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SOME SPECTRAL PROPERTIES OF POSITIVE OPERATORS ON A 
BANACH SPACE 

BY ALBERTO ALONSO y CoruA AND JOSE A. CANAVATI 

§1. Introduction 

The object of this work is to give a survey of some results concerning the 
spectral properties of operators leaving invariant a cone in a Banach space, 
including some comparison results for the spectral radii of positive operators. 
For simplicity of the exposition we restrict ourselves to linear operators, but 
we would like to point out that many of the results extend to the case when 
the operators are monotone and homogeneous as defined in [6]. There are 
some related results in the literature specially the well known results of Krein 
and Rutman [1], and also the works of Marek [2], Schaefer [4], Schneider and 
Turner [6], and V andergraff [7]. So essentially most of the results shown here 
are slight extensions of results known in one form or another. 

The originality of this work lies in that all the results we get are obtained by 
elementary ways. In fact, we only use very elementary pr~perties of the 
resolvent operator, the Uniform Boundedness Principle, and the Spectral 
Mapping Theorem for polynominals. In this way we avoid the use of the 
machinery from analytic vector valued functions; and when dealing with the 
geometric properties of a cone, for example, in giving an alternate characteri
zation of a strict B-cone the standard books on the subject [3], [5] go to the 
dual space together with its natural weak topologies to show that a ( closed) 
reproducing cone is a strict B-cone. What we do here, is to give a direct proof 
of this fact by proving an Open Mapping Theorem for a class of maps which 
include the difference map (x, y) - x - y. As a matter of fact, the proof goes 
on the same lines as the proof of the classical open mapping theorem for linear 
operators. 

Another feature of this work is that we obtain the properties of positive 
irreducible operators on a cone satisfying the finite chain condition as corol
laries of the properties of strongly positive operators. Unifying, in this way, 
both theories. 

Finally, here we answer an open question concerning the order interior K 0 

of a cone K, as defined by Schneider and Turner [6], and the topological 
interior Ki. It is well known that Ki ~ K 0 [6]. Here we show that if K is 
reproducing, then Ki= K 0. (Theorem 3.2). 

To end this section we are going to give some notation and terminology. Let 
X be a real Banach space with norm II x II-If S ~ X we denote its interior and 
boundary by Si and Sb respectively. The vector space consisting of all bounded 
linear operators on Xis denoted by .P(X), and the vector subspace of .P(X) 
consisting of all compact linear operators on X by %(X). By the spectrum u (A) 
of A E .P(X) we mean the spectrum u(.A) of the extension A of A to the 
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complexification X of X; and by the spectral radius r11(A) for A we mean the 
spectral radius r 11(.A) of A. Also we write R (;\; A) for the resolvent (;\/ - .A)- 1 

of A. 

§2. Basic properties of cones 

Let X denote a real Banach space with norm II x II . A linear semigroup K in 
Xis a set with the property that x, y E K and a, fJ ;;i, 0 implies ax + /Jy E K. A 
cone is a closed linear semigroup. The cone K is a proper cone if x E K and 
-x EK implies x = 0. We say that a cone K is normal if there is a 8 > 0 such 
that II x + y II ;;i, 8 II x II for all x, y E K. It is clear that a normal cone is a proper 
cone. Finally we say that a cone K is reproducing if each x E X can be written 
in the form x = X1 - X2 with Xi, X2 EK. Unless we state it otherwise we will 
assume throughout this work that all cones are reproducing. 

Each cone allows us to introduce in X a partial ordering; we shall write x ~ 
y or y ;;i, x if y - x E K, and x < y if x ~ y and x ¥, y. If A and B are linear 
operators on X we write A ~ B if B - A maps K into itself; we also write A < 
B if A ~ B and A ¥, B. If A maps K into itself we say that A is a positive 
operator. 

Let K be a cone in X and define 

K (x) = { y E KI 3 a > 0 • 3 • ay ~ x) 

LEMMA 2.1. For each x E K, the set K(x) is a linear semigroup which 
satisfies: y E K(x), z EK and y ;;i, z, then z E K(x). 

K(x) is called the face generated by x, and contrary to what is assured in [6], 
K(x) is not necessarily closed as the following example shows: Let X = L "'(1, 
oo) and K = { f EX I / ;;i, 0}. Then K is a normal reproducing cone in X. Consider 
the face 

K(e-t) = {/E Kl 3 a> 0,3,af(t) ~ e-t, l l t < oo}, 

and define the sequence of functions 

Then, since 

1 
e-n - x(l,n)(t) ~ e-i, 

t 

it follows that {In} C K(e-t). Also 

llfn - it= Iii X<n,00 > t ~~- 0 

(n = 1, 2, • • •) 

1 < t< oo, 

asn- oo, 

and the sequence of vectors {In} in K(e-t) converges to the function /(t) = l/t. 
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On the other hand, if a ;;;a,, 0 is such that a - ,s;; e-t, 1 < t < oo, then a ,s;; t e-t 
t 

- 0 if t - oo; and hence a = 0. Therefore f(t) e K(e-') and K(e-t) is not 
closed. 

Conditions that insure the closedness of the face K(x) are given in Proposi
tion 2.1. 

Let H(x) denote the linear subspace of X generated by K(x), and denote by 
KHb(x) and KH;(x) the boundary and interior of K(x) respectively, relative to 
the subspace H(x). Then we have 

PROPOSITION 2.1: (i) If x E Ki, then K (x) = K. (ii) If x E Kb, then K (x) k Kb. 
(iii) If x E KH;(x), then K(x) is closed. (iv) If x E KHb(x), then K(x) ~ KHb(x). 

Proof. (i) If x E Ki, then x-K contains a neighborhood of 0, and for each y 
E K, ay is in this neighborhood for some a > 0. 

(ii) We are going to show that if there is ay E K(x) withy E Ki, then x EK;. 
So assume that y E K(x) n Ki, then there is an a > 0 such that ay ,s;; x. Also, 
there is an E > 0 such that y + w E Kif II w II < E. Thus 

x + aw = (x - ay) + a(y + w) EK if 11 w II < e, 

and this says that x E Ki. 
(iii) Leid= dist(x, KHb(x)). Then, since x E KHi(x), d > 0. Ify E K(x), then 

there is an a > 0 such that ay ...; x, and we take a to be the greatest number 
with this property. Then we must liave x - ay E KHb(x) and 

(2.1) II ay II = II x - (x - ay) II ;;;a,, d. 

Now, let y E K(x), y ~ 0, then there is a sequence { Yn} in K(x) such that Yn 
-y. Butyn E K(x) implies that there is an an> 0 such that anYn ,s;; x, and from 
(2.1) we see that we can choose an > 0 in such a way that 

(2.2) 11 anJn II ;;;a,, d. 

Now, from (2.2) we see that the sequence {an} does not converge to zero. 
Hence, if we let an' = min {an, 1}, then the sequence {an'} is bounded and 
does not converge to zero. Taking subsequence, if necessary, we can assume 
that an' - a where a > 0. Since obviously one has an'Yn E; x, then ay E; x where 
a > 0. This shows that y E K(x) and hence that K(x) is closed. 

The proof of (iv) is analogous to the one given in (ii). 

If in a cone K every chain O g; K(x1) ~I K(x 2 ) g; • • • of faces of K ends with 
K after a finite number of steps, we say that K satisfies the finite chain 
condition (f.c.c.). For example, if His a Hilbert space, the cone 

K= {x E HI (x, Xo) ;;;a,, a llxll llxoll} 

for fixed Xo ~ 0 and O < a < 1 satisfies the finite chain condition with maximum 
length being three. On the other hand, if we let X = C[0, 1] with the usual 
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"sup" norm and let K = {f E C[O, 1] If~ O}, then K is a normal reproducing 
cone which does not satisfy the finite chain condition. This can be seen as 
follows: consider the sequences of points O :s. Sn < tn :s. 1 given by Sn = 1 - 1/ n, 
tn = 1 - 1/2n. Define the sequence Un) in K as follows; fn(t) = 1, 0 :s. t :s. Sn; 
fn(t) = 0, tn :s. t ,,s;; 1; fn(t) = linear, Sn :s. t ,,s;; tn. Then it is easy to check that 

Following Schneider and Turner [6] we say that x is in the order interior of 
K, denoted by K 0 , if K(x) = K. From Proposition 2.l(i) we know that Ki k K 0 , 

we are going to see in Theorem 3.2 that actually one has Ki= K 0 • If x E K 0 

we write x » 0. 
A linear operator A on X is said to be strongly positive, if for every x > 0 

there is an integer n = n(x) such that A nx » 0. If this is the case we shall write 
A»O. 

§3. An open mapping theorem 

Let X, Y and Z be three real Banach spaces. Let Kand L be cones in X and 
Y respectively. We say that a mapping 4>:K XL- Z is a difference mapping 
if it satisfies, 

for every X1, X2 EK, Y1, Y2 EL and a1, a2 ~ 0. 
For example, if A :X - Zand B: Y - Z are linear operators, and if we define 

'P(x, y) = Ax - By, then cf> is a difference mapping. 
If cf> is a difference mapping, then cf>(O, 0) = O; and if we let M = 'P(K x L), 

then M is a linear semigroup in Z. 
we say that a difference mapping cp is closed if Xn E K, Yn E L, Xn - x, Yn 

- y and 'P(xn, Yn) - z, then cf>(x, y) = z. It is obvious that every continuous 
difference mapping is closed. The converse statement will follow from Theorem 
3.1. 

We denote by Xa, Ya and Za the open balls with radius a centered at the 
origin in X, Y and Z respectively. 

The main result of this section is the following: 

THEOREM 3.1. If'P:K XL- Z is a closed difference mapping, with Kand 
L not necessarily reproducing, such that its range R(<f>) is of the second 
category in Z and is balanced, then <I> is an open mapping. That is, for every 
a > 0 there is a /3 > 0 such that 

(3.1) Zp k cf>(K n Xa x L n Ya). 

Proof. First we are going to show that for every a > 0 there is a /3 > 0 such 
that 

(3.2) Zp ~ 'P(K n Xa x L n Ya). 
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So let a > 0 be given. Then 

R(<I>) = Un <l>(En), 
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where En = K n Xna X L n Yna = n(K n Xa x L n Ya), and n is a positive 
integer. Hence, some <l>(En0 ) = no<l>(K n Xa XL n Ya) must have a nonempty 
interior by the Baire Category Theorem; and 

itself must have a nonempty interior. Let zo be in the interior of Ca. Since 
<l>(K XL) is balanced and <l>(K XL) = U:';~1 <l>(En) there is an integer n such 
that -zo E <l>(En). Hence Cai - Zo C Ca - Zo C <l>(En) - Zo as<l>(En) - Zo C 
<l>(E2n) (3.2) holds. 

Now, we are going to show that given a> 0 there is a /3 > 0 satisfying (3.1). 
From the first part of the proof we know that given a > 0 there is a /3 > 0 such 
that 

(3.3) 

Choose a sequence {En} such that En> 0 and ~i En< a/2. Again, from the first 
part of the proof, for each integer n there is a positive number 8n such that 

(3.4) 

and we can take the sequence {8n} so that it converges to zero. 
Now, let z E Zp. From (3.3) we see that there are points Xo EK n Xa;2, Yo 

EL n Ya;2, such that zo = <l>(xo, yo) satisfies 

II z - Zo II < 81. 

Then z - zo E z~, and from (3.4) we see that there are points x1 E K n X. 1 , Y1 
E L n Y., such that 

II z - (zo + zi) II < 82. 

Proceeding in this way, we can define sequence {xn), {yn) and {zn) such that 
Xn EK n x.n, Yn EL n Y.n and Zn= <l>(xn, Yn) satisfy 

(3.5) 

and since 

we get from (3.5) 

(3.6) 

Since 8n - 0, we see from (3.5) that 

(3.7) 
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Now, II Xn II < En, II Yn II < En and 

LO llxnll < a/2 +Lie,.< OI., Lo IIYnll < a/2 + Li En< 0/.. 

Since X and Y are complete, Kand L are closed, then each of the series Lo Xn 

and Lo Yn converges to points x E Kandy E L respectively, and we have 

(3.8) 

Moreover 

llxll E; llxoll + Lo En< a, IIYII E; IIYoll + Lo En< 0/.. 

Thus x E K n Xa, y E L n Ya, and from (3.6), (3.8), and the fact that <I> is 
closed we conclude that z = <l>(x, y). Therefore z E <l>(K n Xa X L n Ya), and 
(3.1) holds. 

COROLLARY 3.1. There is a constant M > 0 such that each x EX has a 
representation x = X1 - x2 where x1, X2· E Kand II Xi II .e; M II x II (i = 1, 2). 

Proof. It is clear that <l>(x, y) = x - y(x, y E K) is a difference mapping. 
Since K is reproducing R (<I>) = X, and from Theorem 3.1 it follows that <I> is an 
open mapping. Thus, there is a /3 > 0 such that Xp !;;;;; K n X1 - K n X1. If we 
write 1 == {3M we obtain the desired result. 

THEOREM 3.2. If K is a cone in X, then Ki = K 0• 

Proof. If K 0 = 0, then there is nothing to prove, because we already know 
that Ki !;;;;; K 0 • So now we assume that K 0 ~ 0. 

Let Xo E K 0 and, for each positive integer n, define the closed set 

An= {y E Kly '5- nxo}. 

Then, clearly. K = UnAn. Since K is complete, it follows from the Baire 
Category Theorem that there is an integer m such that Am has nonempty 
interior relative to K. Hence, there is a Uo E K and an E > 0 such that II x - uo II 
< E and x E K implies x E Am. In particular, we have that if w E Kand II x II 
< E, then uo + w E Am i.e., mxo ;;;i, Uo + w; and from this it follows that if w E 
K, llwll < E, then 

(3.9) z;;, w, 

where 

(3.10) z = mxo- UQ. 

Now, from Corollary 3.1 we know that there is a constant M such that each x 
e X can be written in the form x = x1 - x2 with x1, x2 E K and II Xi II ,e; M II x II 
(i = 1, 2). So if x EX and II w II< E/M, then x = x1 - x2 with II X2 II .e; M II x II < 
Ef and if z is given by (3.10) it follows from (3.9) with w = x2, that z ;;, x2, and 
hence that z + x = (z - x2) + x1;;, 0. Thus we have shown that if II x II< E/M, 
then z + x ;;, 0 i.e., z + x£/M !;;;;; K. But from (3.10) we obtain Xo + x£/Mm !;;;;; K. 
Therefore Xo E Ki and K 0 !;;;;; Ki. 
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COROLLARY 3.2. If cf>: K X L ---+ Z is a closed difference mapping, then cf> is 
continuous. 

Proof: Let I' be the graph of cf>. That is I'= {(k, t, z): (k, t) EK x Land z 
= cf>(k, t)}. Since cf> is a closed difference mapping I' is a cone. Let .,, be the 
map 'IT: I' x I' ---+ X x Y defined by .,,((k, t, z), (k', t', z')) = (k, t) - (k', t'). 
Since Kand Lare reproducing R('IT) =XX Yand so by Theorem 3.1 there is 
a /J > 0 such that 

(3.11) 

where Vp is the open ball in X X Y X Z with radius /J and BI is the closed unit 
ball in XX Y. 

Define .,,0: I' ---+ X X Y by '1To(k, t, z) = (k, t'). Let (k, t') EK X L be a unit 
vector. By (3.11) we have (k, t) = 'ITo(yI) - '1To(y2) with YI, y2 EI' n V11. As cf> is 
a difference mapping 

cf>('tTo(yI)) = cf>((k, t') + '1To(y2)) = cf>(k, t') + cf>('tTo(y2)). 

So 

II cf>(k, t')llz =:;; II cf>('tTo(yI))llz + II cf>('tTo(y2))llz =:;; II YI llxxYxz + II Y2 llxxYxZ < 2/J. 
Therefor~, for any (k, t) E K X L 

(3.12) II cf>(k, t')II =:;; 2/J ll(k, t)II. 

Since K XL is reproducing, extend cf> to the whole XX Y. That is, if (x, y) 
= (k, t) - (k', t'') we defined>: Xx Y---+ Z byd>(x, y) = cf>(k, t') - cf>(k', t'). It 
is easily seen that this map is well defined. By Corollary 3.1 and from (3.12) 
d> is a bounded linear map. Hence its restriction cf> is continuous. 

§4. Irreducible and Strongly Positive Operators 

From now on we shall assume that K is a normal reproducing cone with 
nonempty interior. 

Following Schneider and Turner [6], we say that a positive linear operator 
A is irreducible if x > 0 and Ax E K(x) imply that K(x) = K. 

We start with the following result due to Schneider and Turner [6]. 

LEMMA 4.1. Suppose that A is an irreducible operator and x > 0. Then Fk 
= K((I + Atx) !:: Fk+I, with strict inclusion unless Fk = K. 

Proof. We let Xk =(I+ Atx. First 

(4.1) 

so Fk !:: Fk+I• If Fk = Fk+I, then for some a > 0, <X.Xk+I =:;; Xk, and from (4.1) we 
obtain a Axk =:;; (1 - a)xk which, since A is irreducible implies Fk = K. 

PROPOSITION 4.1. Suppose A> 0 and K is a cone satisfying the f.c.c. Then 
A is irreducible if and only if I + A is a strongly positive operator. 
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Proof. Suppose first that A is an irreducible operator. Let x > 0, and Fk = 
K((l + A)kx). Since K satisfies the f.c.c. and A is irreducible, it follows from 
Lemma 4.1 that there is an integer n such that K((l + Atx) = Ki.e., (I+ Atx 
» 0. Therefore I+ A is a strongly positive operator. 

Suppose now that I+ A is a strongly positive operator, and let x > 0 be such 
that Ax E K(x). We have to show that K(x) = K. Now, since I+ A is strongly 
positive there is an integer n such that 

(4.2) 

On the other hand, since Ax E K(x), then (I+ A)x E K(x) so there is an a> 
0 such that a(l + A)x :E; x, and hence that an(l + A)nx =E; x. Thus (I+ A)nx E 
K(x) and there is a P > 0 such that 

(4.3) X ;;i,, P(l + A)nx. 

From (4.2) and (4.3) we conclude that x » 0, and hence that K(x) = K. 
Therefore A is an irreducible operator. 

Given a positive linear operator A we can associate to it a number A(A) 
which plays the role of the spectral radius when A is compact, and this is done 
as follows: If A is a positive linear operator we define the set 

A(A) ={A> 0 I 3 x > 0-3-Ax ;;i,, AX}, 

and the number 

A(A) = sup A(A). 

LEMMA 4.2. If A > 0 and there is an '1/ ;;i,, 0 such that '1/1 + A » 0, then A(A) 
>0. 

Proof. Pick an x > 0 with Ax > 0. Since .,,1 + A » 0, there is an integer n 
such that (.,,I+ A)nAx » 0. Hence there is an a> 0 such that 

a(.,,I + Atx =E; ('1/1 + At Ax= A(.,,I + A)nx. 

Therefore A(A) ;;i,: a > 0. 

COROLLARY 4.1. Jf A» 0, then A(A) > 0. 

COROLLARY 4.2. If A > 0 is irreducible and K satisfies the f.c.c., then A(A) 
>0. 

Proof. Immediate from Proposition 4.1 and Lemma 4.2 with 7/ = 1. 

The relation between the number A(A) and the spectral radius ra(A) of a 
positive operator A E 2(X) is given by the following. 

PROPOSITION 4.2. If A E 2(X) is a positive operator, then A(A) :E; ra(A). 

Proof. Let A E A(A). Then there is an x > 0 such that Ax ;;i,, AX; and hence 
Anx ;;i,, Anx(n = 1, 2, •••).Now, since K is normal, there is a 8 > 0 such that 
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Thus 

and 

Taking the limit as n - oo, w obtain A:$; r.,(A), and since this holds for every 
A E A(A) we conclude that A(A) :$; r.,(A). 

As a consequence of Corollaries 4.1, 4.2 and Proposition 4.2 we obtain the 
following two results. 

THEOREM 4.1. If A E Y(X), A> 0 and there is an T/ ;a,, 0 such that r,I + A 
» 0, then r.,(A) > 0. 

THEOREM 4.2. If A E Y(X), A> 0 is irreducible and K satisfies the f.c.c., 
the r.,(A) > 0. 

§5. The Results of Krein and Rutman 

We start by recalling some basic facts about the resolvent R(A; A) of an 
operator A E Y(X). First we have the "resolvent equation" 

(5.1) R (A; A) - R (µ; A) = (µ - A)R (A; A)R (µ; A), A,µ E p(A), 

where p(A) denotes the resolvent set of A. Also, if I A I > r.,(A), then the 
resolvent of A is given by the convergent power series 

R( ;A)= "' A. 

(5.2) A ~ 1.-n-l n 
L.,n=O I\ 

In particular, it is clear from (5.2) that if A is also positive then so is R (A; A) 
for A> r.,(A). 

Using the resolvent equation (5.1) it is easy to prove the following well 
known result. 

LEMMA 5.1. Let A E Y(X}, and assume that {An} is a sequence in p(A) 
converging to some A. Then A E u(A) if and only iflim,,,_."' IIR (An; A)II = oo. 

Now we prove a well known result about the spectral radius of a positive 
operator; the proof we present here is due to Schneider and Turner [6]. 

THEOREM 5.1. Let A E Y(X) be a positive operator. If r.,(A) > 0, then r.,(A) 
E u(A). 

Proof. We can assume, without loss of generality, that r.,(A) = 1. Suppose, 
by contradiction, that 1 Eu(A). Then from the spectral mapping theorem we 
have u(I +A)= 1 + u(A), and hence r.,(I +A)> 2. 

Thus, for a > 0 small enough. 
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-1 -1 "'"" (1 + A)k 
((1 - a.)1 - A) = ((2 - a.)1 - (1 + A)) = L..,k=O (2 _ a.)k+l • 

exists and maps K into itself. Since 
Ak AN+l 

((1 - a.)1 -A)- 1 = Lf=o (l _ a.)k+1 + (l _ a.)N+l ((1 - a)l - A)- 1, 

it follows that 
Ak 

O:;;;;( )k+l:;;;;R(l-a.;A), 
1-a 

for all k. Since K is normal, there is a 8 > 0 such that 

II 
Akx k+1 II :;;;; s-1 II R (1 - a.; A)x II 

(1 - a.) 

for all x E K; from which, using Corollary 3.1, follows that 

II Ak II :;;;; 2s- 1M(l - a.)kc,,, 

where c,, = (1 - a)II R (1 - a; A)II. But then r 0 (A) :;;;; 1 - a., contradiction. 

The next result of this section is a well known result of Krein and Rutman 
[1] about the existence of "positive eigenvectors" for compact positive opera
tors. For completeness we give its proof here. 

THEOREM 5.2. Let A E Jt"(X) be a positive operator. lfra(A) > 0, then ra(A) 
E a(A), and there is au> 0 such that Au= r 0 (A)u. 

Proof Let r = r 0 (A) > 0. Then from Theorem 5.1 r 0 (A) E a(A). Pick a 
sequence En> 0, En- 0. Since r E a(A), it follows from Lemma 5.1 that 

(5.3) lim,._oo II R (r + En; A)II = oo. 

Then, there is an Xo > 0 such that 

becomes unbounded as n - oo. For otherwise, if 

(5.4) SUPn II R (r + En; A)x II < oo, 

for every x EK, then since K is reproducing (5.4) holds for all x EX; and from 
the Uniform Boundedness Principle we conclude that II R (r + En; A)II is 
bounded, which is in contradiction with (5.3). Therefore, there is an Xo > 0 
such that { cn} is inbounded and taking subsequences, if necessary, we can 
assume that 

(5.5) lim,._oo Cn = 00. 

Since R (r + En; A) is a positive operator, if we let 

(5.6) 
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then Xn E Kand II Xn II = 1; and from (5.5), (5.6) we see that 
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as n - oo. Thus we see that there are unit vectors Xn in K for which (rl - A)xn 
- 0 as n - oo. Since the sequence {xn} is bounded and A is compact, then, 
taking subsequences, if necessary, we can assume that Axn - y if n - oo. Let 
Zn = rxn - Axn then Zn - 0 and 

x,. = r- 1,?n + r- 1Axn - r- 1y 

as n - oo; and since K is closed y EK. If we let u = r- 1y, then u EK, II u II = 1, 
and Au= ru. 

COROLLARY 5.1. If A E f(X) and there is an T/ ;;a,, 0 such that ,,.,1 + A » 0, 
then r.,(A) > 0 and there is aw E Ki such that Aw= r 11(A)w. 

Proof. From Lemma 4.1 and Proposition 4.2 we know that r.,(A) ;;a,, A(A) > 0. 
Hence, from Theorem 5.1 there is a u > 0 such that Au = r.,(A)u. On the other 
hand there is an integer n such that (T/J + At u » 0. So, if we let w = (T/1 + 
Atu, then w » 0 and Aw= A(T/1 + Atu = (T/1 + At Au= r.,(A)w. 

COROLLARY 5.2. If A E f(X), A> 0 is irreducible and K satisfies the f.c.c., 
then ra(A) > 0, and there is aw E Ki such that Aw= r.,(A)w. 

Proof Immediate from Corollary 5.1 and Proposition 4.1. 

COROLLARY 5.3. If A E X(X) is a positive operator, then 

(5.7) 

for every T/ ;;a,, 0. 

Proof. From Proposition 4.2 we know that 

(5.8) 

Also, from The Spectral Mapping Theorem and Theorem 5.1 we have 

(5.9) 

Now, from (5.8) and (5.9) we obtain 

T/ ,s; A(f// + A) ,s; ra(T/1 + A) = T/ + r.,(A). • 

So if r.,(A) = 0, then 
A(T/1 + A) = r.,(,,.,I + A) = T/, 

and this is ( 5. 7) in this case. 
If r.,(A) > 0, then from Theorem 5.1 there is au> 0 such that Au = r.,(A)u, 

and hence that (,,.,I+ A)u = (T/ + r.,(A))u. From the definition of MT/I+ A) we 
obtain 

MT/I+ A) ;;a,, T/ + r.,(A). 

This last inequality together with (5.8) and (5.9) give (5.7). 
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§6. Comparison Results for Spectral Radii of Positive Operators 

We start with the following: 

THEOREM 6.1. Let A E Jt'"(X) and B E .!l'(X) be positive operators. If A ,e;;; B, 
then 

(6.1) 

Proof. Let us note first that A ,e;;; B implies A(A) ~ A(B) and hence that 
>..(A) ,e;;; A(B). Now, from Corollary 5.3 and Proposition 4.2 we have 

(6.2) ra(A) = >..(A) ,e;;; >..(B) ,e;;; ra(B). 

If A, B E Jt'"(X) are positive operators with A < B, then it does not necessarily 
follows that ra(A) < ra(B), as the following example shows: Let X = Rn(n > 1) 
and K = { (x1, • • • , Xn) I X; ;;;i, 0, 1 ,e;;; i ,e;;; n}. Consider the diagonal matrices A = 
diag(l, 2, ... , n) and B = diag(n, n, ••• , n). Then A, B are positive operators 
such that A< B. But clearly ra(A) = n = ra(B). Thus, in order to insure the 
holding of the strict inequality we have to impose an extra condition on the 
operator A or on the operator B. This is done in the following three results. 

THEOREM 6.2. Let A E Jt'"(X) and B E .!l'(X) be positive operators with 0 < 
A< B. If ra(A) > 0 and there is an T/ ;;;i, 0 such that ,,.,1 + B » 0, then 

(6.3) 

Proof. Let r = ra(A) > 0. Then Theorem 5.2 implies the existence of au> 
0 such that Au = ru. We are going to show that, in this case, the equality Bu 
= Au is impossible. So assume 

(6.4) Bu =Au= ru. 

Since ,,.,1 + B » 0, there is an integer n such that (T/1 +Btu» 0. But from 
(6.4) we obtain (T/1 + B)u = (T/ + r)u, and hence that (T/ + r)nu = (T/1 + Btu 
» 0. Therefore u » 0. Let x E K be arbitrary then there is an a > 0 such that 
y = U - a X »0. 

Now, 

0 ;;;i, A(ax) - B (ax) 

= A(ax) - B(u -y) 

= A(ax) - Bu + By 

= A(ax) - Au + By 

= By - A(u - ax) 

=By-Ay 
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Since K is a proper cone we must have A(ax) - B(ax) = 0, and hence Ax= 
Bx. Thus we have shown that Ax = Bx for all x E K, and since K is reproducing 
A = B, which is a contradiction. Showing in this way that Bu > Au. 

Now, since Bu > Au = ru, then Bu - ru > 0. But 711 + B » 0 implies that 
(111 + B)m(Bu - ru) » 0, for some integer m. Let v = ('ql + Br(Bu - ru) » 
0. Hence, there is an e > 0 such that w ,,;;; Bv - rv, and hence (r + e)v :,;;; Bv. It 
follows from the definition of "A(B) that r + e:,;;; "A(B). Using this last inequality 
together with (6.2) we obtain (6.3). 

COROLLARY 6.1. Let A E .Jt'"(X) and BE 2(X) be positive operators with A 
< B. If there is an 71 ;;i= 0 such that 111 + B » 0, then r0 (A) < ra(B). 

Proof. If r0 (A) > 0, this follows from Theorem 6.2. If ra(A) = 0, this is 
immediate, because from Theorem 4.1 we have r0 (B) > 0. 

COROLLARY 6.2. Suppose that A E .Jt'"(X) and B E 2(X) are positive 
operators and K satisfies the f.c.c. If 0 < A < B and either A or B are 
irreducible, then r0 (A) < ro(B). 

Proof. The result for B irreducible follows from the preceding corollary and 
Proposition 4.1. If A > 0 is irreducible Theorem 4.2 implies that ra(A) > 0. 
From Proposition 4.1 we know that I + A » 0 and since/+ A < I+ B, I + B 
» 0. If we apply Theorem 6.2 with 71 = 1 we obtain the desired result. 
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