR\Pk f2 /MON[pu)]
Yy A IZIJk_1 f

N

Ynos A RP*? h vl

(2.5)

p2Al

pArl p Al

i
kS

BOyx A RP*'—&', BOw,

v
BOw A RP* &

> BOn
/A 1 s’
v

BOn/BOy_i A RP* 82

v

MO
where the diagonal maps are of cofibration sequences and the ones on the left

are obtained from those on the right by smashing with RP*~* the corresponding
projections.

Ve / TN_E_) Yf’
\

BON—k—>BON
and RPn_+"' C— Vs, so that we obtain a commutative diagram:

r’ Yn /YN
ERPN-kN-l/Y lp2

"\‘BON /BOw_s

Now, it is well known that there are unique classes v;: € H(BOx/BOn-#)
with N — k+ 1 <1< N so that

r*v; = o*y!

s*vi=W;
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where y € H' (RP™™") is the generator and o* is the suspension isomorphism

in cohomology.
Let U and U be the Thom classes of MOy and MOn[p(t)] respectively.

LeEMmMA 2.6. We have
20U =YK, papivi® xN

Proof. Since p (min),*U = U, we have to consider fo*p:1*U = (p2 A 1)*g2*U.
So it suffices to study g2*U. Now

(5 A 1)rg*U =gss'sU=g+Wy=ZW,; ® xV*

also (s A 1)*(Zv; ® 2V = ZTW; @ xM " but (s A 1)* is a monomorphism, hence
g2*U = Zu; ® xV " and (2.6) follows.

If we now consider the map a = fzo(r’ A 1)

2.7 SRPy_ N A RP*—2 5 MON[p(8)]
then
arxU = YNF 41 o6y @ 2V
Let
&ZRPy_""2 — MONp(t)] A RPy ™2
be the dual map to «. Then it is easy to see that
(U ® M4y = gyN-h+i
and a* is epimorphic in mod 2 cohomology. Thus if we consider

MO[p(t)] A zRPN_kN-zl—A‘LMO[p(t)] A MO[p(t)] A RPy4M2
pAl
B
MO[p(t)] A RPy_ M2

then B8* in cohomology is an epimorphism. But now
dim HY(MO[p(t)] A SRPy-+""2) = dim H*M V" MO[p(t)] A RPy-+M?)

and hence 8* is an isomorphism, so that 8 is a homotopy equivalence. If now
p:MO[p(?)] = R is a map of ring spectra with unit, then p*1z = U and the
same arguments prove that R A ZRPxy;" 2 and R A RPy_ ;" are stably
homotopically equivalent.

Proof of (1.2). We use naturality of the constructions as follows. Given that
n=m (mod 2°) and given &, set A = 2“ —m, N = h + n, then N = o (mod 2°).
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Up to homotopy, we have a commutative diagram: -

Yn/Ynn A RPF#2 LAy /vy i A RPPR
(2.8) 1Ai £

Yn/Yn-n A RP*? — MO[ p(2)]

f2

and hence a commutative diagram up to homotopy

cAl )
RPN_hN-l A RPh—k—z‘——*RPN—h+k+1Nbl A RPh—k—Z

1A1 o
RPn_x"' A RP*? z > MO[p(2)]
Let D(i):DRP"*'— DRP" %% be the dual of i
D(a):RPn-x""'— MO[p(t)] A DRP" the dual of a

and D(a’): RPy_p+rs1™ = MO[p(t)] A DRP*™*% the dual of o’.

Then the following diagram is homotopy commutative
c

(2.10) RPy-»"" —> RPy g™
D(a) D(a’)
k-1 h—k—2
MO[p(9)] A DRP*"———70>~MO[p(1)] A DRP

This follows from the definition of duals [14, Theorem 5.9] and (2.9). Hence
(2.10) extends to a homotopy commutative diagram:

MO[p(£)] A Py L€

MO[p(t)] A RPn—psrsr™?

Morp(] » DRP 22 PY L 41610(6] A DRP#2

Now the vertical maps are stable homotopy equivalences, so the cofibers of
the horizontal maps are stable homotopy equivalences, i.e.

MO[p(t)] A RPn_yN"""* = MO[p(t)] A DRP}—11"!
and (1.2) follows, by passing to R as above.
LEHIGH UNIVERSITY, BETHLEHEM, PA.
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