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SOME DYNAMICAL PROPERTIES OF CERTAIN DIFFERENTIABLE 
MAPPINGS OF AN INTERVAL 

BYW. SZLENK 

1. Introduction 

The aim of this paper is to present some qualitative and quantitative results 
concerning the behavior of the derivatives of iterates of some smooth mappings 
of an interval. The estimates obtained allow one to give some sufficient 
conditions for existence of an invariant measure absolutely continuous with 
respect to the Lebesgue measure for these mappings. The technique used in 
this paper is partially similar to the technique used by Bunimovic in [1] and is 
partially similar to the methods used by Sinaj on other occasions. In particular 
Lemma 4 was proved jointly by Sinaj and the author of this article (in 1968, 
the result was not published). The other version of this lemma has also been 
proved by Jakobson [3]. One result (Section 6, Example 1) has been proved 
just recently by Misiurewicz [5] in a stronger version. 

Section 2 contains the definitions, notation and the statements of some 
results which are used in this article. 

In Section 3 we present some basic estimates (Lemma 2a, 2b) and certain 
general results on some dynamical properties of the studied mappings (Theo­
rems 1 and 2). 

In Section 4 we study the behavior of the derivatives of the iterates at single 
points (Lemma 6, Corollary 2) and on some intervals (Theorem 3). 

In Section 5 a sufficient condition is given for the existence of an invariant 
measure absolutely continuous with respect to the Lebesgue measure (Theo­
rem 4). 

In Section 6 three groups of mappings are presented, which admit an 
invariant measure absolutely continuous with respect to the Lebesgue measure. 

2. Notation and definitions 

Through this paper we study some differentiable mappings of class C2 of the 
interval (0, 1) in itself:/: (0, 1) - (0, 1). The composition/ 0 • • • 0 / is denoted 

,Ctimes 

by r; we denote Xn = r<x), Xo = x. The same convention is used in the case of 
sets: An= r(A). We denote by 

Cn = {x:(r)'(x) = 0} U {0, l}, 

Cn° = {x: (r)'(x) = 0}. 

n = l, 2, ... , 

Assuming Cn to be finite we put in increasing order the points of 
Cn: 0 = Cn,O < Cn,l < • • • < Cn,rn = l, where rn = Card Cn - l. Since <r)'(x) = 
/'(Xn-1Hr- 1)'(x), we have 

(1) Cn = Cn-1 U r<n-l)(C1). 
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We set R = u:=1 /"'(C1), R 0 = u:-1 r(Ci°). 

Let lin,j = (Cn,j-1, Cn,j), j = 1, ••• ' rn. The family of intervals {lin,ilj-{n is 
denoted by !in, and we set diam !in = max1:sj:srn I !in,j I = max1:sj:srn I Cn,j -
Cn,j-1 I . In virtue of (1) lin+l is a refinement of !in. Let (lin,j)n=l be a decreasing 
sequence of intervals: lin,jn :::> lin+l,jn+l. Let 

(2) 

The set Kis either a point, or a closed interval: K = (a, /3), {3 > a. 

Finally, we seL\ = max.xe(0,1) I f'(x) I , D-= max.xe(o,1) I f"(x) I . By A;, D-; we 
denote some other estimates of I f'(x) I and I f"(x) I restricted to some 
sets. 

By A' we denote the completion of a set AC (0, 1) to the whole interval: 
A'= (0, 1) -A. 

We say that a point Xo E ( 0, 1) of a mapping f is a periodic half-attracting 
point ifxo is periodic: /P(xo) = Xo for some p, and there exists a 8 > 0 such that 
for every x E (Xo - 8, Xo) or x E (xo, Xo + 8), fkP(x) - Xo ask - + oo. 

Definition 1. i.et f E cs. The, Schwartzian derivative Sf of the function f is 
defined as follows: 

_ f'"(x) 3 [f"(x)] 2 

Sf(x) - f'(x) - 2 f'(x) • 

The idea of using this notion is due to Singer [6]. 

PROPOSITION 1. Let f, g: (0, 1) - (0, 1). Sf-::: 0, Sg -:S 0. Then S(f 0 g) -:S 0. 

PROPOSITION 2. If Sf -:s 0, then I f' I has no positive local minima. 

Definition 2. Let g E C0. We say that the function g is strongly decreasing 
if there exists a constant number w < 0 such that for any O -:s y < x -:s 1 we 
have g(x) - g(y) -:s w(x - y). 

df f" 
PROPOSITION 3. Let f: (0, 1) - (0, 1) be of class C 2 such that h = r is 

strongly decreasing on the intervals where it is continuous. Then for any 
n = 1, 2, • • • the function I ( {"')' I has no local positive minima. 

Proof: It is enough to approximate f by a function g E cs in C 2-topology 
and apply Proposition 1 and 2. 

Definition 3. We say that a set A C ( 0, 1) is totally wandering if for any 
n ~ m An n Am = 0. We say that a set A C ( 0, 1) is trivially totally wandering 
if there exists a periodic point Xo E ( 0, 1) such that the limit set w (A) is equal 
to the orbit of xo: 

w(A) = {xo, f(xo), ••• 'r- 1(xo)}, 

where f P(xo) = Xo. 
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Section 3. 

THEOREM 1. Let f: (0, 1) - (0, 1). We assume 
A.I. fE C2 

A.2. Card C1 < + oo 

A.3. f" I c,• ""' 0 
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A.4. There exists a number Ao> 1 such that setting Vo= {x: I f'(x) I > Ao} 
the following inclusion holds: R C Vo. 

Then the dynamical system ( ( 0, 1), /) has no non-trivial totally wandering 
intervals. 

For the proof we need some lemmas. _ df 

Let Vi be an open set such that Vi::::> Vo, and letinfxev1 I f'(x) I= A1 > 1. 

LEMMA 1. Assume that for every j = 0, 1, • • •, k, [i(x), {1(y) belong to the 
same component of Vi. Then the following inequality holds: 

I /1)'(x) I 
(/i)'(y) :5, 8 for every j = 0, 1, ... , k, 

where 8 = exp{ Ai(A:~ l) } and 1"1 = miuxev 1 I f"(x) I . 

Proof By assumption I f'(x) I ::::: A1 > 1 for x E Vi. Using the Taylor 
formula and the inequality 1 + u S eu we have 

(1) I (f~)'(x) I = IJf=1 I f'(x.) I< IJf=1 [1 + I f'(y.) - f'(x.) I ] 
([J)'(y) s-0 f'(y.) - s-0 I f'(x.) I 

< rrj-1 [1 + I /"(fl I • I Ys - Xs I ] < {,{J,1 ~j-1 1· - I } 
- ... o Ai - exp Ai "-'•=o y. x. • 

Since I Ys+1 - Xs+1 I = I /'(r,.) I · I Ys - Xs I ::::: A1 I Ys - x. I , s = 0, • • ·, 
• 1 h ~j-1 I ' 1 1 1 

J - , we ave "-'•=O Ys - x. S I Yi - XJ I L{:o A/-• S Ai _ 1 • 

Therefore 

(2) I (/1)'(x) I {,tJ,1 1 } dt 
(/1)'(y) s exp A1 • A1 - 1 = 8' 

LEMMA 2a. Assume that all the assumptions of Theorem ldpre satisfied. 
Then there exist two numbers 8 > 0 and do> 0 such that if U= {x: I f'(x) I 
< 8}, x E U8 - C1°, then there exists an integer k == k(x) such that 

(a) I (fk+i)'(x) I ::::: I/~:) I 

(b) for every j = 1, • • • k. 

Proof Let 8 be a small number such that the following conditions hold: 

1) infxeu 8 If" (x) I :!, ,{J,2 > 0. 
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2) Every component of U8 contains exactly one point of C1°. 

3) f < UB) C V1. 

In view of assumptions A.1-A.4 such~ exists. Denote E = {x: I f'(x) I < 1}; 

Em= { x: 2~ :5 I f'(x) I < 2;_ 1 }, m = 1, 2, • • • . Without loss of generality we 

may assume that Ua - C1° = u:-mo Em for some mo. Let a E Ci° and x E Em 
C U8 belong to the same component of U8• Then 

1 
I X1 - a1 I = I' /(x) - /(a) I = I rm I . I X - a I :5 2m-l I X - a I ' 

and (we omit some details) 

1 
I X1 - a1 I ~ 2m+i I X - a I . 

On the other hand 

f'(x) = f'(x) - f'(a) = /"(7/)(X - a), 

which implies 

Hence 

(3) 

I f'<x> I 
I f"M I 

Let b = dist(R, Vi'). Since I f'(x) I ~ A1 > 1 for x E V1, there exists an integer 
k = k(x) such that 

(4) I r- 1(x1) - rk-l(a1) I :5 b and I /k(x1) - /k(a1) I > b. 

In view of Lemma 1 we get 

(5) 

I r<x1) - /k(a1) I = I (/k)'(~) I ' I X1 - a1 I 

= IH-1 I /'(~;) I · I X1 - a1 I 
I /'(~;) I 

= IH-1 I /'(a;) I I X1 - a1 I • Ili-1 I {'(a;) I 

:5 I X1 - a1 I ~ IIf=1 I f'(a;) I , 

where a;< ~; < x;. The inequalities (3), (4) and (5) imply 

(6) 
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Finally, once again using Lemma I we obtain 

I (fk+i)'(x) I = I f'(x) I IH=1 I f'(xi) I 

I f '( ) I Ilf=i I f'(x;) I Ilk I , I 
2= x Ilf=i I f'(a;) I i=i f (ai) 

2= I f'(x) I ~ !!_ & 22<m-i) > b&2 __!__ • 22<m-i) 
88 2 -li22m 

b&2 m do 
=7 2 === I f'(x) I 

where 

(7) 
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COROLLARY J. If x E Us, then there exists a number k such that f (x) E Vi, 
for j = I, • • •, k and 

It follows immediately from Lemma (2a). 

Remark 1. Let x E Em C ~' i.e. 2: :S I f'(x) I < 2Li. Then the number 

k = k(x) in Lemma (2a) has the following property: if x and a E Ci0 belong to 
the same component of Us, then the points aj, Xj, also belong to the same 
components of Vi for j = I, • • •, k. Moreover 

m ::= ~ k log Ai _ f log b& . 
2 log 2 2 log 2 

The last inequality follows easily from (3) and (4). 

LEMMA 2b. There exists a number di > 0 such that if I is an interval 
contained in Us, then there exists a number k such that 

I I I 
I h I 2= di maxxe1 I f'(x) I 

h d . l b&l 
t e constant i is equa to li2A&2 • 

Proof. Let Us= (a, /3), let a E Ci0 and I belong to the same component of 
Us. Assume a< a< /3. We set N = (a, /3), M = (a, a). Let k be such that 

I Nk I :S b, I Nk+i I > b. 

(we replace x by /3 in (4)). Thus Nj C Vi for j = I, •. •, k, what implies 
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([i)'(x) ¥= 0 for every j = 1, • • •, k - 1, x E N1. Hence 

b < I Nk+1 I = f Nk I/' (x) I dx :S >.. I Nk I 

= f N, I uk-l)'(x) I dx $ A maXxeN, I uk-l)'(x) I' I N1 I 

and 

b 
maxxeN, I uk-l)'(x) I 2: A I N1 I • 

By Lemma 1 and by the last inequality we get (note that Ik C Nk) 

(8) 

111 I · 
Now we shall estimate I Ni I from below. By the property 1) of U6 from Lemma 

2a the function I f'(x) I is increasing on the interval (a, /3). Thus by Taylor's 
formula we have 

(9a) I Iii = lf(/3) - /(a) I = I /'('11) I • 1/3 - a I 2: I /'(a) I . I /3 - a I 

= lr(a)l • III. 

(9h) IM1I = I /(a) - /(a) I= I/'(!) I· I a - al, where f E (a, a), 

(9c) rm= f'(a) + f"(n(f- a)= /"(n(! - a), where f E (a,!) 

(9d) r<a) = r<a) + f"(w1)(a - a) = f"(w1)(a - a), w1 E (a, a), 

, (9e) r<P) = f'(a) + f"(w2)(/3 - a)= f"(w2)(f1 - a), w2 E (a, /3). 

By (9b), (9c), (9d) we have 

(10) IM1 I= rm I· I a - al s I t"<n I· I a - al 2 

<81 12<0 1r<a>l2 < 8 If'< >12 
- a - a - I f" (w1) I 2 - 8/ a • 
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By Lemma 1, (9d) and (9e) we obtain 

(11) 

IMd fMl/'(x)jdx minxeMl/'(x)I IMI -- =----->-----. -
I N1 I f NI /'(x) I dx - maxxeN I /'(x) I I NI 

minxeN I f'(x) I I Ml 1 I Ml 
>----- >--
- mB.X.xeN I /'(x) 11 NI - 8 I NI 

1 I a - a I 1 I f'(a) I I f"(w2) I 
= 8 I P - a I = 8 I /' (/3) I I f" ( w1) I 

1 82 I f'<a> I 
>----- s 8 lf'<P) I. 

The formulas (9a) and (10) give us 

IId IId IM1I 8/ III 182I/'(a)I 
--=---->---- ---
1 N1 I I M1 I I N1 I - 8 I /'(a) I 8 8 I f'(P) 

823 I II 
= 

882 I/' <m I • 
The last inequality and (8) imply 

(12) 
b II1I b828 III III 

I Ik I ~ 8A I N1 I ~ 82M 2 I /'(/3) I = di maxxeJ I /'(x) I ' 
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Remark 2. In fact, Lemma (2a) can be deduced from Lemma (2b). But in 
: this way the constant do given by (7) would be replaced by d1. For some 
applications it is important that the constant do in Lemma (2a) is exactly of 
the form (7) (see Section 6, Example (3)). 

LEMMA 3. Let IC (0, 1) be an interval such that L:=o I In I< +oo, In= ru). 
We suppose that the assumptions of Theorem 1 are fulfilled. Then 

df ~"' I In I 
l = .L.,n=O I /'(. ) I < +oo. 

maxxeln X 

Proof. Let I= (a, /3). We divide all the intervals In, n = 0, l, •••,in two 
groups G' and G": 1) In E G' if In is not contained in Us (Us from Lemma 2a); 
2) In E G" if I,. C Us. 

By assumption, we have 

(13) 
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Thus if no is big enough then for n ===: no I In I <: . Suppose n ===: no and In E G': 

then dist (In, C1°) 2:: : and minxer. I f'(x) I 2:: 81 > 0, where 81 is a constant 

number. The intervals In E G" form a sequence (In)ia:1 such that In; E G" and 
some consecutive In, n = ni + 1, • • •, n + k(ni), do not belong to G"; the 
number k(ni) is the number k from Lemma 2b, k(n;) satisfies (12) for I =In;• 
Of course n; + k(n;) < n;+1- In virtue of Lemma 2b and (13) we have 

Remark 3. We notice that if for every n, I In I <: then 

""' IInl (1 1) ""' ll I 

L.,n=O maXxeI. I f'(x) I< 81 + do L.,n=O n • 

Remark 4. Let Un= maxxer. I f'(x) I, Un = minxern I f'(x) I, and assume 

. ""' IInl ""' IInl Un> 0 for every n. Then if L.,n-o - < +oo, then also L.,n=o - < +oo. Moveover, 
Un Un 

if I In I :s e for every n, where eB < 1, then 
Un 

L~=o I In I :S ~B L~=o I In I for every m = 1, 2, .... 
Un 1 - € Un 

Proof. Let Yn, Zn E In be two points such that Un = I /' ( Yn) I, Un = I /' (Zn) I - By 
Taylor's formula ±Un= f'(yn) = f'(zn) + /"(11HYn - Zn), where 1/ E (Zn, Yn). 

Hence 

(14) 
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and 

llnl 
I In I I In I Vn ->----=----
Un - Vn + 0 I In I l + O I In I • 

Vn 

This implies easily the convergence oQ::-:=o I In I . If I In I < E for every n, then 
Vn Un 

llnl <-E-and l + o llnl ::s-1 __ 
Vn 1 - Ell Vn 1 - Ell 

Hence 

LEMMA 4. Assume f to be of class C 2. Let I= (a, /3) C (0, 1) be an arbitrary 
interval such that (r)'(x) ¥e O for every x EI and for every n = 1, 2, •••·If 

'\'"' llnl L.,n=o-----< +oo, 
maxxEin I f'(x) I 

then there exist two intervals U"' = (a', a) and Uµ = (/3, /3'), a' < a, f3 < /3', 
such that 

Proof. We set Un= maxxEln I f'(x) I, Vn = minxEln I f'(x) I-

Since (r)'(x) ¥e O for every x E I and for every n , we have Vn > 0 
for n = 1, 2, • • •. By Remark 4 we have 

00 I In I 
(15) l = Ln=O - < +oo. 

Vn 

By elementary arguments we get 

I In I = I f(In-1) I = fin_, I f'(x) I dx 2: Vn-1 I In-1 I 2: ••• 2: I 11 IIJ.:-J Vj, 

and hence 

(16) 00 1 n-1 1 "' I In I 1 "' I In I 
Ln-1 Un IIj=O Vj ::s m Ln=o-,;: = m Ln=O maxxEln I f'(x) I < +oo. 

The inequalities (14) and (15) imply 

(17) 
IIJ.:-l Uj ::s IIJ.:-J (Vj + 01 Ij I) = IIJ.:-l Vj( 1 + f I lj I) 

rr n-1 {o"'n-1 lljl} rrn-1 Bl ::s j=O Vj exp . L.,j=O ~ ::s j=O Vje . 
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The formulas (16) and (17) give us 

(18) ~"" 1 rrn-1 (Jl ~"" 1 rrn-1 < + L,n=l - j=0 Uj :S e L,n=l - j=0 Vj oo. 
Un Un 

Now we shall construct U,,_, i.e. we have to define a'. Let U,,_ = (a', a), r(U,,_) 
= (an', an), n = 0, 1, • • • (it is not necessary that for every nan'< an). By the 
Taylor's formula we have 

I an+1' - an+1 I = I /(an') - /(an) I :s I f'W I • Ian' - an I 
:S I an' - an I ( I f' ( an) I + I f" ( 17) I • I an' - an I) 

:S I an' - an I ( I f' ( an) I + (J I an' - an I ) • 
In other words we have 

We are looking for an a' such that I r(U,,_) I---+ Oas n - +oo. Let 

(19) n = 0, 1, •••· 

We note that Un~ I /'(an) I- Ifwe will find an 110 such thatL~=o 'l'ln < +oo, then 
a': a'= a - 110 will satisfy our assertion (because I r(U,,_) I :S 'l'ln, n = 0, 1, •• • ). 

We set 

(20) ~ rrn-1 'l'ln = Un j=0 Uj, n = 1, 2, .... 

Then (19) takes the form 

8n+l ITJ.:i Uj = 8n ITJ.:-J-Uj(Un + Oun ITJ.:-J-Uj ), 

(21) 8n+l = 8n ( 1 + :n ITJ,:-J-Uj 8n). n= 1,2, ... , 

81 = 80( 1 + : 80 ). 

(J 1 (J 
Let Wn = - ITJ.:-o Uj, n = 1, 2, • • •, Wo = - . By (18) we have 

Un Uo 

In the terms of Wn the formula (21) takes form 

(22) n = 0, 1, 2, ... , 

Now we set 80 = (1 + L':=1 Wn).- 2. We shall show that 

(23) n= 1, 2, •••. 

Indeed, for n = 1 we have 81 = 8o(l + wo&) < &(1 + w0). Suppose that (23) 
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holds for some n; we shall estimate 8n+ 1: 

On+l = On (1 + WnOn) = On + WnOn2 

S Oo(l + • • • + Wn-1) + Wn8l(l + • • • + Wn-1)2 

[ 
(1 + • • • + Wn-d 2] 

= Oo 1 + • • • + Wn-1 + Wn ( "'°00 )2 
1 + L.,n=l Wn 

S Oo[l + W1 + • • • + Wn] 

what finishes the proof of (23). 

The inequality (23) shows that the sequence (on)o00 is bounded: 

On S Oo(l + W1 + • • • + Wn-d 
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S Oo(l + L;=l Wn) = (1 + L:=1 Wn)- 1 = J'&, n = 0, 1, • • •· 

In view of (20) and (18) we obtain (note that~~ 1): 
Un 

'\"00 '\"00 i' rrn-1 L.,n=l 1/n = L.,n=l Un j-0 Uj 

r;;- "'00 ;\ rrn-1 , ~ "00 1 rrn-1 s '\/Oo L.,n=l - j=O Uj = I\. '\/Oo L.,n=l - j=O Uj < +oo, 
Un Un 

In the same way we construct the interval Up. 

Proof of Theorem 1. Let I = ( a, /3) be a totally wandering interval, i.e. 
In n Im = 0 for n -:;,f m. Then 

By Lemma 3 we get 

"00 I In I 
L.,n=O If( ) I< +oo. 

maxxEln X 

By Lemma 4 there exist some intervals U,,, = (a', a) and Up= (/3, /3') such that 
1rcua) I, lr(Up) 1- 0 as n- +oo. We set Va= u Ua, Vp = u Up, where the 
unions are taken over all possible Ua, Up, which have the above property. Let 
~ = Va U I U Vp 9. (a, /J). We have two possibilities: 

1) ~n n ~m = 0 for every n -:;,f m. But then applying once again Lemma 4, it 
turns out that there exist two intervals U;;, U,esuch that lr(U;;) l, lr(U,e) I 
- 0 as n- +oo, which contradicts the definition of Va and Vp. 

2) Let ~n n ~m -:;,f 0 for some m > n. If an (or /Jn) belongs to ~m, then we can 
find a neighborhood U of a, re{]) c ~m, and because of that Ir( U) I - 0. 

Thus it contradicts the definition of Va (or Vp ). Therefore ~m = ~n, i.e. 
f<m-nl(~n) = ~m- We set f 2<m-nl = g, ~n = L = (an, /Jn), Then g(L) = L, and 
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g(ci'.n) = an, g(iJn) = iJn, For each closed interval NC L we have I gk(N) 1- 0 
as k - + oo. Hence we conclude that g has exactly one fixed half-attracting 
point p EL and for any x E L we have gk(x) - p 0 ask - +oo. Since In CL, 
this establishes our assertion. 

THEOREM 2. Suppose that all the assumptions A.I-A.4 of Theorem I are 
fulfilled. Moreover, we assume A.5:f has no periodic, half-attracting points. 
Then limn diam dn = 0. 

Proof Suppose that our assertion is false, i.e. that there exists an €1 > 0 such 
that diam dn ~ €1 for every n. Then there exists an interval K = ( o:, /3) given 
by (2) of the section 2, such that /3 >a.We shall prove that at least one end­
point of K is an accumulation point of the set u:=1 Cn, Indeed, for every 
interval dn,j = (Cn,j-1, Cn,j) there exists an integer m such that fm(dn,j) contains 
at least one point of C1°. If not, it must exist a periodic, half attracting point 
(we skip the details). Suppose /3 is an accumulation point of the set u:=1 Cn, 
Now, either o: is also an accumulation point of this set, or there exists an no 
such that o: E Cn,,, If the second possibility holds, then there exists another 
point P < a such that the interval K' = ('ii, o:) is also of the type (2) of the 
section 2. The point P has to be an accumulation point of the set u:=1 Cn, and 
/3, p E u:=l Cn, Now we set L = ro+l ( (P, /3)) :;f ( W1, wz). The interval£ has the 
following properties: for any n = I, 2, • • • . (F)'(x) # 0 for every x EL, and the 
end-points w1, wz are two accumulation points of the set u:=1 Cn, The intervals 
Ln = F(L), n = 0, I, • • • , cannot be pairwise disjoint: if they were, the mapping 
f would have a periodic, half-attracting point (see the proof of Theorem 1) 
which contradicts A.5. If for some m > n Ln n Lm # 0, then in view of 
properties of L it must be Ln = Lm, and by the same argument as in the proof 
of Theorem 1 we get a contradiction. 

Remark 5. Suppose that the assumptions of Theorem 2 hold. For any 
interval dn,j = (cn,j-1, Cn,j) there exist two integers k S 1 ::Sn such that t(cn,j-1), 
l(cn,;) E C1 and 

l/(cn,;-1) - /(en) I~ max{dist(Ci°, V1), maX1sf,sr1 I Ci,j-1 - Cl,jl} ~ p > 0 

for some p. Thus there exists a number n such that always n - ls n. Without 
loss of generality we shall assume that always l = n. 

Section 4. 

Now we shall study the behavior of the derivatives (F)' as n tends to +ao. 
We suppose in this section that the assumptions A.1-A.5 of Theorem 2 are 
satisfied. Let 

D = {x:lf'(x) I< Az}, 

where ;\z > 1 and D n V1 = 0. Then of course dist(R, D) ~ dist(R, Vi')= b. 
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LEMMA 5. Assume that the following condition holds: 
A.6. there exist an integer ko and a number A3 > 1 such that if t(x) ED and 

k ~ ko then 

I (t)'(x) I~ A3. 

1) Then there exist another integer k1 and a number A4 > 1 such that for 
every sequence Xo, X1, • • • , Xr such that Xo, Xr E D - C1 O, X; E D for 
i = 1, • • • , r - 1, r ~ k1, we have 

(1) r.J I (fT(x) I~ A4. 

2) There exists a number E > 0 such that if r < ko then 

(2) I (fT(x) I~ E. 

Proof. Let ud = {x :J f'(x) I< d}. If x E ud, then lf'(x) I~ 8(d) where 8(d) 
is a number depending on d. Assumed< min(do, 8). Thus 

I (fT(x) I= lf'(x) I· I (/'- 1)'(x1) I~ 8(d)Ar 1. 

Let k1 be such that A/ 1- 1 8(d 0) ~As> 1. If x E Ud, then by Lemma 2a 

I (fT(x) I= I (t)'(x) I· I (f'-k)'(xk) I~ If'~:) I A2r-k ~ A2 

because r > k. Therefore it is enough to take A4 = min(A2, As). If r < ko, then 
the number k from Lemma 2a is smaller than ko and x cannot be too close to 
C1°. Hence there exists an e > 0 such that (2) holds. 

L.et k2 > k1 be an integer number such that 

(3) EkoA/2-ko = Ek, A4----,;;- > 1. [ 
ko k,-k.]k2 

We set 

LEMMA 6. Assume that A.6 holds. There exist two numbers no and As > 1 
such that if r(x) E D for n ~ no, then 

(4) 

Proof. Let x0, X1, • • • , Xn be the trajectory of a point x up to the moment n, 
Xn ED. Let Xn;, ni !5 n, be the points which belong to D. We shall divide the 
trajectory in some blocks B = (x;+1, • • • , Xi+s) such that 

~rv~~+1 I {'(Xj) I===:: As> 1 

where As will be defined later on. Let I B I denote the length of the block B. We 
construct the blocks B by induction. Suppose that the blocks B1, • • • , Bt have 
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been defined in such a way that the block Bt finishes at the place n. or n.- 1. 

Now we have to discuss several possibilities: 

1) Assume that Bt finishes at the place n •. We take the closest ns+r such that 
ns+r - n. ~ ko. There are two possibilities: 

a) ns+r - ns+r-1 < k2. Then we set Bt+1 = (xn,+I, • • • , Xn,+)· 

The length I Bt+1 I satisfies the inequalities ko < I Bt+I I::=: k2 + ko. 

By assumption A.6 we have 

(5) IB,.,I IJ;eBt+1 lf'(x;) I~~> 1. 

b) ns+r - ns+r-1 ~ k2. We set Bt+1 = (.X.,+1, • • • , Xn,+,-1) and then 

(6) 

-
Since ns+r-1 - n. - 1 < ko, in view of the second part of Lemma 5 we have 

IH.:.t,:+ilf'(x;) I~ e"°. 

In view of the first part of Lemma 5 we get 

Il?.:.Jt.,:::__1+1 I f'(x;) I ~ A4ns+,-l-ns+,-i > A4Bl,+1l-ko. 

Finally, by (3) we have 

(7) 

II . I (f'(x·) I> IB,.,I~ ieBt+l ,. -~E•wuA41--,;-t-J..I •wu 

>IB .. ,I~>' - -...; l\s··•A4'-,T,o ··• - "'6' 

2) Suppose that Bt finishes at Xn,-1. In the same way we take the smallest ns+r 

such that ns+r - n. + 1 ~ ko. 

Now, there are also two possibilities: 

a) if ns+r - ns+r-1 < k2, we set Bt+1 = (Xn,, • • ·, Xn,+) and then 

(8) IB,+11 II· 1 /'( ·) 1 > IB,.,I r: > l!._,+koK 
,eBt+l X, --'-} 1\3 - ~1\3. 

b) if ns+r - ns+r-1 ~ k2, we set Bt+l = (xn., •• ·, Xnr+, - 1). And once again we 
have two cases: if nr+s-1 = n., then by Lemma 5 

(9) 
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If nr+s-1 > n., then by Lemma 5 and by (3) we get 
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3) The last block Bu begins at Xn,. or Xn.+1 and finishes at Xn. If I Bu I?: k2 + ko, 
then (10) holds; if ko SI Bu IS ko + k2, then (8) holds; fmally, if I Bu I< ko, then 
byLemma5 

(11) 

The inequalities (5)-(11) imply 

I <r)'(x) I = I cr-JBui)'(x) I ITiEBu I {'(x;) I 

df ~,+ko h df 1-~ _.1:_ 
where A1 = min("'-/ "A.a, As)> 1. Let no be such that As= A1 11oE11o > 1. Then for 
n?: no 

From Lemma 6 follows easily the following 

COROLLARY 2. If x E U:':'=1 Cn, then 

LEMMA 7. There exists a constant number p1 > 0 such that for every interval 
I = ( a, /1) C Ll1,;, i = I, • • •, r1, the following inequality holds: 

I f(J) I?: P1 I 112• 

Lemma 7 is true due to the fact that f" I ct¥, 0. The proof is elementary, we 
omit it. 

LEMMA 8. Suppose that the assumptions A.1-A.5 of theorem 2 and the 
assumption A.6 of Lemma 5 are satisfied. Let U1 be a small neighborhood 
of the set Ci°. Then there exists a constant number d2 > 0 such that for every 
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interval I with r<I) n U1 = 0 for n = 0, • • •, k, the following inequality holds: 

L~=O IInl :S d2 IIkl• 
Proof Assume for the time being that for every n = 0, • • •, k, In is entirely 

contained in Dor D'. Let i>2 = minxeu, I f'(x) I> 0. 

If for every n, In CD', then, we have 

I In+1 I = JI. If' (x) I dx 2:: A2 I In I 
since I f'(x) I 2:: A2 for x ED', Thus 

k k l A.2 
(12) Ln=O I In I :S Ln=O I Ik I ;x,_

2
k-n :S I Ik I A.2 _ 1 • 

Suppose now that there exists an integer n s k such that In C D. Let nk be the 
biggest one which admits this property. Then in view of Lemma 6 we have for 
n :S nk - no. 

For nk-,. no< n < nk we have 

(14) 

Next, 

and for nk+I :Sn :S k, since In CD', we have 

(15) 

Hence 

(16) 

Finally, by (13), (14), (15) and (16) we get 

L~=O I In I = L~~o"" I In I + L~1-"o+l I In I + L~=nk+I I In I 
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We define d2 equal to the number in the square bracket. If the interval In is 
not contained in D or in D', for every n, then we divide Jin some subintervals 
which already have this property. Summing over these subintervals we obtain 
our assertion. 

THEOREM 3. Suppose that the assumptions A.1-A.5 of Theorem 2 and the 
assumption A.6 of Lemma 5 are satisfied. Then there exists a constant number 
d3 > 0 such that for every lln,i i = l, • • •, rn, n = l, 2, • • •, the following 
inequality holds: 

L;=O I f8(lln) I :5 d3. 

Proof. Let m be fixed. Every point c1,J E C1° belongs also to Cm:let C1,J = Cm,i• 
We set U1 = u;~11 (cm,i.,---1, Cm,i;+l>• Assume that mis such that U1 C u/J where 
Uo is from Lemma 2a. Let b1 = min1:si:s;rm I llm,i I < dist(C1°, D'). Let lln,i =I= 
(a, /1), and fk(a), r(/3) E C1, k :5 n. We shall study the trajectory (/s) of the 
interval I for I Is I < b1. Let r be the smallest integer such that I Ir I < b1 but 
I Ir+1 I 2::: b1. There are two possibilities: 1) r :5 k 2) r > k. First we shall 
investigate the case 1). Since the end points of the components of U1 belong to 
Cm, Is is either disjoint with U1 or is contained. If for every I;, s :5 r, Is n U1 
= 0, then by Lemma 8. 

(17) 

Suppose that Is is contained in U1 for some s; let Sr be the biggest index such 
that Is, C U1, Sr :5 r. Then in virtue of Lemma 6 for s :5 Sr - no 

(18) 
I Is, I =Jr.I <r-·)'(x) I dx 

2::: minxEI.I (/8'-·)'(x) I . I I. I 2::: Ass,-s I I. I. 

By Lemma 8 we have 

Therefore 

L~=o I Isl= L:Cono llsl + Lt-no+1 II.I+ L~,+1 II.I 

1 no 
:5 I ls, I L;'=s,-no As• + 82no I ls, I + d2 I Ir I 

(19) 

:5 I ls, I ( As A~ l + 8:: ) + d2 I Ir I 

:;:; b1 (~ + no + d2) = d4 
As - 1 82"o 

since I I., I . I Ir I :5 1; 82 is as in Lemma 8. In view of Theorem 2 there exists a 
number m1 such that if I Ir+1 I 2::: b1 then Ir+1 E llm for some m :5 m1. Thus 
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Therefore 

(20) 
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2) Assume r > k. Note that for Ik+1 = (ak+1, /Jk+1) we have ak+1 E R, and 
therefore I. for s ~ k + l cannot be contained in U1. Using Lemma 8 and (19), 
where we replace r by k, we have 

L:=o lls I= L!=o I I. I + L~=k+1 I I.I + L:=r+I llsl 

S d4 + d2 I Ir I + ds S d4 + d2 + ds g{ da. 

By (20) and the last inequality we see that da is a number which satisfies our 
assertion. 

Section 5. 

In this section we give a sufficient condition for existence an /-invariant 
measure absolutely continuous with respect to the Lebesgue measure. We 
assume through this section that A.1-A.5 of Theorem 2 hold, plus the following 
new assumption: 

A. 7. there exists a constant number da > 0 such that for every interval l::..n,i, 
i = l, , , , , r n, n = l, 2, • • • the following inequality holds: 

• LEMMA 9. There exists a number wo > 0 such that for every interval l::..n,i = 
(a, /3) where fk(a), r(/3) E Ci, k s n, the following inequality holds: 

max{ lf'(x) l:x E /i(!::..n,i)} . 
min{lf'(x)l:xE/i(!::..n,i)}Swo for J=l,•••,k. 

Proof. Let UB be as in Lemma 2a, let U1 c UB, be an open neighborhood of 
C1° as in the proof of Theorem 3. First we shall consider the intervals /i(!::..n,i) 
such that their lengths are smaller than b1 (see the proof of Theorem 3). Those 
/i(!::..n,i) are either disjoint with U1 or contained in it. If fi<t::..n,i) n U1 = 0, then 

max{ I f'(x) I: XE /i(!::..n,i)} A. 
(l) min{ I/' (x) I: XE /i(!::..n,i)} S 82 

(82 - see the proof of Lemma 8). Suppose now that for every 7' > 0 there exists 
an interval /i(!::..n,i) =I= (a, /3) C U1 such that 

max{I f'(x) I :x E /} 
min{I f'(x) I :x E /} ~ 7'. 

Assume a< a< /3 where a E Ci°. Since f"(x) ¥, 0 for x E U1, 

max{I f'(x) I :x E /}=I /'(/3) I, min{I f'(x) I :x E /}=I /'(a) 1-

U sing the same argument as in the proofs of Lemma 2a and 2b we show that 

(2) ,{}2 I f'<P> I < I /3 - a I < !!_ I f'<P> I 
,{} I /'(a) I I a - a I - ,{}2 I /'(a) I ' 



and that 

(3) 
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1'}2 I a - a I 2 ::5 I cx1 - a1 I ::5 1'} I a- a I 2, 

l'h I .B - a I 2 :;; I .81 - a1 I :;; * I .B - a I 2• 
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We set N = (a, ,B), M = (a, a). Let k be the same as in (4) of the proof of 
Lemma 2a, with x = ,B. Then by Lemma 1 we get 

(4) 

b > JN, I ( fk-l)'(x) I dx ===: I N1 I minxEN1 I uk-l)'(x) I 

=== I N1 I~ maxxEN, I <r-1)'(x) 1-

Using the last inequality we estimate I ak - ak I: 
I CXk - ak I= fM, I (fk- 1)'(x) I dx :5 I M1 I maxxEM1 I (/k-l)'(x) I 

(5) 
I I k-1 ' I I I 8b ::5 I M1 maxxEN1 ( / ) (x) ::5 M1 I Ni I . 

Hence by (2) and (3) we obtain 

(6) 

8M I a - a I 8b1'}3 I /'(a) 12 

I CXk - ak I ::5 1'}2 3 I ,8 - a I ::5 1'}2 3 I f' (,B) I 2 

8b1'}3 I 
:5 ~2. 

V'2 T 

f • fi h d' • 2 2/\81'}3 h l T satis 1es t e con 1tion: T >or, t en 

Thus 

I CXk+l - ak+I I = h I f'(x) I dx ::5 i\ I Ik I ::5 r 
On the other hand (see (4), in the proof of Lemma 2a) 

I .Bk+1 - ak+1 I > b. 

Therefore 

b I Ik+1 I = I .Bk+1 - <Xk+1 I ===: I .Bk+I - ak+1 I - I a'.k+1 - ak+1 I ===: 2. 

In view of Theorem 2 there exists an integer m1 such that if f8(ak+1), r<.Bk+1) 

E C1 for s ::5 r ::5 m1. But in view of (6) 

I a'.k+1+s - ak+I+rl = JM 1 I (fk+•)'(x) I dx ::5 J Mk I (/ 5)'(x) I dx 

< '"IM I< ,m, 8b03 ~ 
- I\ k - I\ {h3 T2 • 
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If T is big enough, for instance if -r2 > ;\m 1 :: , then O'.k+Hr E V1, which 

contradicts /8(ak+1) E C1. In this way we have proved that 

{max{ I f'(x) I: x E /1 (dn,i)}} 
SUP1ti(~n)l<b1 min{lf'(x)l:xE/1(dn,i)} <+ao. 

But there exist only finite number of intervals /1 (dn,;) such that their lengths 
are not smaller than b1. This completes the proof. 

LEMMA 10. There exist two constant numbers u1 and u2 such that for every 
interval dn,i = (a, /1) where fk(a), r(/3) E C1, ks n, the following inequalities 
hold: 

(a) I ::;::;~ I S U1 for every x, y E dn,i, j = 1, • • ·, k 

(b) I(~~~'(;) I S u2 for every~, y E fk+1(An,i) and 
Y for every J = 1, • • •, n - k - l. 

Proof (~) By the same argument as in Lemma 1 we get 

I ({1)'(x) I< IJ/=1 (l + t'Jolxs -Ysl) 
<t'>'<Y> - s-o I f'(ys) I 

(7) 

< {-<I. ~j-1 I /8(dn,;} I} _ exp v· L..s-o --- , 
Vs 

j = 1,, • ·, k, 

where Vs= min{ I f'(x) I: x E /8(An,i)}. For simplicity we set 1 = An,i, ls= /8(An,;). 

Let o and Us be as in Lemma 2a. For fixed m we define U1 as the union of 
those intervals Am.J which have at least one point in C1°. We assume 
U1 C U8• Let b1 = min1 I Am,i I and let r be an integer such that I ls I s b1 for s 
s r and I Ir+1 I > b1. For every interval ls, s s r, there are two possibilities: (1) 

ls n U1 = 0; (2) ls C U1. We shall estimate L;-o I ls I separately for the groups 
Vs 

(1) and (2). Let 02 = minxe u1• I f' (x) I -By the assumption A. 7 we have 

(8) L(l)llsls; L(1)11.1s; LZ-ollslS~ 3 • 
Vs u2 u2 u2 

In view of Lemma 2b for every ls of group (2) there exists an interval ls+k(s) 

such that 

(9) 
11.1 1 
-s-d lls+k(s>I, 

Us 1 

where Us= max { I f'(x) I :.x Els}, and the numbers s + k (s) are distinct. Thus 

(10) L(2) I ls IS dl L~-o I ls IS dda 
~ 1 1 
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In virtue of Lemma 8 we get 

~ llsl ~ llsl Woda 
(11) ~ (2)- :S Wo ~ (2>- :S --

v. u. d1 
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In view of Theorem 2 there exists a number p1 such that if I 4s,i I > b1 then s 
:S p 1. Hence for s > r 1. E 4p where p :S P1. Thus setting Vp,i = inf { I /' (x) I : x 
E 4p,i} we have 

(12) ~k 11.1 < {l4p,jl. 0 "< < } !!! -~s=r+1--P1max -. -. Vp,i'F ,J - rp,P-P1 - u. 
V8 Vp,j 

The inequalities (8), (11) and (12) give 

~k llsl da Woda _ df 
~-=0-:S"T+-d + U = U1. 

Vs u2 1 

The proof of the part (b) is similar. 

LEMMA 11. There exists a constant number ua > 0 such that for every set A 
Cl C f(41,;), where l is an interval, i = 1 • • •, r1, the following inequality 
holds: 

where 

The proof is elementary, so we omit it. 

LEMMA 12. There exists a constant number U4 > 0 such that for every 
interval 4n,i and for every set A the following inequality holds: 

I rn(A) n 4n,i I 1-I A I 
------:S U4 -

I 4n,i I I F(4n,i) I 

Proof. Denote l = F(4n,;). The map F: 4n,;--+ l is 1 - 1 (see Remark 5). Let 
1;-n denote the inverse mapping: f;-n: l--+ 4n,i• Assume 4n,i = (a, c) where fk(a), 
r(c) E C1, k :Sn. By definition of f;-n we have 

(13) 

We decompose f;-n as follows: f;- 1 = f;- 1 0 f;-<n-k-2> 0 f;- 1 0 f;-k. LetA 1 = f;- 1(A). 
Then 

(14) 

In view of Lemma 11 we have 

(15) 
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Now we set A2 = /;-<n-k- 2>(A1). Then 

IA2I = fA, I (/;-(n-k- 2))'(y) I dy 

and in virtue of Lemma 10 we get 

(16) 

IA2I _ IA2I 
I {i-(n-k-l)(J) I - I /;-(n-k-2)(/i-l(J)) I 

_ f A1 I (/;-(n-k- 2))'(y) I dy 

- f r- 1(1) I u-<n-k- 2))'(y) I dy 

IA1I 
::5U21/i-l(J) I 

Let Aa = /;- 1(A2). By Lemma 11 we have 

(17) IAal IAal ✓ IA2I 
1/;-(n-k)(J) I= l/i-1(/;-(n-k-l)(J)) I ::5 U31ri-(n-k-I)(I) 1 • 

Finally, we set A4 = f;-k(Aa) = f;-n(A). Then by Lemma 10 (the argument is 
similar as in (16)). We obtain 

(18) 

The inequalities (15)-(18) imply 

/IAi _ C a1214/iAT. 
U2 ua\/w-1 - 1 - U1 '1 U2 U3 \/Vi, 

the constant U4 is equal to u1 ..r;;; ua312. 

Denote by Po the Lebesque measure on the interval (0, 1), and let Pn = 
Po Or, i.e. Pn(A) = Po(rn(A)). It is obvious that Jin« Po, then we set gn = 

ddvn , n = 1, 2, •.•. The functions gn belong to L1 ( 0, 1) and 
Po 

JA gn (x) dx = 1 for n = 1, 2, • . •. 
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LEMMA 13. The set {gn} i is weakly sequentially compact in the space 
L1(0, 1). 

Proof. Given an interval ll.n,i = (a, /3), let fk(a), r<P> E C1, We note that 

lr(ll.n,i) I:?; min{min;,.j I C1,i - C1,jl, dist(Cf' Vi)}~ d4 > 0 

Indeed, since (r)'(x).,, 0 for every x E /l.n,;, either r(a), r(/3) E C1 and then 
I r<a) - r<P> I ::S min;,.j I C1,i - C1,j I, or r<a) E Vi and r<P> E C1 which gives 
1r<a) - r<P> I :?; dist(C1, Vi). Let AC (0, 1) be arbitrary. Then for every 
i = 1, •.• ·, rn 

jAnr(ll.n,i)I IAI 
-.,-----< - . 

I r<an,i) I d4 

In virtue of Lemma 12 we have 

Pn(A) = Po(Tn(A)) = Lf~1 1r-n(A) n ll.n,il 

r l1n(A) n ll.n,; ,, 4/fAi 4/fAT 
::S Li~l I ll.n,i I I ll.n,i I ::S Li~l U"'y-;{; I ll.n,i I 

0
::S U4'\J-;{;. 

Given e > 0, if IA I< e4 
~ 4 , then Pn(A) < e, n = 1, 2, •••which means 

U4 

fA gn(X) dx < E 

It means that the set {gnh'° is weakly sequentially compact in L1(0, 1) (see 
[2], Ch.IV). 

THEOREM 4. Let f: (0, 1) ---+ (0, 1) satisfy the assumption A.1-A.5 of 
Theorem 2 and the assumption A.7 (see the beginning of this section). Then 
there exists an {-invariant measure absolutely continuous with respect to the 
Lebesgue measure. 

Proof. We set 

Since Pk (A) = J A gk dx, we have 

µn(A) = f A (~ Li:J gk(X)) dx. 

By temma 13 the set {gkh=1'° is weakly sequentially compact, so is 

{ ~ !i:J gk }n-100
• Therefore there exists a function go E L1 (0, 1) and an 

increasing sequence of integers (ns )s .. 100 such that 

1 't"n -1 
~ ""'k~O gk ---+ go 
ns w 
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("-" denotes the weak convergence). Hence 
w 

µ(A) gt lim. µn,(A) = lim. f A (~. Li~o1 gk) dx = f A go dx 

for every AC (0, 1). It is obvious that the measureµ is /-invariant. 

Section 6. 

Example (1). 

PROPOSITION 4. Assume that f: ( 0, 1) - ( 0, 1) is of class ca and satisfies 
the assumptions A.2-A.5 of Theorem 2. Suppose that Sf s 0. Then the 
condition A.6 of Lemma 5 is satisfied. 

Proof. In view of Proposition 2 for every n I r<x) I has no positive local 
minima. Suppose that I <rnxo) I s 1, r<xo) E D, and n is large. Let lln,i = (a, 
/3) 3 Xo. Then either I <r)'(x) I S 1 for x E (xo, /3) or I (r)'(x) Is 1 for x E (a, 
Xo). Thus I r</3) - r(xo) I s I lln,i I or I r<a) - r<xo) I s I lln,i I-By assumption 
A.4 I r<f3> - r(xo) I, I r(a) - r<xo) I ~ dist(D, Vo) for large n, therefore we get 
I lln,i I ~ d:ist(D, Vo) > 0. On the other hand by Theorem 2 I lln,i I - 0 as 
n - + oo, which contradicts the previous inequality. 

By Theorems 3 and 4 we get 

COROLLARY 3. If f satisfies the assumptions of Proposition 4, then there 
exists an {-invariant measure absolutely continuous with respect to the 
Lebesgue measure. 

By the same argument we prove 

PROPOSITION 5. Assume that f satisfies the assumptions A.1-A.5 of Theorem 

2 and moreover that ;: is strongly decreasing (see Definition 2) on the 

intervals where it is continuous. Then the condition A.6 is satisfied and there 
exists an {-invariant measure absolutely continuous with respect to the 
Lebesgue measure. 

Remark 6. Misiurewicz has proved [5] that if f satisfies the following 
condition: 

A.8. the condition A.5 holds and there exists an open set Vi :::> C1 such that 
RC C1 C Vi', 
then there exists an integer m such that fm satisfies the condition A.4. 

As Singer noticed, it also follows easily from Lemmas la and lb of [3]. 

Thus, if f is of class ca and satisfies A.2, A.3, A.8 and Sf s 0, then there 
exists an {-invariant measure absolutely continuous with respect to the Le­
besgue measure. This theorem has been proved by Misiurewicz [ 5] under some 
weaker assumptions about f. Moreover, he has studied some properties of this 
measure. 
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Example (2). Lasota and York have proved [4] that if/: (0, 1) - (0, 1) is 
piecewise C2 and expanding (i.e. I f' (x) I 2::: 1 + E for every x such that f' (x) 
exists), then there exists an /-invariant measure absolutely continuous with 
respect to the Lebesgue measure. 

Suppose f is a Lasota-York mapping, let O = co < • • • < Cr = l be the points 
such that f l<c,-1,c,) is of class C2 and expanding. Let .Ji 3 Ci, i = 0, ••• ' r, be a 
collection of small open intervals. We set U = U~-o .JI;. Let g be a function of 
class C 2 such that g(x) = f(x) if XE U and g(cn = f(cn (or g(c/) = /(c/)). 
The function g is close to fin the metric 

(1) p(f,g) = L1 
lf'(x)-g'(x)ldx+ L1 

lf(x)-g(x)ldx. 

PROPOSITION 6. If f satisfies the condition A.4 with respect to C1 = { c;h-or, 
and g has the property: if I g' (x) I :5 1 then I g" (x) I is large, then there exists 
a g-invariant measure absolutely continuous with respect to the Lebesgue 
measure. 

Proof. If .JI; are small enough, then the set U satisfies the corlditions of the 
set U/5 in Lemma 2. In view of the formula (7) we see that if I g" (x) I is big 
enough for I g' (x) I :5 1 then do > l ( 8 - depends on the behavior of g on the set 
Vi, b - is a constant which depends on f, &2 = min { I g" (x) I: I g' (x) :5 1} . Thus 
for every x E D if r(x) E D, n 2::: 1, then I <r)'(x) I 2::: Aa > 1. Hence, by 
Theorems 3 and 4 there exists a g-invariant measure absolutely continuous 
with respect to the Lebesgue measure. 

COROLLARY 4. If f: ( 0, 1) - ( 0, 1) is a Lasota- York mapping which satisfies 
the condition A.4, then f can be approximated in metric (1) by some C2 -

mappings which also admitted an invariant measure absolutely continuous 
with respect to the Lebesgue measure. 

Example (3). Let/: (0, 1) - (0, 1) be a piecewise quadratic mapping (i.e. f 
is piecewise polynomial of the second degree) of class C1, such that every 
parabolic piece contains ,-! critical point of f. 

Cz 

Y = f(x) Y = f'(x) 

Assume that the conditions A.4 and A.5 are fulfilled. It is easy to see that the 
Theorems 2 and 3 hold: all what we need is that f' satisfies the Lipschitz 
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condition and that for every critical point c:f'(c) = 0 there exists a neighbor­
hood of x such that I/' (x) I e:: y I x - c I for some y > O. Moreover, f can be 

g" 
approximated by some mappings g of class C2 such that -, is strongly 

g 
decreasing on the intervals where it is continuous. Thus the condition A.6 
holds. Therefore, in view of Theorems 3 and 4, there exists an invariant 
measure absolutely continuous with respect to the Lebesgue measure. 
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