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ABOUT A NONLINEAR SYSTEM IN RX R2 WITH ONE 
DIMENSIONAL CONTROL* 

BY E. ESPINOSA, A. Pus AND R. SUAREZ 

0. Abstract 

Considering the system 

(1) i(t) = ua(t, x) + (1 - u)b(t, x), 

where O :s u :S 1, x(to) = x0, with x E R 2• Under certain assumptions in respect 
to the rotation of the segment [a(t, x), b(t, x)] and the regularity of a(t, x), 
b(t, x), we give a local characterization of the structure of the family of 
trajectories. For instance we prove the uniform convexity of the accessible sets. 

1. Introduction 

We can consider the system (1) without controls in explicit form 

(2) i(t) E [a(t, x); b(t, x)], x(to) = x0, 

where the set [a; b] is the closed segment with end points a and b (a, b E R2). 

A function x(t) is called a trajectory of (2) ifit is absolutely continuous on any 
compact subinterval of I, where I is an open interval, and satisfies condition 
(2) for almost every t E I. 

By O(t), t 2:: to, we denote the set of points x(t) where xis a trajectory of (2), 
this set is called the accessible set of (2) at t. 

We define 

O' = {(s, y) E R3 IY E O(s), to :S s :St} 

and call it zone of emission of (2) on [to, t] 

Example 1. Let the system 

(3) i(t) E [(O, O); (dt + ex2, 1)], x(O) = (0, 0). 

It is easy to see that the accessible sets of (3) are like the four cases on fig. 1 
that correspond to d > e, d = e, d < e and d = 0, respectively 

In this paper we are interested in systems with uniformly convex accessible 
sets like fig. l(a). 

Definition 1. A compact set M C R is called a lens if its boundary consists 
of two simple arches x(T), y(T) E C2, 0 :s 'T :s 1, x(0) = y(0) 'F x(l) = y(l), with 
curvature of opposite sign and such that x'(T)x'(0) > 0, y'(T)y'(0) > 0 for each 
'T E (0, 1]. 

• This paper was presented at the IV Conference on Differential Equations Mexico-USA, held 
at the Universidad Aut6noma de Sonora (Sonora, Mexico, January 1976). 
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(a) lb ) ( C ) ( d} 

Fig. 1 

We shall prove the following. For ~Ht) (fort close to) to be a lens set, it is 
enough to suppose that a(t, x), b(t, x) E C2 and satisfy 

Hypothesis G. In the point (t0, x0) the following inequality holds 

(4) I { a(a - b) } I det a - b; ax • (a - b) 

< det a - b; --- + - b - - , a I { a(a - b) aa ab } I 
at ax ax 

Remark 1. If the functions a, b do not depend on x, we get from (4) 

(5) I { a(a - b)} I O < det a - b; at . 

This condition was obtained by S. Lojasiewicz Jr. (see [1]). 

Example 2. We consider the system 

(6) j(t) E (y2, -y1) + [(O, O); (y1 cost sin t 
+ Y2 cos2 t + sin t, -y1 sin2 t - Y2 cost sin t + cos t)] 

where y = ( yi, Y2) E R 2• This system satisfies (5) nevertheless, their accessible 
sets are like fig. 1 d. 

We shall also obtain results of the following type: 

Definition 2. We call f(t, x) a bang-bang control function of (2) with k 
changes in [to, to+ T], if there is a sequence to= so< s1 < • • • < Sk+1 =to+ 
T such that f(t, x) is equal to an end point control a(t, x) or b(t, x), on each of 
the interval [si, S;+i], i = l, ... , k, and such that any neighboring intervals 
equals different end points. We call the corresponding solutions a bang-bang 
trajectory with k changes. 
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For instance, considering the bang-bang controls without change a(t, x) and 
b(t, x), we obtain the system 

(7) i(t) = a(t, x(t)), y(t) = b(t, y(t)). 

And then denote by a(t; t1 , x 1 ), f3(t; t2, x 2 ) to the solutions of (7) that satisfies 
a(t1; t1, x 1) = x2 and /3(t2; t2, x 2) = x 2. 

The bang-bang controls with one change are 

(8) 

f(t ) = {a(t, x) for 
' x, 'T b(t, x) for 

{ b(t, x) for to ::5 t ::5 'T 

g(t, x, 'T) = a(t, x) for to ::5 'T ::5 t 

and their respective solutions are given by 

(9) x(t, 'T) = /3(t; 'T, a(T; to, x 0 )) 

y(t, 'T) = a(t; 'T, /3(T; to, x 0 )). 

We shall prove that a, /3, x(t, T) and y(t, T) are the unique optimal solution of 
(2) with respect to time. 

2. Preliminary Results. 

It is assumed subsequently, that t is near to to. 

LEMMA 1. A square P(t) exists, continuous in the Hausdorffs sense, such 
that a (t; to, x 0 ), /3 (t; t0 , x 0 ) are opposite vertices of P(t) and it contains O(t). 

Proof Let g > 0. Let d be a vector in R 2, we can define the set 

(10) nm = {rd+ v(r) IO ::5 r ::5 1, 

and the system 

v(r) • d = 0 and II v(r) 11 < rt} 

(11) i(t) E a(t, x) + nm, x(to) = x 0. 

It is easy to see (since a(t, x) is Lipschitzian) that the accessible set of (11) is 
contained in the set a(t; t0 , x 0 ) + (t - to)n(f ), where f > g and fort close to 
to. 

If d = (1 + t){b(to, x0) - a(to, x0)}, there exist positive numbers T, M, such 
that 

(12) [a(t, x), b(t, x)] C a(t, x) + nm, 
fort E [to, to+ T], II x - x 0 II ::5 M. From (12) we have that O(t) is contained in 
the accessible set of (11) and hence 

(13) O(t) C a(t; to, x0 ) + n(f). 

We can do the same for b and obtain 

(14) O(t) C /3(t; to, x 0 ) + n'(f ). 
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Completing the proof. 

LEMMA 2. Let the functions~= (t, T) -+ (t, x(t, T) ), t: (t, T) -+ (t, y(t, T)) where 
x(t, T), y(t, T) are given by (9) and also for T > t. Then the image of the 
functions ~ and t are surfaces, and their normal vectors satis'{y 

(15) N(t, x(t, T)) • (1, ua(t, x(t, 1')) + (1 - u)b(t, x(t, T))) 'F 0 for u 'F 0, 

N(t, y(t, T)) • (1, ua(t, y(t, T)) + (1 - u)b(t, y(t, T))) 'F 0 for u :;I, 1. 

Proof If we denote a(t) = a(t, .t(t, T)), b(t) = b(t, x(t, T)) we have 

ax (t, T) = b(t) 
(16) at 

ax (t, T) = a(T) - b(T) + (t- T) ab(1') •[a(t).., b(T)] -1-o(t - T) 
BT ax 

. O(t - T) 
where fun,. i-.o • = 0. Then 

' t- T 

a~ 
at·= (1, b(t)) 

(17) 

a~ = (o, a(T) - b(T) + (t - T) ab(T) I a(T) - b(T) I + o(t - T)), 
aT ax 

and they are linearly independent vectors. Hence the image of ~ is a surface. 

a~ a~ 
We define N = - x -, so that 

(18) 

at aT 

N(t, x(t, T)) • (l, ua(t) + (1 - u)b(t)) ... u det{a(r) - b(1') 

+ (t - T) ab(1') (a(1') - b('I')) + o(t - 1'); a(t) - b(t)}, 
ax 

and if we do just the same for y(t, r), we find 

(19) 
N(t, y(t, T)) • (1, ua(t) + (1 - u)b(t)) = (l - u)det{a(T) - b(-r) 

aa(1') -
+ (t - 1') -- (a(T) ...,. b(T)) + o(t - 1'); a(t) - b(t)}. 

ax 

Finally, we get from hypothesis G 

iJb(T) 
det{a(T) - b(T) + (t - 1') -- (a(T) - b(r)); a(t) - b(T)} 

ax 

ab(-r) = det{a(T) - b(T) + (t- T)-a;-(a,(T) - b(T)) 

d 
+ (t - T) dt (a(t) - b(t)) lt=T + o(t - T)} 
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d 
= det{a(-r) - b(,r); (t- -r) dt (a(t) - b(t)) It=,-

- cJb(-r) (a(-r) - b(-r)) + o(t - T) 
ax 

a aa(,r) = (t - -r)det{a(T) - b(-r); - (a - b)(-r) + --·b(-r) 
at ax 

ab(-r) 
~ --•a(-r) + o(t - 'r) 'F 0, 

ax 

and the proof is completed. 
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LEMMA 3. Let x 1(T) = x(t, -r), y 1(r) = y(t, to+ t - -r) where x, y given by (9). 
Then the curves xt, y 1 (for -r E [to, t]) have curvature of different sign. 

Proof. Ify(-r) is a curve in R 2 and C(y(-r)) its curvature, we have that 

sign C(y('t)) = sign (hr2 - )'2yi). 

To find the curvature sign of x 1 and ye, we write 

a 
ih' x 1(-r) = a - b + 0 1(t - to) 

(21) 

so that 

(22) 

where 

(23) 

a 
- yt(-r) = a - b + O2(t - to), 
a-r 

a2 
1 a a(a - b) ab 3 

-::;--]" x (-r) = - (a - b) + ---,a - -• (a - b) + 0 (t - to) 
a-r a1 ax ax 
a2 

1 . a o(b - a) aa 4 
-y (-r) = - (b - a)+ • b - -· (b - a)+ 0 (t - to) 
a-r2 01 ax ax 

:i/xi - :ilxi' = A + B + C + 0 5 (t - to) 

j/ji/ - j/ji/ == A - B + D + 0 6(t - to) 

A= det a - b;-•a + ~,b { aa ob } 
ax ax 

{ aa ob} B = det a - b· - - -
' at at 

C = det{ a - b; - 2 :: • a} 

D = det{ a - b; - 2 :: • b} 
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and where the functions are valued on (to, x 0) and limt ..... coOi(t- to)= O,j = 1, 
2, ... , 6. 

From hypothesis G it follows 

IA+ (C+D)/21 < IB + (C-D)/21 

and from (22), C(xt(T)) and C(yt(T)) must be of different sign fort near to to. 

3. The Main Theorems 

Let E(t) be the accessible set by bang-bang trajectories. Putting all of the 
above results together we can state. 

THEOREM 1. For t close to to we have: 
a) There exists a lens set M(t), continuous in the Hausdorff sense, such 

that its boundary is composed of the curves xt and yt 
b) If a bang-bang trajectory has more than one change, then it is in the 

interior of M(t). 
c) If p is in the interior of M(t), then there are two different trajectories 

with two changes x and y, such that x(t) = y(t) = p, 
d) M(t) = E(t). 

Proof. 
a) It follows from lemmas 1, 3 and the continuity of C(xt(T)), C(yt(T)) 
b) Let t E (to, to + T) be fixed. It is sufficient to prove it for trajectories 

with two changes. For instance let 

{
b(s, x) for toss s P 

(24) H,,.·•(s, x) = a(s, x) for P s s s T 
b(s, x) for T s s s t 

be a two changes control, then x(t; T, P) = /J(t; T, a(T; to, x 0 ))) it is the 
correspondent solution. If we fix to= P and .i0 = /J(to; to, x0 ) we can define as 
in lemma 3 

(25) xt,i;,(T) = x(t, T, to)= /J(t; T, a(T; to, .i 0)) 

yt(T) = y(t, to+ t - T) = a(t; to+ t - T, /J(to + t - T; to, x0)). 

From lemma 3, xt,to has curvature of different sign that yt(T) and of equal 
sign to xt(T). 

It is enough to prove that xt,i;, and xt, do not have different intersection that 
/J(t; to, .i 0) (see fig. 2). Suppose that it does not hold, then there exist T1, T2 
such that to < T1 < t, T2 < t and 

(26) 

We obtain from the uniqueness of the system (7) with the initial condition 
(t, z) that 

(27) X8 'to(TI) = X 8 (T2) for s E [l, t] 
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Fig. 2 

where l = max{-r1, -r2}. If l = -r1, then we get 

(28) 

which contradicts (a). If l = -r2 then 

(29) 

and with 

(30) xT2,fo(-r2) = a(-r2; to, .i 0 ) = y(-r2, to) 
xT2,fo(to) = /3(-r2; to, .i 0 ) = y(-r2, -r2) 

89 

we find that the curves xT 2,to and yT• have three different intersections, and from 
lemmas 1, 3 and the continuity of C(xt(-r)), C(yt(-r)), we can see that it is a 
contradiction fort close to to. The proof of (b) is completed. 

c) If we define F: [to, t] X [-1, 1] - R 2 by 

- {Xl,fo((to-t)T+to) 
F(to, -r) = yt ((t _ to)-r + to) 

for -r E [-1, O] 
for -r E [O, 1] 

it is easy to prove that Fis a homotopy of the boundary of M(t) on P(t; to, x 0 ), 

where F(to, -r) E M(t), for all to, -r. From here, for each p E M(t) there exists 
to, -r, such that p = .f(to, -r), but also yt E aM(t), from where, if pis in interior 
of M(t) thenp = xt,to((to - t)T + to) for -r E [-1, O]. 

Repeating the procedure for y instead of x and a instead of p, (c) is proved. 

d) Its proof follows from (a), (b) and (c). 

THEOREM 2. For t close to to we have 

e) E(t) = U(t) 

f) Let A and B the graphic of a(t; to, x 0 ) and P(t; to, x0 ) respectively. Then 
the set aut - (AU B) is a smooth set. 
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g) The solution x(t) of (2) is on the boundary of fl/ if and only if x(t) is a 
bang-bang trajectory with one or none changes. 

h) Each point of the boundary of gt is reached by one and only one 
trajectory. At each point in. the interior of gt arrive at least two different 
trajectories. 

Proof. 

e) It is well known (see [2]). 
f) It follows from lemma 2, and from (a), (d) and (e). 
g) Suppose that y(s) is a solution of (2) on agt - (A U B). Then from (15) 

we have that y'(s) = b(s, y(s)) (or a(s, y(s))), for each s such that y'(s) there 
exists. Thus there exist 41, x0 such that y(s) = /J(s; 41, .i 0 ), and ifs is decreasing, 
there exists §'such that (s, y(s)) EA (or B), concluding the proof. 
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