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SOME DYNAMICAL PROPERTIES OF CERTAIN DIFFERENTIABLE
MAPPINGS OF AN INTERVAL

By W. SzZLENK

1. Introduction

The aim of this paper is to present some qualitative and quantitative results
concerning the behavior of the derivatives of iterates of some smooth mappings
of an interval. The estimates obtained allow one to give some sufficient
conditions for existence of an invariant measure absolutely continuous with
respect to the Lebesgue measure for these mappings. The technique used in
this paper is partially similar to the technique used by Bunimovié in [1] and is
partially similar to the methods used by Sinaj on other occasions. In particular
Lemma 4 was proved jointly by Sinaj and the author of this article (in 1968,
the result was not published). The other version of this lemma has also been
proved by Jakobson [3]. One result (Section 6, Example 1) has been proved
just recently by Misiurewicz [5] in a stronger version.

Section 2 contains the definitions, notation and the statements of some
results which are used in this article.

In Section 3 we present some basic estimates (Lemma 2a, 2b) and certain
general results on some dynamical properties of the studied mappings (Theo-
rems 1 and 2).

In Section 4 we study the behavior of the derivatives of the iterates at single
points (Lemma 6, Corollary 2) and on some intervals (Theorem 3).

In Section 5 a sufficient condition is given for the existence of an invariant
measure absolutely continuous with respect to the Lebesgue measure (Theo-
rem 4).

In Section 6 three groups of mappings are presented, which admit an
invariant measure absolutely continuous with respect to the Lebesgue measure.

2. Notation and definitions

Through this paper we study some differentiable mappings of class C? of the
interval (0, 1) in itself: f: (0, 1) — (0, 1). The compositionf e --. o fis denoted
7i'times
by f*; we denote x, = f"(x), xo = x. The same convention is used in the case of
sets: A, = f"(A). We denote by

Cn: {x:(fn),(x) =O} v {0’ 1}1 n=1’2’ e
C.L = {x:(f")(x) = 0}.

Assuming C, to be finite we put in increasing order the points of
Cni0=cro<cCn1<:--- < =1, where r, = Card C, — 1. Since (f")'(x) =
f' (xXa-1)(f*") (x), we have
(1) Cn=Cra U fD(Cy).
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58 W. SZLENK
We set R = Ur_, f*(Cy), R® = Uy, f(CYY).

Let A.; = (cnj-1, €nj)s J = 1, -+, rn. The family of intervals {A, j};-™ is
denoted by A,, and we set diam A, = maxi<j=r, | An;| = maxi<j<r, | Cnj—
Cn,j-1 | . In virtue of (1) A,+1 is a refinement of A,. Let (A, )»-1 be a decreasing
sequence of intervals: A, j, D An+1,;,,,. Let

(2) K= n::=1 E"»fn'
The set K is either a point, or a closed interval: K = (a, 8), 8 > a.

Finally, we set A = max.co;1) | f'(x) |, ¥ = max.e1 | f7(x) | . By A, 9: we
denote some other estimates of | f’(x) | and | f”(x) | restricted to some
sets.

By A’ we denote the completion of a set A C (0, 1) to the whole interval:
A’ = (0,1) —A.

We say that a point xo € (0, 1) of a mapping f is a periodic half-attracting
point if x, is periodic: f?(x0) = xo for some p, and there exists a § > 0 such that
for every x € (xo — 8, xo) or x € (xo, Xo + 8), [*(x) — x0as k— + oo,

Definition 1. Let f € C®. The Schwartzian derivative Sf of the function f is
defined as follows:

@ 3 @7
5 =T 2[f’(x)]'

The idea of using this notion is due to Singer [6].
ProOPOSITION 1. Let f, £:(0,1) — (0, 1). Sf= 0, Sg = 0. Then S(fog) < 0.
ProrosiTION 2. If Sf< 0, then | f' | has no positive local minima.

Definition 2. Let g € C°. We say that the function g is strongly decreasing
if there exists a constant number w < 0 such that forany0 =y <x =<1 we
have g(x) — g(y) =w(x —y).

n

df .

ProPosITION 3. Let f:(0, 1) — (0, 1) be of class C*? such that h =;~—, is

strongly decreasing on the intervals where it is continuous. Then for any
n=1,2, ... the function | (f")'| has no local positive minima.

Proof: It is enough to approximate f by a function g € C?® in C2-topology
and apply Proposition 1 and 2.

Definition 3. We say that a set A C (0, 1) is totally wandering if for any
n#m A,NA,=J. Wesay that aset A C (0, 1) is trivially totally wandering
if there exists a periodic point xo € (0, 1) such that the limit set w(A) is equal
to the orbit of xo:

w(A) = {xo, f(x0), =+ -, P (x0)},

where f?(x0) = xo.
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Section 3.
THEOREM 1. Let f:(0, 1) — (0, 1). We assume
Al feC?
A2.Card C; < + o
A3.f"|co#0

A 4. There exists a number Ao > 1 such that setting Vo = {x: | f'(x) | > Ao}
the following inclusion holds: R C V..

Then the dynamical system ({0, 1), f) has no non-trivial totally wandering
intervals.

For the proof we need some lemmas.
Let Vi be an open set such that Vi D V,, and letinf.ev, | f/(x) |= Ar> 1.

LEMMA 1. Assume that for every j =0, 1, «--, k, f'(x), f'(y) belong to the
same component of V1. Then the following inequality holds:
) (x)

L <8 everyj=0,1,---,k,
TUXT) for every j

where 8 = exp{ } and % = max.ev, | f"(x) | .

th
AM(A—1)
Proof. By assumption | f'(x) | = A; > 1 for x € V;. Using the Taylor
formula and the inequality 1 + u < e* we have

(F)(x) (%) | F'(ys) = f(xa) | ]

1 — = =
( ) (fj)l(y) H 0 f/(y H 0|: | f,(xs)l

5H£:3[1+ If(&)l;\llys—xsl ]Sexp{ Zs=o|ys I}.
Since | Ys+1 = Xs+1| = [ /M) |« |¥s — %] = A |ys —x:],8=0, «-v,
j—l,wehaveZ{:éys—st | 5 — % | Zs=0>\}-s }\111
Therefore

(f’) (x)

2)

ex{ﬁ-——1 }28
V%) I n=1 "

LEMMA 2a. Assume that all the assumptions of Theorem 1 are satisfied.
Then there exist two numbers 8 > 0 and do > 0 such that if U= {x: | f'(x) |
< 8}, x € Us — C\°, then there exists an integer k = k(x) such that

(a) | (F*Y(x) | =

G

[f'(x) |

(b) fllx) eVy foreveryj=1, .- k.
Proof. Let 8 be a small number such that the following conditions hold:

1) infeer, | (@) | = 8> 0.
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2) Every component of Uj contains exactly one point of C;°.
3) f(Uy) C Vi
In view of assumptions A.1-A.4 such & exists. Denote E = {x: | f'(x) | <1},

E,= {x —==<|f®| <=, m=12,.... Without loss of generality we

1
2mt
may assume that Us — C,° = Us_,, E,, for some mo. Let a € C,° and x € E,,,
C Us belong to the same component of Us. Then

1
lsi—a| = [f@-f@]| = |fO] |x-a| =5 |x-a],
and (we omit some details)

|x1—a| =255 |x—a

2m+ 1

On the other hand
fx)=f"(x) = f(a) =f"px—a),

which implies
11 | f'(x) | 11
—_—= XxX—a = = —_—.
m 0 | | | f”("?) | 2m—l 02
Hence
1 1 1 1
(3) ——";5 |x1—a1| SW%

Let b = dist(R, V7'). Since | f'(x) | = A, > 1 for x € V4, there exists an integer
k = k(x) such that

4) | FF %) — fFa) | =b and | fA(x1) — f*(a1) | > b.
In view of Lemma 1 we get
| FA) = @) | = | (FY @) ] - | 21— ai ]
(5) =TI [ 7@ |- =
P LFP@L
=1 lf,(a)l |x1 all i=1 |f(az)|

s |la—a| 8][4 | Fl(ad) |,
where a; < §& < xi. The inequalities (3}, (4) and (5) imply

, o 1 b o am—1)
(6) Ht—llf(at)|—8 [ — |28022 .
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Finally, once again using LLemma 1 we obtain

[ (Y@ | = | F@) | II& | F (x,) |
k /
= I f(x) ' k | f,(ai) | =1 | f(al) I
bd: 1
, 22 g 92m-1) 2(m—1)
= | fllx )| 1?2 =— T .92
=£‘?_%2M>__@__
&7 T |
where
bd
(7 do=—(—s—23.

COROLLARY 1. If x € Us, then there exists a number k such that f’(x) € Vi,
forj=1,-.-, kand

do
k+1

| (")) | = 3
It follows immediately from Lemma (2a).

1
Remark 1. Let x € E,, C Uj, i.e. o = = | f(x) | < 1 . Then the number

k = k(x) in Lemma (2a) has the following property: 1f x and a € C,° belong to
the same component of U, then the points a;, x;, also belong to the same
components of Vi forj =1, ..., k. Moreover

log A\ 1log b9
log2 2 log2°’

The last inequality follows easily from (3) and (4).

LEMMA 2b. There exists a number d, > 0 such that if I is an interval
contained in Us;, then there exists a number k such that

| I'] .
max.er | f(x) |’

| L | =d
2

. 2
the constant d, is equal to FoweE

Proof. Let U; = (a, B), let a € C,° and I belong to the same component of
Us. Assume a < a < 8. We set N = (a, 8), M = (a, a). Let %k be such that
| Ne| = b, | Npwa| > b.

(we replace x by B in (4)). Thus N; C Vi for j = 1, ..., k, what implies
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() (x) #0foreveryj=1, ...,k — 1, x € N;. Hence
b<|Nina| =[x, | f'(x)] dx<A| Na|
=[5, | () (x) | dx < A maxsen, | (f57)(x) ]« | N1]
and

maxeen, | (477 (x) | >’\|N K

By Lemma 1 and by the last inequality we get (note that I, C Np)
|| = [, | (f7) (%) | dx

@ = minser, | (7Y (x) | - | L]

1
= | L| minsen, | (£ (x) | = | L] 3 MaXeen, [ (F7Y @) |

4
N

>

>I°‘

|11
| VL]
2a the function | f’(x) | is increasing on the interval (a, 8). Thus by Taylor’s
formula we have

9  |Ll=[fB) - f@|=|f@|-1B=-a|=|f @] |B-al
=|f@]-1].

©@b) | Mi|=]|fl@) - fl@)|=|f | -|la—al, wheretE (a,a),
@) @ =Ff(a) +f E)E—a)=f"(})(§—a), where {€E (a,b
Bd)  f(a) =f(a) + f" (@)@ — a) = f"(w)(a— a), » € (a, a),
(Be)  F(B) =F(a) + "(w)(B— a) = f"(w)(B — &), w2 € (a, B).
‘By (9b), (9¢), (9d) we have

(10) M| =f(®| |la—a|=|f"()] |a—al’

| f'(a)]®
If”( )|2

Now we shall estimate from below. By the property 1) of Us from Lemma

<tla-alr =0l L0 < L1 r@lt



PROPERTIES OF MAPPINGS OF AN INTERVAL 63
By Lemma 1, (9d) and (9e) we obtain

| M| _ Jm|f'(x)| dx _ mincen |f'(x)| |M]
[N [v|f'(x)] dx max.en |f'(x)| |N]

_ mineey £/ | | M| 1|M]|
" maxeen | f(x)| |[N]| 8 |N|
_lla—a| _1|f(@]]f ()]
8|B—al S[FBIIf"(w)]
_16&(f (]
80|f(/3)|
The formulas (9a) and (10) give us
|G| _ (4] M) _ 8 1] 16:|f'(e)]
| N1 lMlllNll I @]86 (B

(11)

_ 6 1]
86| f'(B) |
The last inequality and (8) imply
b || bé;® |I| | ]
12 I, = =d. s
a2 b= IR = P T B ]~ maer |70
bo:?

where d1 = 3_2}\_0—2

Remark 2. In fact, Lemma (2a) can be deduced from Lemma (2b). But in
‘this way the constant do given by (7) would be replaced by di. For some
applications it is important that the constant d, in Lemma (2a) is exactly of
the form (7) (see Section 6, Example (3)).

LeEMMA 3. Let I C (0, 1) be an interval such that Yo | I| < +, I, = f*(I).
We suppose that the assumptions of Theorem 1 are fulfilled. Then

I,
12 9, £

— <+,
maxzer, | f'(x) |

Proof. Let I = (a, B). We divide all the intervals I,, n =0, 1, -- -, in two
groups G’ and G”: 1) I, € G’ if I, is not contained in Us (U; from Lemma 2a);
1, eq@"itl, C Us.

By assumption, we have

(13) Yoo | In| < +o0.
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N )
Thus if no is big enough then for n = no | I, | <§ . Suppose n =noand I, € G’:

é
then dist (I, C,°) = 3 and min.e; | f'(x)| = 8 > 0, where 8; is a constant

number. The intervals I, € G” form a sequence (I,,)Z1 such that I,, € G” and
some consecutive I, n = n; + 1, --., n + k(n:), do not belong to G”; the
number k(r;) is the number % from Lemma 2b, k(n;) satisfies (12) for I =1,,.
Of course n; + k(n;) < n;;. In virtue of Lemma 2b and (13) we have

I,
I= Z?=oﬁx'i}nllf'7)|
U
=y | I 21 €@’ n=ny | In|

max;er, | f(x) |

1
+ a‘ EI,LEG”, nz=n, |In+k(n) | <+ oo,
0

. . )
Remark 3. We notice that if for every n, |1, | <-2— then
| 1n | < 1
o ———————— meo | I
2 U maxeer, |f' (0| 2 ol Ll
Remark 4. Let up, = max;er, |f'(x)|, vn = min.er, |[f'(x)|, and assume

I, I,
| l<+°°,thenalsto=o' |

un n

< 400, Moveover,

v, > 0 for every n. Then if Y50

I,
if l;—l =< € for every n, where ef < 1, then

|n|

m Il _ -
Yo — o 1 _60 E,,_o foreverym=1,2, ---

Proof. Let y., z, € I,, be two points such that u, = | f'(yn) |, vn=|f"(22)]. By
Taylor’s formula xu, = f'(y.) = f'(2a) + " () (yn — 2n), where 1 € (25, Yn).

Hence

(14) Un < vUn + 0| 1|
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and
| 1|
Li_ 1Ll _ =
up, vn+ 0|1, I,
NIV ARSI A
Un
I, I,
This implies easily the convergence of ¥, 5-o | > l If —lu—l < ¢ for every n, then
I, I, 1
L1 DL S ) /1 P
Un 1-—¢€f v. 1—¢€b
Hence
m | n | 1 m |In I
t =< L
" e 1—ef Lo n

LEMMA 4. Assume f to be of class C. Let I = (a, B) C (0, 1) be an arbitrary
interval such that (f™)'(x) # 0 for every x €I and for everyn=1,2, .- .. If -

2w=o l I" |

— 1 et
max.ez, | f/(x) | ’

then there exist two intervals U, = (¢, @) and Ug = (B, B'), o/ < a, B < f3/,
such that

Yo | fH(UN| <+,  ¥io| f(Up)| < +oo.
Proof. We set u, = maxer, | f'(x) |, p = mineez | f'(x)|.

Since (f")’(x) # 0 for every x € I and for every n , we have v, > 0
forn=1, 2, -... By Remark 4 we have

I,
(1) 1= 3 2!
By elementary arguments we get

| L] = | fIn-d) | = [1, | @) | dot = Ops | Ta | = -+ = | T] [0 0

and hence

] 1 | 2|

— < =—Vr —_— < 400,
|I| i T 2 mateer, | 7]

(16) Zn—

The inequalities (14) and (15) imply

0
= w=1< (i + 0| L] = 7=-<)lvj<1 +;|Ij|)
(17) !

Uj

<Hfowem{02ﬁ3|A} 7 vje”
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The formulas (16) and (17) give us
1
(18) E:=1 H;-o u<e’Yn " 756 vj < +eo.

Now we shall construct U,, i.e. we have to define a’. Let U, = (o, a), f*(U,)
= (ay/, an), n =0, 1, - - - (it is not necessary that for every n a,’ < a,,). By the
Taylor’s formula we have

| ant’ = anar| = | flan') — flan) | = [ F(E) ] - o’ — an]
=la’ = o[ (| Fla) [+ [ (]|’ = an])
= |an = an|(| f'(an)| + 0| ar’ — an]).
In other words we have
[ U | = | U [ fan) | + 8] U )
We are looking for an o’ such that | f*(U,) | - 0 as n > +o. Let
(19) Nn+1 = Mn(Un + Oy), n=01,-...

We note that u, = | f'(a,) |. If we will find an 7, such that} 7— 7, < 4+, then
o': o = a — 9o will satisfy our assertion (because | f*(Uy) | <M, n =0,1, -..).

We set
(20) =8, =5 w, n=12 ...
Then (19) takes the form

Snr1 [[750 wj = &8s [[50 wiun + 0. 1750 w)),

(1) a,,+1=s,,(1+—11,_ou, ) n=12...,

/]
6= 80(1 + — 80).
Uo

0
Letw,,——]'[, o u;, n=1,2, ---,wo=a.By (18) we have

Yr=1 wn < +oo.

In the terms of w, the formula (21) takes form

(22) 8n+l = 8n(]- + wnsn), n= O’ 1’ 2’ M}
Now we set § = (1 + Y7-1 w»).”>. We shall show that
(23) On=6(1l+w + -+ +wn1), n=12 ...

Indeed, for n = 1 we have 8; = 80 (1 + wobo) < 8o (1 + wo). Suppose that (23)
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holds for some n; we shall estimate 8,+1:
8n+1 = 8n(1 + wn8n) = (Sn + wn8,.2
<81+ - + wWn1) + WXL + -+ + Wn1)?

L+ o + wn)?
=8| 14 oo + Wn1 + wn
[ o T Y Y wa)”

=6[l+w + -+ + wn]
what finishes the proof of (23).
The inequality (23) shows that the sequence (6, )0” is bounded:
=061+ uw+---+ wnh1)
<8(l+Y5w) =(1+Yew) =8, n=01,...
In view of (20) and (18) we obtain (note that A =1):

Un

Y1 Mn = Yyn=10n H}:o1 uj
A
S\/8_02;7=1'u—' 2o u]—)\~/8—02,, 1— }'l-_:oluj<+00,

In the same way we construct the interval Us.

Proof of Theorem 1. Let I = {(a, B) be a totally wandering interval, i.e.
I,.N I, = for n # m. Then

Yoo | I| < +co.

By Lemma 3 we get

| 1|

—_— << 400,
’ maXxEI,L |f’(x) I

D

By Lemma 4 there exist some intervals U, = (¢, @) and Ug = (B, 8’) such that

If"(U )|, |fMUg) | > 0asn— +o. We set V, =U U,, Vg=U Up, where the

umons are taken over all possible U,, Ug, which have the above property. Let
=V,Uulu V,; 4 (@ B). We have two possibilities:

1) 3. N I = D for every n % m. But then applying once again Lemma 4, it
turns out that there exist two intervals Uz, Uy such that |f"(Uz) |, | f"(U,;) |
— 0 as n — +oo, which contradicts the definition of V, and Vj.

2) Let 3, N S # & for some m > n. If &, (or B,) belongs to I, then we can
find a neighborhood U of &, f™(U) C S, and because of that | f*(U) | — 0.

Thus it contradicts the definition of V, (or Vj). 'I_‘herefore Sm = Ja, le.
o (S0) = 3. We set f2m™ =g, &, = L = (@, 8»). Then g(L) = L, and
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g(@n) = @n, g(B.) = B.. For each closed interval N C L we have |g*(N)|— 0
as & — +o. Hence we conclude that g has exactly one fixed half-attracting
point p € L and for any x € L we have g*(x) — po as k — +. Since I, C L,
this establishes our assertion.

THEOREM 2. Suppose that all the assumptions A.1-A.4 of Theorem 1 are
fulfilled. Moreover, we assume A.5:f has no periodic, half-attracting points.
Then lim, diam A, = 0.

Proof. Suppose that our assertion is false, i.e. that there exists an &; > 0 such
that diam A, = € for every n. Then there exists an interval K = (a, 8) given
by (2) of the section 2, such that 8 > a. We shall prove that at least one end-
point of K is an accumulation point of the set Uz-; C,. Indeed, for every
interval A, j = (¢, j—1, C»,;) there exists an integer m such that f™(A,, ;) contains
at least one point of C,°. If not, it must exist a periodic, half attracting point
(we skip the details). Suppose 8 is an accumulation point of the set U;—; C,.
Now, either « is also an accumulation point of this set, or there exists an ng
such that a € C,,. If the second possibility holds, then there exists another
point B < a such that the interval K’ = (B, a) is also of the type (2) of the
section 2. The point 3 has to be an accumulation point of the set Uy-; C,, and
B, B € Uy C.. Now we set L =f"*' ((B, 8)) Z (w1, wz). The interval L has the
following properties: foranyn =1,2, ... . (f")’(x) # 0 for every x € L, and the
end-points w1, w2 are two accumulation points of the set Uz-; C,. The intervals
L,=f"(L),n=0,1, .., cannot be pairwise disjoint: if they were, the mapping
f would have a periodic, half-attracting point (see the proof of Theorem 1)
which contradicts A.5. If for some m > n L, N L,, # J, then in view of
properties of L it must be L, = L,,, and by the same argument as in the proof
of Theorem 1 we get a contradiction.

Remark 5. Suppose that the assumptions of Theorem 2 hold. For any
interval A, j = (Cn, j-1, Cx,;) there exist two integers k£ < 1 < n such that f*(c,, j_1),
fl(cn,j) € C; and

| fen-1) = F(cn,) | = max{dist(C,’, V1), maxigj=r, | €ijo1 — c1,]} = p >0

for some p. Thus there exists a number 77 such that always n — [ < 7. Without
loss of generality we shall assume that always I = n.

Section 4.

Now we shall study the behavior of the derivatives (/)" as n tends to +.
We suppose in this section that the assumptions A.1-A.5 of Theorem 2 are
satisfied. Let

D={x:|f(x)| <A},

where A2 > 1 and D N V; = . Then of course dist(R, D) = dist(R, V') = b.
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LEMMA 5. Assume that the following condition holds:
A.6. there exist an integer ko and a number A3 > 1 such that if f*(x) € D and

k = ko then
[ (7 (x) ] = As.

1) Then there exist another integer ki and a number Ay > 1 such that for
every sequence Xo, X1, +-+, %, such that xo, x» € D — C°, x; & D for
i=1,.--,r—1,r= k), we have

¢); VI (x) | = A
2) There exists a number € > 0 such that if r < ko then
) (Y (x) | = e

Proof. Let Ug= {x:|f'(x)| <d}. If x & Ug, then | f'(x) | = 6(d) where 8(d)
is a number depending on d. Assume d < min(dy, §). Thus

LY @) | = @] -] @) | = 8(d)A
Let % be such that A §(dy) g As > 1. If x € U, then by Lemma 2a

LY @) =1 @ |- ) | = A=A

do
|f"(x) |

because r > k. Therefore it is enough to take Ay = min(As, As). If r < ko, then
the number % from Lemma 2a is smaller than &y and x cannot be too close to
C.°. Hence there exists an € > 0 such that (2) holds.

Let k2 > £ be an integer number such that

ke ha—hky ]2
(3) ePor PR = [ek_z}u Ea i| > 1.
We set
1< \e £ "feFon o < A,

LEMMA 6. Assume that A.6 holds. There exist two numbers no and As > 1
such that if f*(x) € D for n = no, then '

4 ' [(F)(x) | = As™

Proof. Let xo, x1, - - - , x» be the trajectory of a point x up to the moment n,
%, € D. Let x»,, n: < n, be the points which belong to D. We shall divide the

trajectory in some blocks B = (xi11, » -+ , Xi+s) such that

VI a | x) | = A >1

where As will be defined later on. Let | B | denote the length of the block B. We
construct the blocks B by induction. Suppose that the blocks By, - - - , B; have
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been defined in such a way that the block B, finishes at the place ns or n,_:.
Now we have to discuss several possibilities:

1) Assume that B, finishes at the place n,. We take the closest n,., such that
ns+r — ns = ko. There are two possibilities:
a) Ns+r — Nsr—1 < k2. Then we set By = (xn,+1, ey, xnﬁ,)-

The length | B.+1 | satisfies the inequalities ko < | Bet1| < k2 + ko.

By assumption A.6 we have

(5) \IBMI [ e, | ' (xi) | Z’Q/;a > 1.

b) neir — Nsir—1 = ko. We set Byy = (X 41, - -+, Xn,,,-1) and then

| B , | B+ n , N — ,
(6) HiEBt+1| f () I = Q ié;‘rs'_‘hl f () I ig‘:-'-:—l“‘llf (x2) |'
Since nesr — ns — 1 < ko, in view of the second part of Lemma 5 we have
Pl () | = €™
In view of the first part of Lemma 5 we get
H;lé‘;'::}—l*'l lf/(xz) | > A4"s+r—1_ns+r—l > }\4B|¢+1|-k0.

Finally, by (3) we have

| Bewi| : p
1 HiEBt+1 | (f,(xl) | > \Be 1|/€ko}\4|Bz+1| ko

(7) = Bl eRoN TFop oy JBerT

Z,LB‘*‘II}\sz}“ Byt1l—ks = Ae.

2) Suppose that B, finishes at x, ;. In the same way we take the smallest n;.,
such that ne.r — ns + 1 = ko.

Now, there are also two possibilities:

a) if Ngrr — Norr1 < k2, we set Byy = (Xn,, -+ +, Xn,,,) and then

() L i |7 | 2R he = 2N,

b) if nerr — N1 = k2, we set By = (X, « -+, Xn,, — 1). And once again we
have two cases: if n,+s-1 = ns, then by Lemma 5

9 N /Hieam [ /()] = Aa.
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If n,4+s—1 > n,, then by Lemma 5 and by (3) we get

|Bew| [Bw] _ -
" Mlien,, | /()] =</ P f () | TTR, /() |

> ,LBH'.d/eko)\4n§+r‘l'_"s+r—]
I -
(10) >~ 11./6k0A4|Bt+1| ko
= ,lB{‘/ N 4—ko}\ 4k2)\ 4|B¢+1l—kz

Z,.IB‘+.‘[/)\67€2}\4]B:+1I“}€2 = As.

3) The last block B, begins at x,, or x, .1 and finishes at x,,. If | B, | = k2 + ko,
then (10) holds; if ko < | B.| =< ko + k2, then (8) holds; finally, if | B, | < ko, then
by Lemma 5

(11) & Mies, | ) | = Ve

The inequalities (5)-(11) imply
[ @) | = [ (F*P) () | [Ties, | £/(x) |

= >\7n_IB"fE = )\7n_k°

ko 1
%% /s, Ae) > 1. Let no be such that A\s Z A, mem > 1. Then for

| 1-= 2\ " 1_kl 1\n
(P ()| = (& "e") - (7\7 ""e"”) -

From Lemma 6 follows easily the following

df .
where A; = min(
n=ny

COROLLARY 2. If x € Uy-1 C,, then

limasup /| (F77)(x) | > 1.

LEMMA 7. There exists a constant number p; > 0 such that for every interval
I=(a,B) CAy;,i=1, .-+, 11, the following inequality holds:

[F) | = pa | I]%
Lemma 7 is true due to the fact that f” | # 0. The proof is elementary, we
omit it.

LeEMMA 8. Suppose that the assumptions A.1-A.5 of theorem 2 and the
assumption A.6 of Lemma 5 are satisfied. Let U, be a small neighborhood
of the set C,°. Then there exists a constant number ds > 0 such that for every
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interval Twith f*(I)NU, =D forn=0, ..., k, the following inequality holds:
to|IL] < ds | In.

Proof. Assume for the time being that for every n = 0, - - -, &, I, is entirely
contained in D or D'. Let §; = min.eyv, | f'(x) | > 0.

If for every n, I, C D’, then, we have
o] = f1, | £/®) | dx = As| I |
since | f'(x) | = Az for x € D’, Thus

1
}\ k—n — | Ik I
Suppose now that there exists an integer n < k& such that I, C D. Let n;. be the

biggest one which admits this property. Then in view of Lemma 6 we have for
n < ng — ne.

(13) | Ln| = [1, | (/™) (x) | dx = minseg, | (™)' (x) | - [ In| = As™ " I |

(12) Yieo | In| = X0 | In| 1

For ny —no < n < n; we have
(14) | = 1, [ (£ (x) | dx = 87| I | = ™| L |
Next,

| Inj+1| = 82| In, |,

and for nz+1 < n < k&, since I, C I, we have

(15) II"I Ak_ |Ik|
Hence
1 1
(16) |Ink|5W|Ik|56—2|Ik|-

Finally, by (13), (14), (15) and (16) we get
Yo | In| = T2 | In] + Trt-ngt | In| + Bhenpsr | 1]

—r | I |
= Z"&Ono nk—n + no —- 82710 II"kl + Z”—"lk"’l A—k—;
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We define d; equal to the number in the square bracket. If the interval I, is
not contained in D or in D’, for every n, then we divide I in some subintervals
which already have this property Summing over these subintervals we obtain
our assertion.

THEOREM 3. Suppose that the assumptions A.1-A.5 of Theorem 2 and the
assumption A.6 of Lemma 5 are satisfied. Then there exists a constant number
ds > 0 such that for every A, i =1, -+, rp, n =1, 2, ..., the following
tnequality holds:

’;=0 |fs(An i) ' = ds.

Proof. Let m be ﬁxed Every point c;,; € C:° belongs also to Cp,:let ¢1,; = Cm,i.
We set U; = Ut (Cmiij-1, Cm,i+1). Assume that m is such that U, C U; where
Us is from Lemma 2a. Let b1 = mini<i<r, | Am;| < dist(C:%, D’). Let A, =1 =
(o, B), and f*(a), f*(B) € C1, k < n. We shall study the trajectory (I;) of the
interval I for | I;| < b:. Let r be the smallest integer such that | I.| < b, but
| I+1| = b;. There are two possibilities: 1) r < % 2) r > k. First we shall
investigate the case 1). Since the end points of the components of U; belong to
C., I, is either disjoint with U; or is contained. If for every I;, s < r, I, N U
= ), then by Lemma 8. '

(17) Yo | L] = ds| L.

Suppose that I; is contained in U, for some s; let s, be the biggest index such
that I, C Uy, s, =< r. Then in virtue of Lemma 6 for s < s, — no

| I, | = f1,] (f")"(x) | dx
= mineer, | (F (x) | - | I | = Ae**| L],

(18)

By Lemma 8 we have
' AT APAR
Therefore
Yico | L] = Y id | Is| + z::—no+1 | Is| + Y541 | I

no
—s — — | I, | + d2| I,
|I|2 r"O}\s 82710' r| 2| I

A
|Is,|< ° 8,,0>+d2|1|
Sb1<)\8>\8 +8n0+d2)=d4

since | I, | - | I.| < 1; 82 is as in Lemma 8. In view of Theorem 2 there exists a
number m, such that if | I.41 | = b: then I+; € Ay, for some m < m;. Thus

Y2 | L] = Yy diam Ap £ ds.

(19)




74 W. SZLENK

~ Therefore
(20) Z?’=0 |Is| < ds+ ds.

2) Assume r > k. Note that for I,.1 = (az+1, Bz+1) We have az+1 € R, and
therefore I for s = & + 1 cannot be contained in U;. Using Lemma 8 and (19),
where we replace r by &, we have

Yoo | L] = Xko | I| + Yomrrr | Is| + Xoera1 | L]
<di+d|L|+ds<di+do+ds L ds.

By (20) and the last inequality we see that ds is a number which satisfies our
assertion.

Section 5.

In this section we give a sufficient condition for existence an f-invariant
measure absolutely continuous with respect to the Lebesgue measure. We
assume through this section that A.1-A.5 of Theorem 2 hold, plus the following
new assumption:

A.7. there exists a constant number ds > 0 such that for every interval A,
i=1, ... ,rn=12, ... the following inequality holds:

5=0 | F°(An) | < ds.

LEMMA 9. There exists a number wo > 0 such that for every interval A,; =

(o, B) where f*(a), f*(B) € Ci, k < n, the following inequality holds:
max{|f'(x) |:x € f]:(An,i)}
min{ |f'(x) |:x € f/(An;)}

Proof. Let Us be as in Lemma 2a, let Ui C Us, be an open neighborhood of
C!° as in the proof of Theorem 3. First we shall consider the intervals f/(A,,)
sqch that their lengths are smaller than b, (see the proof .of Theorem 3). Those
f’(An,;) are either disjoint with U, or contained in it. If f/(A,;) N U, = &, then
max{|f'(x)|:x € f/(An))} - A
min{| f'(x) |:x € f/(An)} ~ 8
(82 — see the proof of Lemma 8). Suppose now that for every 7 > 0 there exists
an interval f/(A,;) = I = (a, B) C Ui such that

max{| f'(x)|:x € I} =,
min{| f'(x) |:x €I} ~
Assume a < a < 8 where a € C,°. Since f”(x) # 0 for x € U,
max{|f'(x)|:x €I} =|f(B)|, min{| f'(x)|:x €I} =|f'(a)].

Using the same argument as in the proofs of Lemma 2a and 2b we show that
®11B)_1B-al_ 9P
@ la—al” R|f @]

=wo, for j=1,... k.

@

@
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and that
3) Rla—al’<|ar— a1| =¥ a—al?,
%|B—al’=|f—a|=8|B-al”
We set N = (a, 8), M = (a, a). Let k be the same as in (4) of the proof of
Lemma 2a, with x = 8. Then by Lemma 1 we get ‘
b> [, [ (£ ()| dx = | Na minven, | (77 (x) |
(4) 1 _
= | Ny 3 DaXsen, [ (F*) (x) |
Using the last inequality we estimate | ax — az|:
|aw — ar| = far, [ (£¥77)(x) | dx < | M1 | maxcen, | (57 (x) |
(6] 8b

< | M| maxzen, | (F*7) (0) | = | Mr|——-
| N: |

Hence by (2) and (3) we obtain

@M —a - 869% | f (@) |?

9 [B—al” & [FB)

o1 |

- ’023 1'2 )

27089°
6 ’

lak—ak|s

(6)

If 7 satisfies the condition: 2 > then

|0(k—ak|5-——

2A°
Thus
, b
| ars1 = @rer| = [1, | f/(x) | dx = | I | SE'
On the other hand (see (4), in the proof of Lemma 2a)
| Br+1 — @ra1| > b.
Therefore
b
|Ik+1| = | Br+1 — Qre1| = 1,8};+1 — Qpa| — 'ak+1 — Qp1| 25-

In view of Theorem 2 there exists an integer m; such that if f*(az+1), [ (Br+1)
€ C; for s < r < m,. But in view of (6)

| op1es = Qrsrer| = far, | () (x) | dx < [r, | (F) (%) | dix
8b6° 1
9 17

= N | M| =A™
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3

DA
55 then ap+1+r € Vi, which
2

contradicts f*(az+1) € C.. In this way we have proved that
max{|f'(x)|:x € f/(Any)
Suplfj(Ami)|<bl{ i {If, | fj }} <+ o
min{ | f'(x) |:x € f(An)}
But there exist only finite number of intervals f/(A,;) such that their lengths
are not smaller than b,. This completes the proof.

If = is big enough, for instance if 72> > A\™ —

LEMMA 10. There exist two constant numbers u, and us such that for every
interval A,; = (a, B) where f*(a), f*(B) € C1, k < n, the following inequalities
hold:

(a) ((;;j))—,l((;)) < w, for every x,y € Ay, j=1,---,k
(b) (fj)’(x) < Uz for every x’ y E fk+1(An,i) and
F) foreveryj=1,.--,n—k—1.

Proof. (a) By the same argument as in Lemma 1 we get
(f)(x) -1 ( | % — s |)
=1k 1731

(Y (y)
= exp{ﬂ ’;;%)M}, j=1,.-k,

8§

M

where v, = min{ | f'(x) | : x € f°(An,))}. For simplicity we set I = A,;, I, = f°(Ay,).

Let 8§ and Uj; be as in Lemma 2a. For fixed m we define U, as the union of
those intervals A, ; which have at least one point in C;°. We assume
U, C U;. Let b; = minj|An, ;| and let r be an integer such that | I;| < b, for s
< rand |L+1| > b:. For every interval I, s < r, there are two possibilities: (1)

I,
I,N U, = (2) I, C U;. We shall estimate Y i Iv l

(1) and (2). Let 8; = min.cv,| f'(x) |. By the assumption A.7 we have

|I 1 ds

1
8 Ya Yo L] == Yo || =
T8 8 8"

In view of Lemma 2b for every I; of group (2) there exists an interval I,z
such that

| L
Us

C)

1
=— Is )
d1 I +k(s) I
where u; = max {| f'(x) | :x € I}, and the numbers s + k (s) are distinct. Thus

I, d
(10) e I l s—OIIsISEg
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In virtue of Lemma 8 we get

| 1| | ;| _ wods

— < e
(11) @ o = Wo Xy = d

In view of Theorem 2 there exists a number p; such that if | A, ;| > b, then s
=< p1. Hence for s > r I, € A, where p < p;. Thus setting v, ; = inf{ | f'(x) | : x
€ A,;} we have

I Ay . _
(12) 1 Ivsl Splmax{%: Upj# 0, ] <Tp, D Spl} g3
s 'P>J

The inequalities (8), (11) and (12) give
x| _ds wod3+ _ df

s=0 — = + u=u.
Us 82 d1

The proof of the part (b) is similar.

LeEMMA 11. There exists a constant number us > 0 such that for every set A
C I C f(Ay:), where I is an interval, i = 1 --., r1, the following inequality
holds:

where
A =fA)NAy, L=fI)N M,
The proof is elementary, so we omit it.

LEMMA 12. There exists a constant number us > 0 such that for every
interval A, ; and for every set A the following inequality holds:

1A 0 8l _ o[ TAT
[ An,i] [ (Ans) |

Proof. Denote I = f*(Ap,;). The map f™ A,;— Iis 1 — 1 (see Remark 5). Let
f™ denote the inverse mapping: f; ™™ I — A,,;. Assume A, ; = (a, c) where f*(a),
f™(c) € Ci1, k < n. By definition of ;™" we have

(13) [F(A) N Ani| = Ja|fi7(9) | dy.

We decompose fi ™ as follows: f; ' =f o fi %2 o fi7l o 7% Let Ay = fi 1 (A).
Then

(14) [Ar] = [a | (f) ()] dy.

In view of Lemma 11 we have

Al _ 1A
(15) Ifi—l(I)lsua III .
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Now we set Az = fi"""*"2(A,). Then

|Az| = [a, | (f7"7*72Y (3) | dy
and in virtue of Lemma 10 we get

|4 _ |45
|fi—(n—k—1)(I) I |fi_("~k—2)(fi_1(l)) |

_ Jal (f"*2)(y) | dy
(16) ff“(D | (f_(n_k_z))f(y) | dy
| Ai| max,er 1 | (F" ) (y) |
TATD) | mingera | (F7PTFPY () |
Al
|f 17|
Let As = fi *(A2). By Lemma 11 we have

4o _ | 45 _ 4]
o o N

Finally, we set A; = f; *(4s) = fi™(A). Then by Lemma 10 (the argument is
similar as in (16)). We obtain

Ad _ Al |4s|
(e FO RGP R

The inequalities (15)-(18) imply

|ﬁuwmm=|m|<u | As |
™ D1 TP

- u\/—m—- e v [ TAT
|f~(n—k 1)(1) | |f;—1(I) |
A|
= g\ [uz U3 II| = ul\/; uas/zhHlIl :

the constant u is equal to u;vVus us>?

Denote by », the Lebesque measure on the interval (0, 1), and let v, =
vo © 7, i.e. ma(A) = v,(f"(A)). It is obvious that », < »,, then we set g, =
dv,

s n=1,2 .. The functions g, belong to L, (0, 1) and
Vo

Jignx)dx=1 for n=1,2,...
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LeEmMMA 13. The set {g.}T is weakly sequentially compact in the space
L:(0, 1).

Proof. Given an interval A, ; = (a, 8), let f*(a), f*(8) € Ci. We note that

|£"(An:) | = min {ming; | 1 — c1], dist(CS, Vi)} L dy >0

Indeed, since (f™)’(x) # O for every x € A, ;, either f*(a), f*(8) € C; and then
| () — fA(B) | = miny; | c1,s — c15], or f(@) € V1 and f*(B) € C: which gives
| (@) = f*(B)| = dist(C1, V1). Let A C (0, 1) be arbitrary. Then for every
i = 1’ e, In
|ANF (And) | _ 4]
|M(An)|  — ds’
In virtue of Lemma 12 we have

(A) = ro(f(A)) = Xiz1 | f(A) N Ansl

r [F7(A) N A o afl4l «|A]
SZ;=1 lAn,iI IAn,l|521=1u d4 IA'MI.S Ug E.

ds

€4
u44

Given e > 0,if |A| < ,then v,(A) <e n=1,2, ... which means

Jagn(x)dx<e

It means that the set {g.}:" is weakly sequentially compact in L;(0, 1) (see
[2], Ch.IV).

THEOREM 4. Let f: (0, 1) — (0, 1) satisfy the assumption A.1-A.5 of
Theorem 2 and the assumption A.7 (see the beginning of this section). Then
there exists an f-invariant measure absolutely continuous with respect to the
Lebesgue measure.

Proof. We set

Since v:(A) = [4 g» dx, we have
1
pn(A) = [4 (; oy gk(x)) dx.
By Lemma 13 the set {g:}r-1" is weakly sequentially compact, so is

1 .
{; by = gk},,-l“’. Therefore there exists a function g, € L; (0, 1) and an

increasing sequence of integers (n;)s;-1" such that

1 ng—1
-n—s 2k=0 8r ;)) 8o
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(“-3 ” denotes the weak convergence). Hence

. . 1g,_
w) & lim, pn(A) = lim, f4 (;l- oYy gk) dx = [a 8, dx

for every A C (0, 1). It is obvious that the measure p is f-invariant.

Section 6.
Example (1).

PROPOSITION 4. Assume that f: (0, 1) — (0, 1) is of class C? and satisfies
the assumptions A.2-A.5 of Theorem 2. Suppose that Sf < 0. Then the
condition A.6 of Lemma 5 is satisfied.

Proof. In view of Proposition 2 for every n |f"(x)| has no positive local
minima. Suppose that | (f*)'(x0) | = 1, f*(x0) € D, and n is large. Let A,; = (a,
B) D xo. Then either | (f*)’(x) | = 1 for x € (x0, B) or | (f*)'(x) | = 1 for x € (a,
x0). Thus | fA(B) — f"(x0) | < | An,i| or | (@) — f™(x0) | < | An,i|. By assumption
Ad|f*(B) — f*(x0) |, | fM(@) — f™(x0) | = dist(D, Vo) for large n, therefore we get
| Ani| = dist(D, Vo) > 0. On the other hand by Theorem 2 |A,;| — 0 as
n — + oo, which contradicts the previous inequality.

By Theorems 3 and 4 we get

COROLLARY 3. If f satisfies the assumptions of Proposition 4, then there
exists an f-invariant measure absolutely continuous with respect to the
Lebesgue measure.

By the same argument we prove

PROPOSITION 5. Assume that f satisfies the assumptions A.1-A.5 of Theorem

4

4

2 and moreover that 7 is strongly decreasing (see Definition 2) on the

intervals where it is continuous. Then the condition A.6 is satisfied and there
exists an f-invariant measure absolutely continuous with respect to the
Lebesgue measure.

Remark 6. Misiurewicz has proved [5] that if f satisfies the following
condition:

A 8. the condition A.5 holds and there exists an open set V> D C; such that
RcC CcVy,
then there exists an integer m such that f™ satisfies the condition A.4.

As Singer noticed, it also follows easily from Lemmas 1a and 1b of [3].

Thus, if fis of class C® and satisfies A.2, A.3, A.8 and Sf < 0, then there
exists an f-invariant measure absolutely continuous with respect to the Le-
besgue measure. This theorem has been proved by Misiurewicz [5] under some
weaker assumptions about f. Moreover, he has studied some properties of this
measure.
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Example (2). Lasota and York have proved [4] that if f: (0, 1) — (0, 1) is
piecewise C? and expanding (i.e. |f’(x)| = 1 + € for every x such that f’(x)
exists), then there exists an f-invariant measure absolutely continuous with
respect to the Lebesgue measure.

Suppose fis a Lasota-York mapping, let 0 = ¢ < ... < ¢, = 1 be the points
such that f|, ,.» is of class C” and expanding. Let % S ¢;, i =0, ---,r,be a
collection of small open intervals. We set U = U, 4. Let g be a function of
class C% such that g(x) = f(x) if x € U and g(¢;”) = f(¢;7) (or g(ci*) = f(c.Y)).

The function g is close to fin the metric
1) p(f, 8) =f |f'(x) —g’(x)ldx+f |f(x) — g(x) ]| dx.
0 0

ProrosITION 6. If f satisfies the condition A.4 with respect to C, = {¢:}i-d,
and g has the property: if | g'(x) | =< 1 then | g” (x) | is large, then there exists
a g-invariant measure absolutely continuous with respect to the Lebesgue
measure.

Proof. If .% are small enough, then the set U satisfies the corditions of the
set Us; in Lemma 2. In view of the formula (7) we see that if | g”(x)]| is big
enough for | g’(x) | = 1 then do > 1 (8§ — depends on the behavior of g on the set
V1, b — is a constant which depends on £, 9; = min{|g”(x) |:] g’(x) = 1}. Thus
for every x € D if f*(x) € D, n = 1, then | (f*)’(x)| = As > 1. Hence, by
Theorems 3 and 4 there exists a g-invariant measure absolutely continuous
with respect to the Lebesgue measure.

COROLLARY 4. Iff:(0,1) — (0, 1) is a Lasota-York mapping which satisfies
the condition A.4, then f can be approximated in metric (1) by some c? —
mappings which also admitted an invariant measure absolutely continuous
with respect to the Lebesgue measure.

Example (3). Let £:(0, 1) — (0, 1) be a piecewise quadratic mapping (i.e. f
is piecewise polynomial of the second degree) of class C’, such that every
parabolic piece contains # critical point of f.

C C, C Cz
y=f(x) y=f'(x)

Assume that the conditions A.4 and A.5 are fulfilled. It is easy to see that the
Theorems 2 and 3 hold: all what we need is that f’ satisfies the Lipschitz



82 W. SZLENK

condition and that for every critical point c:f’(c) = 0 there exists a neighbor-

hood of x such that |f'(x)]| = y|x — ¢| for some y > 0. Moreover, f can be
”

approximated by some mappings g of class C? such that i— is strongly

’

decreasing on the intervals where it is continuous. Thus the condition A.6
holds. Therefore, in view of Theorems 3 and 4, there exists an invariant
measure absolutely continuous with respect to the Lebesgue measure.
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