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ON THE HURWITZ PROBLEM OVER AN ARBITRARY FIELD I 

BYJOSEADEM 

1. Introduction 

In his celebrated paper [7], A. Hurwitz considered the following general 
problem. For what values of p, q and n do there exist identities of the form 

(1.1) 

where z1, • .. , Zn are homogeneous bilinear forms in the two sets of variables 
x1, • • •, Xp andy1, • • •,yq? 

Regarding this problem, he suggested the following, somewhat equivalent, 
two questions: 

(1.2) lfp and q are given, find the minimal value of n. 

(1.3) If p and n are given, find the maximal value of q. 

Years later, for the special case p = n, the answer to (1.3) was obtained, 
independently, by Hurwitz [8] and Radon [13], for the complex and real 
numbers as fields of coefficients. The maximal value of q is given by the so­
called Hurwitz-Radon function p(n), defined as follows: p(n) =Ba+ 2b, for n 
= 24a+b. (2k + 1) where O :5 b :5 3. 

Recently, D. B. Shapiro in [14] has extended these results to any field F of 
characteristic not 2. In his generalization, he also considers, not only sum-of­
squares forms, as in (1.1), but general nonsingular quadratic forms. 

The author has also verified some of these results (sum-of-squares forms) 
for a field Fin [2], where an explicit construction of the identities, due to K. Y. 
Lam, is presented. 

We restrict our attention only to identities of form (1.1) over a field of 
characteristic not 2. These, whenp = n and q = p(n), will be called Hurwitz­
Radon identities. 

The assumption p = n is essential in the different methods of proof used by 
the mentioned authors and without this assumption, the problem (1.2) is far 
from been solved in general. A very brief report of the situation for the case p 
~ n, follows. 

At present, the methods for constructing identities are mainly limited to two 
schemes. First, those obtained by taking restrictions on the Hurwitz- Radon 
identities. As an example of this, if p = n = 8, then q = p(B) = 8 and a suitable 
restriction of the variables gives an identity (1.1) withp = 3, q = 5 and n = 7. 
And second, the identities obtained from convenient restrictions on the mul­
tiplication of certain algebras constructed by the so-called Cayley-Dickson 
process. This method, studied by the author in [1], gives several new identities. 
As an illustration, there are identities for the values: p = q = 10, n = 16; p = 
q = 12, n = 26; p = 18, q = 17, n = 32, etc. 
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30 JOSE ADEM 

Clearly, these constructions provide some upper bounds for the respective 
minimal values of n. 

For the real numbers as field of coefficients, a lower bound of n is given by 
the following well known theorem of Hopf [6]: 

(1.4) Let p, q and n be as in (1.1). Then, the binomial coefficients ( 7) are 

even numbers for all n - p < i < q. 

This theorem was proved by Hopf using algebraic topology techniques. 
Later, Behrend gave an algebraic proof [4], extending this result to identities 
over any formally real field. 

With the use of (1.4), certain family of cases can be decided. Thus, for the 
identity mentioned above, where p = 3 and q = 5, over a formally real field, it 

follows that n = 7 is the minimal value, since the binomial coefficient ( ! ) is 

an odd number. 
In this paper, problem (1.2) is solved for all 1 :5 p :5 8 and 1 :5 q :5 8, over 

any field o_f characteristic not 2. For each pair (p, q), the minimal value of n is 
shown to be the same as that obtained for the real field. 

The identities are constructed directly and the hard part of the argument is 
to prove, in three cases (see (6.1), (7.1) and (8.1)), that the values of n are 
minimal. To accomplish the latter, the original method of Hurwitz [8] is 
adapted here to convert (1.1) to an equivalent problem on the existence of a 
set of rectangular matrices, fulfilling certain conditions. Allowable transfor­
mations in this set are left and right multiplication by orthogonal matrices of 
the appropriate order. These transformations are used to obtain simple forms 
for the first two matrices of the set. Canonical forms for alternate matrices, 
based on orthogonal similarity, play an important role in the proofs. Finally, 
the low values of p and q, makes it possible to settle the three needed cases. 

2. Normed maps and rectangular matrices 

Throughout this paper, a field F will always be a field of characteristic 
different from 2. 

Let F n denote the usual n-dimensional vector space over F formed with the 
rows x = (x1, • • •, Xn), where x; E F. Keep in mind that any x E Fn, can be 
regarded as 1 x n matrix. 

The standard basis of pn is given by the vectors 

e1 = (1, 0, • • ·, 0), ···,en= (0, 0, • • ·, 1). 

Clearly, the n-columns also have the structure of an n-dimensional vector 
space over F. This vector space of columns will only be used in direct reference 
to Fn, throughout the transpose operation. Thus, if x E Fn, the transpose of x, 
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denoted by xt, is the column vector 
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If y = (y 1 , • • •, Yn) is another row vector of Fn, using the matrix multiplica­
tion, set 

(2.1) 

Here, x and y can be viewed as variables over Fn. Then, B:Fn X Fn - F 
becomes a symmetric bilinear pairing and it defines an inner product on Fn. 
The map Q:Fn - F given by Q(x) = B(x, x) is a quadratic map and (Fn, Q) 
(or with equivalent notation (Fn, B)), is a quadratic space, where 

Q(x) = x? + • • • + x/, 

is the quadratic form determined by Q, with respect to the standard basis of 
Fn. The Q(x) is called the norm of x and two vectors x and y are said to be 
orthogonal if B(x, y) = xyt = 0. Trivially, it follows that (Fn, Q) is a nonsingular 
quadratic space ([11; pp 3-6]). 

Let (FP, Q1), (Fq, Q2) and (Fn, Q) be quadratic spaces as above, where Q1, 
Q2 and Qare considered, respectively, for the values p, q and n. A bilinear map 
<j,:FP X Fq - pn is a normed map if 

(2.2) 

for all x E FP, y E Fq and z = <j,(x, y). Or equivalently, a map <j,(x, y) = z = (z1, 
• • •, Zn) is a normed map if a formula (1.1) holds, where each ZJ is a homogeneous 
bilinear form in the coordinates of x and y, with coefficients in F. 

The same arguments used by Hurwitz in [8] (for the case p = n), can be 
applied to condition (2.2) to obtain an equivalent condition in terms of 
rectangular matrices over F, as follows. 

For 1 sj s n, write 

where each a;J is a linear homogeneous form in the variables Yi, • • •, y q. Hence, 
each a;1 belongs to the ring K = F[y 1 , • • •, yq], of polynomial functions over F. 
Set 

M = (a;1) 

as a p X n matrix over K. Then 

z = <j,(x, y) = xM, 

and condition (2.2) becomes 

zzt = x(MMt)x 1 = (xx 1)(yy 1). 
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Now, if A is a p X p symmetric matrix over K (of characteristic ,I, 2), it is 
easy to verify that 

xAxt = (xxt)(yy 1) $'? A = (yy 1)lp, 

where IP is the identity matrix of order p. 
Therefore, with A = MM t, it follows from the above expressions that cp(x, y) 

= xM is normed if and only if 

(2.3) MM 1 = (y/ + ... + y/)lp. 

Consequently, the existence of cf> is equivalent to the existence of a p X n 
matrix over K, such that any two different rows are orthogonal and the norm 
of any row is the same expression yy 1• 

From (2.3) it readily follows that n ~ max(p, q). In fact, let M be the p X n 
matrix over F obtained from M by the substitutions Yi = 1 and Y2 = • • • = yq 
= 0. The rows of M represent p linearly independent vectors of Fn. Therefore, 
n ~ p. Since p and q can be interchanged from the beginning, it also follows 
that n ~ q. This ends the proof. 

To proceed, decompose M as follows: 

M = y1M1 + y2M2 + • • • + yqMq, 

where each AfJ is p X n matrix over F. This is possible, since each element a;i 

of Mis a linear homogeneous form in the coordinates of y. 
Substitution of this expression in (2.3), gives 

(2.4) (y1M1 + • • • + yqMq)(y1M/ + • • • + yqM/) = (yi2 + • • • + y/)lp. 

This is an identity of polynomial functions with matrices as coefficients and it 
implies the following 

LEMMA (2.5). There exists a normed map cp:FP X Fq---+ pn if and only if 
there exists a set M1, • • •, Mq of q rectangular p x n matrices over F, such 
that 

(2.6) 

(2.7) 

M;M/=lp 

M;M/ + MiM/ = 0, lor i ,t, j. 

Proof Clearly, the matrices of (2.5) imply the existence of M fulfilling 
condition (2.3), and that is enough for the existence of cf>. 

Given cf>, the identity (2.4) is established. Then, (2.6) follows by substituting 
there y; = 1 and Yk = 0 if k ,I, i. Now, with i ,I, j, consider the values y; = Yi = 
1 and Yk = 0 if k ,I, i and k ,I, j. Here, using (2.6) already established, the case 
(2. 7) follows. 

Remark. Expressions of the form (1.1) are considered here as identities on 
polynomial functions. They can also be viewed as relations in a polynomial 
ring in the x;'s and y/s, regarded as indeterminates over F. In this last case, 
the corresponding (2.4) is also established. Hence, the same set of conditions 
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(2.6) and (2.7) hold in both cases. Therefore, the existence of an identity (1.1) 
in x;'s and y/s as variables is equivalent to its existence in x;'s and y/s as 
indeterminates, even if Fis finite (cf. [9; p 418]). 

3. A generalization of the Hurwitz equations 

Let P and Q be two orthogonal matrices over F, of orders p and n, 
respectively. Then, P and Q are square matrices, such that 

ppt = Ip and QQt = In. 

By transforming each M; of (2.5) into 

(3.1) M; = PM;Q, (i = 1, .. ·, q), 

a new set of matrices M1, • • •, Mq is obtained. it follows trivially that this new 
set satisfies (2.6), (2.7) and it gives rise to the normed map ~(x, y) = xPMQ. 

Transformations such as the one in (3.1) are allowable, since they preserve 
the needed properties to assure existence of a normed map. They will be used 
to obtain some sort of canonical form for a given set of matrices. 

Take the first matrix M 1 of (2.5) and consider its rows as vectors in Fn. That 
is, 

M, - [:l where u, E F". 

Since M1M/ = Ip, it follows that u;u/ = 1 and u;u/ = 0 if i "'F j. Hence, the 
rows of M 1 make up in Fn a set of p orthogonal vectors of norm 1. 

Let U1 and U2 be two subspaces of Fn generated as follows: U 1 by the first 
p vectors e 1 , • • •, ep of the standard basis e1, • • , , en of Fn and U2 by the vectors 
u1, •••,up. Define a linear function f: U1 - U2 by setting f(e;) = u; for i = l, 
• • •, p. Let B be the inner product of Fn defined in (2.1). It readily follows that 

B(e;, e1) = B(f(e;), f(e1)) = B(u;, u;). 

Thus, f is an isometry. Then, since (Fn, B) is nonsingular,. "Witt's extension 
theorem" implies that f can be extended to an orthogonal transformation or 
isometry f':Fn - Fn (see [11; p 26], [9; p 351]). 

The extension f' will be used to complete the vectors u1, •• •, Up to an 
orthogonal matrix, as follows. For p < k ::: n, let Up+1, , • •, Un be vectors defined 
by f'(ek) = Uk, 

Set 

[ U1] [M] [Up+l] p = ~n = DI ' where D = ~n • 

The rows of P are the images under f' of the standard basis. Therefore, P is 
orthogonal. 
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From ppt = In, it follows that 

Hence, if Q = Pt, 

where 0 represents the p X (n - p) matrix of zeros. 
Now, according to (3.1), transform all the other matrices of (2.5) by right 

multiplication by Q. If St; = M;Q, then a new set M1, • • •, Mq is obtained with 
a very simple form for M1. 

To simplify notation, omit the tilde and suppose from the beginning, in the 
original set of matrices, that 

(3.2) 

In order to find the implications of (3.2) in the structure of the other 
matrices, decompose each M; as follows 

(3.3) M;= [A;,B;] 

where A; is a p X p matrix and B; a p X (n - p) matrix. The condition (2.6) 
becomes 

or 

(3.4) 

Similarly, from (2.7), for i ¥, j, it follows that 

(3.5) 

Letj = 1 in (3.5). Since A1 = IP and B1 = 0, this relation reduces to 

(3.6) A;+Al= o. 
Therefore, each A; in (3.3) is an alternate matrix of order p, for i = 2, • • •, q, 
and (3.4), (3.5) transform to 

(3.7) 

(3.8) 

-Al + B;B/ = lp, 

A;A 1 + A1A; = B;B/ + B1B/. 

Clearly, lemma (2.5) can be supplemented by the addition of (3.2), (3.6), (3.7) 
and ( 3.8). Moreover, if p = n, then B; = 0, for all i, and these conditions reduce 
to the so-called Hurwitz equations (see [14; p 151]). Hence, they can be 
regarded as their generalization. 

For later use and as an application of (3.7) the following result will be 
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Proof: In fact, 
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rankAi 2: 2p - n. 

rankAi + rankB; 2: rank(A/) + rank(BiB/) 2: p, 

and since n - p 2: rankBi, the inequality (3.9) follows. 

4. Canonical forms for alternate matrices 
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Let us briefly recall some well-known facts about the elementary divisors of 
a matrix (see [5], [12]). 

Let A be a square matrix of order p over F. The characteristic matrix 'll.I -
A is equivalent over F['ll.] to a diagonal matrix 

diag[/1('ll.), • • ·, fp(A)], 

where each f;('ll.) is a monic polynomial in A with coefficients in F, such that 

(4.1) /;(A) divides /;+1(A) (i=l,•••,p-1). 

The polynomials /1(A), • • •, /p(A) are the similarity invariants of A. Two given 
matrices are similar over F if and only if they have the same similarity 
invariants. 

The characteristic polynomial of A is 

(4.2) /(A) = det[Al - A]= /1(A) ... h,('ll.), 

and if m('ll.) denotes the minimum polynomial of A, then 

is the last similarity invariant. 
Set, 

(4.3) 

where P1(A), • • •, Pr(A) are distinct, monic polynomials which are irreducible 
over F. 

For each similarity invariant, write 

(4.4) (i = 1, , • •,p). 

Then (4.1) implies that a;+1J 2: a;,j, and those polynomials pj(A)aij, for all i and 
j, which appear in (4.4) with nonzero exponents, including repetitions, are the 
elementary divisors of A over F. Clearly, their product is the characteristic 
polynomial and two given matrices over F are similar if and only if they have 
the same elementary divisors. 

Before proceeding the following trivial observation is appropriate. The 
results of this section will be used to prove nonexistence of certain normed 
maps. According to (2.5) this is equivalent to prove nonexistence of a set of 
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matrices over F, fulfilling certain conditions. Let K be an algebraically closed 
field containing F. Clearly, a given set of matrices over F can also be regarded 
as a set of matrices over K. Therefore, if this set of matrices cannot exist over 
K, they too cannot exist over F. The assumption F C K will be made, and this 
type of reasoning will be used. 

Most of the results that will be presented in the last part of this section 
come from two sources. The paper of J. Wellstein [15] and the book of F. R. 
Gantmacher [5; chapter XI]. Although the results that will be quoted are 
originally stated for the field of complex numbers, it readily follows that they 
also hold for an algebraically closed field K. The proofs will be omitted. 

The characteristic polynomial of an alternate matrix A over F, factors over 
K, as follows 

THEOREM (4.5). The nonzero characteristic values of an alternate matrix 
A appear in pairs ± AJ (j = 1, • • •, h) and if the elementary divisors corre­
sponding to AJ are (;\ - "J\,)q• (k = 1, ... , t), then the elementary divisors 
corresponding to-;\, are exactly(;\+ A,)q•, for the same set of exponents. 

If zero is a characteristic value of A, then in the system of elementary 
divisor corresponding to zero, all those of even degree are repeated an even 
number of times. 

THEOREM (4.6). There exists an alternate matrix over K, with any given set 
of elementary divisors which fulfill the conditions of (4.5). 

This last result is established by the following explicit construction. Let i be 
a fixed element of K such that i2 = -1. Define the matrices u<P> and Va <P> each 
of order p, by the equalities 

0 1 
-1 0 1 

-1 0 
u(p) = 

0 

0 

0 1 
-1 0 

Va<P> = i 

0 

1 2a 

1 2a 
1 2a 1 

2a 1 

2a 1 0 

then construct the alternate matrix Wa (p,p) of order 2p, as follows 

(4.7) W:a(l,1) = i[ 0 a] (p,p) - 1 [ u<P) Va(p) ] 1"f p > 1. 
-a O and Wa - 2 -va<P> -u<P> 
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If a ¥, 0, it is proved (loc. cit.) that the elementary divisors of Wa(p,p) are 
(;\ - a)P and(;\+ a)P. Moreover, if a= 0 andp is even, the elementary divisors 
of the corresponding matrix are N' and '},,.P. 

Now for the elementary divisors ;\q, where q is an odd number, define the 
alternate matrix w<q> of odd order q, as follows: w<lJ = [OJ, for q = 1, and for 
q > 1 by the equality 

0 1 0 
-1 0 1 

-1 

0 1 
(4.8) 2w<q>= -1 0 -1 

1 

0 -1 
1 0 -1 

0 1 0 

0 1 0 
1 0 1 

1 

1 0 
+i -1 0 1 

-1 

-1 0 
-1 0 -1 
0 -1 0 

As before, it is proved (Zoe. cit.) in this case that w<q> has a single elementary 
divisor Aq. 

Form a list of all the elementary divisors of A which appear in the expressions 
(4.4) with nonzero exponents, as follows: 

(A - Aj)c;, (A+ Aj)c; and Ad\ 

where j = 1, • • , , r; k = 1, • • •, s and each dk an odd number. Moreover, in this 
new arrangement some of the numbers Aj may be repeated and some may also 
be equal to zero. In fact, if Aj = 0 then Cj will be even. 

The block diagonal alternate matrix 

(4.9) 
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has the same elementary divisors as the alternate matrix A of (4.5). Therefore, 
they are similar. Now, if two alternate matrices A and Ware similar, it follows 
from a wellknown result that they are orthogonally similar (see [3; p 408], [10; 
p 79]). That is, there exists an orthogonal matrix Q over K such that 

(4.10) W = QAQ- 1 = QAQ 1 

Hence, the matrix W gives a canonical form for A. This will be used to improve 
some of the conditions considered in the preceding section. 

5. A restriction on a second matrix 

Let M; = [A;, B;] be the p X n matrices of (3.3) where M1 = [Ip, O] and each 
A; is an alternate matrix of order p for i = 2, • • •, q. Consider M2 = [A2, B2] and 
let W = QA2Q1 be a canonical matrix for A2, determined as in (4.10), where Q 
is an orthogonal matrix of order p. Now transform each M;, as in (3.1), into 

M;=QM;S 

where 

s = [oQt o ] 
l(n-p) 

is an orthogonal matrix of order n. 

It easily follows that 

Mi= [QA;Q 1, QBi]. 

Therefore, if A;= QA;Q 1 and 13; = QBi, the collection of p X n matrices Mi= 
[Ai, Bi], besides fulfilling the conditions of (2.5), has M1 = M1 = [Ip, O] and M2 
= [A2, B2] where A2 = Wis a canonical form. 

As before, omit the tilde and suppose that M1 and M2 already have the form 

(5.1) 

where Wis one of the several possible canonical forms for the alternate matrix 
A2 of order p. 

In the next sections all these results ,•ml be used in order to prove nonexist­
ence of normed maps for certain values of p, q and n. 

6. Nonexistence of normed maps for p = 5, q = 3 and n = 6. 

Here the following will be established. 

THEOREM (6.1). For any field F, no normed map F 5 x F 3 - F 6 can exist. 

Proof. Suppose a normed map F 5 x Fa - F 6 exists over some field F C K, 
where K is an algebraically closed field. Let M1, M2 and Ma be the 5 x 6 
matrices of (2.5) associated with the map, where M1 = [15, O], M2 = [W, B2] 
and M3 = [Aa, B3], according to (3.3) and (5.1). 

An analysis of the possible forms of W will be made. First, Wis an alternate 
matrix of order 5 and from (3.9), it follows that rank W ~ 4. Hence, rank W 
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= 4. Now, the characteristic polynomial of Whas the form 

/(">..) = A(A - a)(>.. + a)(A - b)(A + b), 

with 0, ±a and ±b as characteristic values. 
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The different sets of elementary divisors that have to be considered give rise 
to the following nine cases: 

I) a 'F b'with a 'F O and b 'F 0. 

Here, m(A) = /5(A) = /(A) since (4.1) must hold. Then, /1(A) = • • • = /4(A) = 1. 
Therefore, 

A, (A - a), (A+ a), (A- b), (A+ b) 

are the elementary divisors in this case. Hence, from (4.9), it follows that 

(6.2) 

II) a 'F O and b = 0. 

0 
0 

-ia 

0 
0 

i~ ~ ~J 0 0 0 
O O ib 
0 -ib 0 

The characteristic polynomial is 

/(A) = >..3(A - a)(>..+ a), 

with O and ±a as characteristic values. From (4.5) it follows that A2 cannot be 
an elementary divisor and (4.1) implies that (A - a), (A+ a) can only appear 
in the last similarity invariant. Then there are only two possibilities for the 
similarity invariants: 

111) /1(A) = /2(A) = 1, /a(A) = /4(A) = A and fi;(A) = A(A - a)(>..+ a). Thus, the 
elementary divisors are 

A, A, A, (A - a), (A + a) 

and from (4.8) it follows that 

W= [H i i i] 
000 0 ioa 
0 0 0 -ia 

(6.3) 

112) /i(A) = • • • = /4(A) = 1 andfi;(A) = >..3(A - a)(A + a). Here, the elementary 
divisors are 
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and again (4.9) gives 

(6.4) 
l -1 - i 0 . -1 + i 

W=- 0 1-i 0 
2 0 0 0 

0 
0 
0 
0 

[

0 l+i 0 

0 0 0 -2ia 

Ill) a= b ,;I, 0. Then /CA) = ;\(;\ - a) 2(;\ + a) 2, with 0 and ±a as characterfatic 
values. There are two possibilities for the similarity invariants: 

IIl1) {i(;\) = • • • = /4(;\) = 1 and /s(A) = /(;\). In this case the elementary 
divisors are 

and from (4.9) it follows that 

(6.5) W= ! [~ j ! 2:a +] 
2 0 -i -2ia 0 -1 

0 -2ia -i 1 0 

IIl2) /1(A) = h(;\) = /a(A) = 1, /4(;\) = (;\ - a) (;\ + a) and /5(;\) = ;\(;\ - a)(;\ 
+ a). The elementary divisors are 

;\, (;\ - a), (;\ + a), (;\ - a)(;\ + a), 

and (4.9) implies that 

(6.6) ~ ~1 0 0 
0 ia 

0 -ia 0 

IV) a= b = 0. Then /CA) = ;\ 5• There are four possibilities: 

IV 1) /1 (A) = • • • = /s(A) = A. Then 

~n W=~. 

IV 2) /1 (;\) = h(;\) = 1, /a(A) = ;\ and /4("A.) = / 5(;\) = ;\ 2. The elementary divisors 
are A, A2, A2 and 

(6.8) [

o o 
l 0 0 

W=- 0 -1 
2 0 • -i 

0 0 

IVa) {i(;\) = /2(A) = 1, fa(;\) = /4(;\) = A and /5(;\) = ;\3. The elementary 
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divisors are .\, .\, ,\ 3 and 

0 0 0 0 0 

1 0 0 0 0 0 
(6.9) W=- 0 0 0 1 + i 0 

2 0 0 -l - i 0 -1 + i 
0 0 0 l - i 0 

lV4) {i(,\) = 
divisor ,\ 5 and 

= /4 (,\) = 1 and /5(,\) = .\5• There is only one elementary 

0 1 0 i 0 

1 -1 0 1 + i 0 i 
(6.10) W=- 0 -l - i 0 -1 + i 0 

2 0 l - i 0 -1 -i 

0 -i 0 1 0 

Since rank W = 4, the cases (6.3), (6. 7), (6.8) and (6.9) are ruled out. For the 
remaining cases let 

W1 

W= and 

W5 bs 

where Wi E K 5 and b; EK. As can easily be seen, the condition (3.4) turns into 

(6.11) 

where 8ii is the Kronecker delta. 
To take care first of the less complicated cases, let W be as in (6.4). Since 

w2w/ = 0, condition (6.11) implies that b2 =±I.As w2wi' = 0 and b2 7'< 0, again 
condition (6.11) implies that b1 = 0. Hence w1wi' +bl= i, and this contradicts 
(6.11). Therefore, case (6.4) is eliminated. 

To continue, let Wbe as in (6.5). Here w1 = 0 and b1 = ±1. Because w1w/ 
= 0 and b1 7'< 0, from (6.11) it follows that bi= 0 for allj 'F I. Then, from (6.5), 
(6.11) and b2 = 0, it follows that w2wl = -a 2 = 1 and w2w/ = -a = 0. But this 
is a contradiction and, consequently, matrix (6.5) is also eliminated. 

Now consider Was in (6.10). From w1wi' = 0 and (6.11) it follows that b1 = 
±1. Since W1W2t = 0 and b1 7'< 0, it follows that b2 = 0, and this last result in 
(6.11) gives w2wl = I. Now directly from (6.10) it is obtained that w2w/ = i. 
Hence, there is a contradiction. So, this case must also be left out. 

The two remaining cases (6.2) and (6.6) will be represented by the same 
matrix (6.2) where the possibility a = b is considered. Let W be such matrix. 
As before, since w1 = 0 it follows that b1 = ±1. From w1w/ = 0, b1 7'< 0 and 
(6.11), it follows that bi= 0 for allj ¥ I. Now from (6.2), (6.11) and b2 = b4 = 
0, it follows that W2W2t = -a 2 = 1 and W4Wi = -b 2 = I. Therefore, a = ±i and 
b = ±i. 
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For the purpose of deciding the existence of a map as in (6.1), all these cases 
with different signs can be reduced to 

0 0 0 0 0 1 
0 0 1 0 0 0 

(6.12) M2 = [W,B2] = 0 -1 0 0 0 0 
0 0 0 0 1 0 
0 0 0 -1 0 0 

In fact, if ia = -1, a permutation of the second and third rows followed by 
the same permutation on the columns of W, will fix the signs. This transfor­
mation is given by QWQ, where Q = Q' is the symmetric orthogonal matrix 
obtained by performing the indicated permutations on the rows and columns 
of the identity matrix. A similar consideration holds if ib = -1. Therefore, the 
transformed matrix (cf. (3.1)) 

[ Q o]-Q[W, B2] 0 l - [QWQ, B2] 

can be regarded as in (6.12). 
Now write the matrices Aa and Ba explicitly as 

0 a1 a2 aa a4 b1 

-a1 0 a5 a6 a1 b2 
(6.13) Aa= -a2 -a5 0 as llg Ba= 

-aa -a6 -as 0 a10 
-a4 -a1 -llg -a10 0 b5 

then take M2 = [W, B2] as in (6.12), and substitute these expressions in the 
equation (3.8): 

Aa W + WAa = BaB2' + B2Ba\ 

to obtain a matric equality. From this equality it readily follows that 

0 a1 a2 aa a4 0 
-a1 0 0 a6 a1 -a2 

(6.14) [Aa, Ba]= -a2 0 0 a1 -as a1 

-aa -as -a1 0 0 -a4 

-a4 -a1 as 0 0 as 

Let Ui, for i = l, • • • 5, denote the rows of M3 where each u; E K 6• Clearly, 
condition MaMa 1 = 15 is equivalent with u;u/ = 8;1, where 8;1 is the Kronecker 
delta. 

Using the rows of (6.14) write conditions u;u/ = 1 for i = l, 2, 4. From these 
three equations it easily follows that 

(6.15) 
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Now from u2ui = 0 and u2ui = 0 the following pair of equations are obtained 

(6.16) 

Relation (6.15) implies that (a 1 , a2 ) ¥< (0, 0). On the other hand, given aa and 
a4 , a pair (a1, a2) ¥< (0, 0) satisfies (6.16) if and only if aa2 + ai = 0. Hence, 
there is a contradiction with (6.15) and therefore Ma cannot exist. Since all the 
possibilities for Whave been analyzed, this ends the proof of (6.1). 

7. Nonexistence of normed maps for p = 5, q = 4 and n = 7. 

Using some of the results already developed in the preceding section, the 
next theorem will be proved. 

THEOREM (7.1). For any field F, no normed map F 5 X F 4 - F 7 can exist. 

Proof. As in the proof of (6.1), suppose that such map exists over some field 
F c K. Let M1 = [/5, 0], M2 = [W, B2], Ma= [Aa, Ba] and M4 = [A4, B4] be the 
5 X 7 matrices associated with the map. 

Again, from (3.9), it follows that rankW;;, 3. Since Wis an alternate matrix 
of order 5, its rank must be even. Therefore, rank W = 4 and as before, only the 
cases (6.2), (6.4), (6.5), (6.6) and (6.10), have to be considered for W. 

Set 

(7.2) W= and 

W5 b5 C5 

where w; E K 5 and b;, c; EK. The condition (3.4) becomes 

(7.3) 

Suppose wkw/ = 0 for some index k. Then bk 2 + Ck 2 = l. Let T and S be 
orthogonal matrices, respectively of order 2 and 7, defined by 

and 

It follows that 

with 

/35 ys 
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Hence, /3k = 1 and Yk = 0, and (5.1) is preserved. Therefore, without a change 
in notation (to omit the tilde) this assumption will be made, according with 
each case, for a suitable fixed choice of the index k. That is, 

(7.4) let wkw/ = 0 and k the suitable index, then bk = I and Ck = 0. 

Moreover, from (7.3), it follows that 

(7.5) if WjW/ = 0 and k is as in (7.4), then bj = 0. 

Let Wbe as in (6.4) and observe that WjW2t = 0 for}= 1, • • •, 5. Then, from 
(7.4) and (7.5), it follows that b2 = 1, c2 = 0 and bj = 0 for all}~ 2. 

From the norm of the first and third rows of M2 = [W, B2], it follows 

2 t £ 
C1 = 1 - W1 W1 = 1 - 2 , 

2 t i 
Ca = 1 - W3W3 = 1 + 2 . 

Then, c12ca2 = t On the other hand, since the first and third rows of M2 are 

orthogonal, 

Hence, ci2ca2 = i· This contradiction eliminates the case (6.4) as a possible 

option for W. 
Next, consider Was in (6.5). Since w1 = 0, from (7.4), and (7.5), it follows 

that b1 = 1, c1 = 0 and bj = 0, for all}~ 1. 
From the norm of the second and fifth rows of M2, it follows that cz2 = cs2 

= 1 + a 2. Now, as W2W51 = 0, condition (7.3) implies that c2cs = 0. Then, c2 = 
C5 = 0 and a 2 = -1. But then, since w2 w3t = -a, the condition (7.3) is not 
fulfilled. In other words, the second and third rows of M2 are not orthogonal. 
This rules out (6.5). 

Suppose Was in (6.10). Since w1w/ = 0, choose bi= 1 and c1 = 0. Then, 
from w2w/ = W5W/ = 0 it follows b2 = b5 = 0. Now, wsws' = 0 and bs = 0 
implies that cs= ±1. Since w2wl = 0 and b5 = 0, from (7.3) it follows that c2c5 

i = ±c 2 = 0. Hence, the norm of the second row of M 2 becomes w2 wi = 2. But 

this is contrary to condition (7.3). Therefore, the case (6.10) is also excluded. 

As before, the two left cases (6.2) and (6.6) will be represented only by (6.2), 
where the possibility of a = b is added. 

Because w1w/ = 0, choose b1 = 1 and c1 = 0. Then, since Wj w/ = 0 it follows 
that bj = 0 for j = 2, • • . , 5. From the expressions for the norm of the second 
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and third rows of M2, it is obtained that c22 = ca2 = 1 + a 2. Now a substitution 
of w2wi = 0 and b2 = 0 in (7.3) gives c2ca = 0. Consequently, c2 =ca= 0 and a 2 
= -1. Similarly, it follows that C4 = C5 = 0 and b2 = -1. 

This determines the matrix M2 and as in (6.12), the signs can be fixed so that 

0 0 0 0 0 1 0 
0 0 1 0 0 0 0 

(7.6) M2 = [W, B2] = 0 -1 0 0 0 0 0 
0 0 0 0 1 0 0 
0 0 0 -1 0 0 0 

Let M == [A, B] denote a 5 X 7 matrix that can be regarded to represent 
either M 3 or M 4 , where A and Bare, respectively, 5 X 5 and 2 X 5 matrices. 
Use for A the same expression given in (6.13) for Aa and let 

B= 

b5 C5 

Like in case (6.14), from the matric equality 

AW+ WA= BB2t + B2B', 

it easily follows that 

0 a1 a2 aa a4 0 
-a1 0 0 a6 a1 -a2 

M= -a2 0 0 a1 -a6 a1 

-aa -a6 -a1 0 0 -a4 
-a4 -a1 a6 0 0 aa 

C1 

C2 
Ca 

C4 
C5 

Recall that MMt = 15 means that all rows of M have norm 1 and different 
rows are orthogonal. Then, from the norm of the second and third rows, it 
follows that 

(7.7) 

and the norm of the fourth and fifth rows, gives 

(7.8) ci = cl= l - (aa2 + al+ a/+ ai). 

On the other hand, orthogonality of the second and third rows and of the 
fourth and fifth rows, implies 

and 

Hence, this together with (7.7) and (7.8), implies that 

Therefore, the terms to the right of the expressions (7.7) and (7.8) are equal 
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and this yields the relation 

(7.9) 

JOSE ADEM 

Also with the above information the expression for M becomes 

0 a1 a2 aa a4 0 C1 

-a1 0 0 as a1 -az 0 
(7.10) M= -a2 0 0 a1 -a6 a1 0 

-aa -as -a1 0 0 -a4 0 
-a4 -a1 as 0 0 aa 0 

The next equations, conveniently arranged in pairs, follow from orthogonal­
ity among the rows of Min (7.10). 

(7.11) 

(7.12) 

(7.13) 

{ a1aa + a2a4 = 0, 
a2aa - a1a4 = 0, 

{
asa1 + a1a2 = 0, 
a1a1 - asaz = 0, 

{ as aa + a1 a4 = 0, 
a1aa - asa4 = 0. 

These expressions will be used to prove that 

(7.14) 

Suppose the pair (a1, a2) ¥a (0, 0). Then from (7.12) it follows that al+ al 
= 0 and similarly (7.11) implies that aa2 + al = 0. But this gives the value zero 
for the norm of the last two rows of M. Consequently, a1 = a2 = 0. Now from 
(7.9) it follows that aa2 + al= 0, yet it can be that (aa, a4) ¥a (0, 0). However, 
if the last inequality holds, from (7.13), it implies again al+ al= 0 and then 
the norm of the second and third rows of M becomes zero. Therefore, aa = a4 
= 0 and (7.14) is proved. 

The norm of the first row implies that ci2 = 1 and by the same argument 
used in (6.12), the signs can be fixed so tht c1 = 1. The final form for Mis the 
following 

0 0 0 0 0 0 1 
0 0 0 as a1 0 0 

(7.15) M= 0 0 0 a1 -as 0 0 
0 -a6 -a1 0 0 0 0 
0 -a1 as 0 0 0 0 

Remember that M contains the possible forms for the matrices M 3 and M 4 , 

in the case that they exist simultaneously. Assuming they exist, it follows from 
(7.15) that they must have the same first row shown above. On the other hand, 
the condition MaMi + M4Ms' = 0 implies, in particular, that the first row of 
Ma is orthogonalj;o the first row of M4. Hence, only Ma can exist and this ends 
the proof of{7.1). 
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8. Nonexistence of normed maps for p = 6, q = 3 and n = 7. 

Now the following theorem will be proved. 

THEOREM (8.1). For any field F, no normed map F 6 X F 3 - F 7 can exist. 

Proof. Assume that the map exists over some field F C K where K is 
algebraically closed. Let M1, M2 and M3 be the 6 X 7 matrices, associated with 
the map, where M1 = [/6, O], M2 = [W, B2] and M3 = [Aa, Ba]. 

From (3.9) it follows that rank W ~ 5 and since Wis an alternate matrix of 
order 6, its rank must be even, therefore rank W = 6. 

Over K the characteristic polynomial of W has the form 

fC>..) = (A - a) (A+ a)(A - b)(A + b)(A - c)(A + c), 

where rank W = 6 excludes zero as a characteristic value. 
As before, different cases will be considered for the elementary divisors 

associated with the characteristic polynomial. 
I) Suppose a ¥ b, a ":/= c and b ":/= c. Then (4.1) implies that /5(;\) = /(A) and 

/;(A) = 1 for i = 1, • • , , 5. Hence, the elementary divisors are 

(8.2) (A - a), (A+ a), (A - b), (A + b), (A - c), (A + c). 

II) Let a = c with a ":/= b. The characteristic polynomial is 

/(A) = (A - a) 2(A + a) 2(A - b)(A + b). 

Compatible with (4.1) there are two possibilities for the similarity invariants: 

IL) /;(A) = 1 for i = 1, • • ·, 4, /5(;\) = (A - a)(A + a) and /5(A) = (A - a) 
(A+ a)(A - b)(A + b). The elementary divisors are 

(8.3) (A - a), (A + a), (A - a), (A + a), (A - b), (A+ b). 

IL) /;(A) = 1 for i = 1, • • •, 5 and {6(A) = /(A). The elementary divisors are 

(8.4) (A - a) 2, (A+ a) 2, (A - b), (A+ b). 

III) Assume a = b = c. Then /(A) = (A - a) 3(A + a) 3. In this case there are 
three possibilities for the similarity invariants: 

IIL) /;(A) = 1 for i = 1, , . , , 5 and {i;(A) = /(A). The elementary divisors are 

(8.5) (A - a) 3, (A+ a) 3• 

III2) /1(A) = 1 for i = 1, ·, ., 4, /5(A) = (A - a)(A + a) and /6(A) = (A - a) 2(A 
+ a) 2• The elementary divisors are 

(8.6) (A - a), (A + a), (A - a) 2, (A + a) 2• 

Illa) /;(A) = 1 for i = 1, 2, 3, and /4(A) = {s(A) = /G(A) = (A - a)(A + a). The 
elementary divisors are 

(8.7) (A - a), (A + a), (A - a), (A + a), (A - a), (A+ a). 

If repeated characteristic values are allowed, the three cases (8.2), (8.3) and 
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(8.7) can be represented by (8.2). Similarly, the two cases (8.4) and (8.6) can be 
represented by (8.4). Moreover, this is compatible with the construction of W. 
Hence, only the cases (8.2), (8.4) and (8.5) will be considered. 

Let the elementary divisors be as in (8.2). Then (4.9) implies that 

0 ia 0 0 0 0 
-ia 0 0 0 0 0 

(8.8) W= 
0 0 0 ib 0 0 
0 0 -ib 0 0 0 
0 0 0 0 0 ic 
0 0 0 0 -ic 0 

Now for (8.4) the construction (4.9) gives 

0 1 i 2ia 0 0 
-1 0 2ia i 0 0 

1 -i -2ia 0 -1 0 0 
(8.9) W=- -2ia -i 1 0 0 0 2 

0 0 0 0 0 2ib 
0 0 0 0 -2ib 0 

Finally;for the case (8.5), from (4.9) it follows that 

0 1 0 0 i 2ia 
-1 0 1 i 2ia i 

1 0 -1 0 2ia i 0 
(8.10) W=-

0 -2ia 0 -1 0 2 -i 
-i -2ia -i 1 0 -1 
-2ia -i 0 0 1 0 

As in section 6 let 

W1 b1 

W= and B2= 

W6 b6 

where Wi E K 6 and bi E K. First, it will be shown that (8.9) and (8.10) fail to 
satisfy condition (3.4) (or its equivalent (6.11)). Let W be as in (8.10). Since 
W1W6t = w2wi = W3Wi = 0, it follows from (6.11), that b1b6 = b2b5 = b3b4 = 0. 
Then, b1 = 0 or b6 = 0, etc. A direct computation in (8.10), gives WjW/ = -a 2 

for allj. Hence, WjW/ + b/ = l implies that b/ = 1 + a2 and that b1 2 = bl, etc. 
Consequently, bi = 0 for allj and a = ±i. But then, W1 W2t + b1 b2 = -a =/, 0, and 
this contradicts (6.11). Therefore (8.10) is eliminated as a possible matrix for 
w. 

Suppose Wis as in (8.9). Using only the first four rows of W, a very similar 
argument to the one given for (8.10), shows that W fails to satisfy (6.11). 
Therefore, (8.9) should not be considered. 

Now let W be of the form (8.8). A direct inspection of W shows that Wiw/ 
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= 0 for all i ¥-j and that 

From (6.11) and from this information, it readily follows that b;bJ = 0 for all i 
¥-j and that 

b/ = bl= 1 + a 2, b/ = bl= 1 + b2, bi= bl= 1 + c2• 

Consequently, bi= 0 for allj and a 2 = b2 = c2 = -1. 

With the same argument used in (6.12) the signs can be arranged so that 

0 1 0 0 0 0 
-1 0 0 0 0 0 

(8.11) W= 
0 0 0 1 0 0 
0 0 -1 0 0 0 
0 0 0 0 0 1 
0 0 0 0 -1 0 

To study the possible existence of Ma = [Aa, Ba] assume, with the usual 
notation, that 

Aa = (a;J) and Ba= 

where Aa is an alternate matrix of order 6. Because of B2 = 0, the equation 
(3.8) becomes WAa + Aa W= 0, where Wis the matrix of (8.11). Like in (6.14), 
this equality imposes some conditions on the elements of Aa. Taking into 
account these conditions, the matrix Aa becomes 

0 0 ll13 ll14 ll15 a16 
0 0 ll14 -a13 ll16 -a15 

(8.12) Aa= 
-aia a14 0 0 llas ll36 
-a14 ll13 0 0 lla6 -aas 

-a1s -a16 -aas -aa6 0 0 
-a16 ll15 -aa6 ll35 0 0 

As before, let w; denote the lh-row of Aa, Let i = 1, 3, 5, then the following 
relations are quickly verified: 

and 

Then, from (6.11), it follows that b;b;+1 = 0 and that bl= b;+i2. Hence, b; = 0 
for all i and consequently, Ba = 0. 

Like in the case (6.14), a further analysis will show that the matrix Ma = 
[Aa, 0] fails to satisfy (3.4). However, a short cut in the proof is given by the 
following argument. Assume that Aa is compatible with (3.4). Since B; = 0 for 
i = 1, 2, 3, it follows that the matrices M1 = 16, M2 = Wand Ma= Aa determine 
a normed map F 6 X Fa - F 6 and its restriction F 5 X Fa - F 6 is also a normed 
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map. But this implies a contradiction with (6.1). Therefore, the original M3 = 
[A3, B3] cannot exist as required. This ends the proof of (8.1). 

9. The main theorem 

The results of the last three sections will be used to prove the following 
theorem that constitutes the main result of this paper. 

THEOREM (9.1). Let P be a field of characteristic not 2 and let 1 -s;.p, q -s;. 8. 
Then the minimal n for the existence of a normed map PP X P 9 - pn is 
independent of P and its value is given by the following table: 

X 1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 
2 2 4 4 6 6 8 8 
3 4 4 7 8 8 8 
4 4 8 8 8 8 
5 8 8 8 8 
6 8 8 8 
7 8 8 
8 8 

Proof. Since the tabie is symmetric only half of it is presented. The maps 
are constructed out of the classical products pk x pk - pk where k = 1, 2, 4, 
8, by taking direct sums and restrictions. As an illustration, the direct sum of 
the maps P 4 X P 3 - P 4 and P 1 X P 3 

- P 3 gives a map P 5 x P 3 

- P 7

• The 
construction of all other maps is readily obtained. Hence, the details are 
omitted. 

Let PP X P 9 - pn be a normed map. Then the following properties hold: 

(9.2) 

(9.3) 

(9.4) 

n ;;;,, max(p, q), 

ifp = n then q ,s;. p(n), 

{
if p = 5 and q = 3 then n ;;;,, 7, 
if p = 5 and q = 4 then n ;;;,, 8, 
if p = 6 and q = 3 then n ;;;,, 8. 

Recall that (9.2) was established in section 2 and that (9.3) is essentially the 
result mentioned in the introduction, where the Hurwitz-Radon function p(n) 
was defined. The use of (9.3) is restricted here to its very weak form: p(n) = 1 
if n is odd. Finally, (9.4) collects the statements (6.1), (7.1) and (8.1) of the last 
sections. 

Now givenp and q, the proof that the value n in the table is minimal follows 
easily using in each case a suitable condition out of (9.2), (9.3) and (9.4). The 
details of the verification are trivial and therefore they are omitted. This ends 
the proof of (9.1). 

CENTRO DE INVESTIGACION DEL IPN, MEXICO 14, D.F. 
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