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FUNCTIONS CONVEX IN TWO DIRECTIONS 

BY R. MICHAEL PORTER 

A plane domain is convex in the direction of L (a fixed line or ray) if its 
intersection with every line parallel to L is connected. Let {Y be a family of 
normalized analytic functions f(z) = z + a2z2 + • • • in E: I z I< I. Reade and 
Zlotkiewicz [1] determined the Koebe set of IT, n f(E) :f E IT, for a number of 
classes, among them,, that of the normalized univalent -functions with image 
convex in a given direction. This domain was later found independently by 
Goodman and Saff [2]. We extend this result to functions with image convex 
in two directions, separated by a fixed angle O < v :S '7T /2. In case v = 0 the two 
directions coincide and our result reduces to the previous one. We conclude 
this note with the observation that the hypothesis of univalence is totally 
unnecessary. 

Notation and Lemmas. Let CD(v) denote the class of normalized univalent 
functions in E such that f(E) is convex in the directions of L(-v) :arg z = -v 
and the positive real axis L(O). For convenience of notation we will write Qo, 
Qi, Q2, Q3 for the "quadrants" defined by arg z E [-v, OJ, (0, 'TT - v], ['TT - P, 'TT], 
[77, 277 - v] respectively. Let /3 = 2 - v/77 throughout this paper. As the linear 
fractional transformation A(z) = (e-a(f3+Iliz - ie"(f3+Ili)/(e-"<f3-Iliz - ie"(/3-Ili) 

carries E onto the upper half plane when O <a< 77/2, the following lemma is 
easily verified (z13 means, as is usual, r 13ei130 where z = re;e and O :S 0 < 2'17). 

LEMMA I. The function F = F,,a defined by 

(1) F(z) = (A(z) 13 - e2iaf3)(2f3 sin 2a)-1, I z I< 1, 

is in the class CD(v) for each a, 0 <a< 77/2. Its image F(E) is the complement 
of the translated quadrant Qo + c with corner at 

(2) c = c(v, a)= -e 2ia13(2/3 sin 2a)- 1. 

Although we are mainly interested in CD(v) for O < v :S 'TT/2, the lemma is 
valid for angles in the range O :S v < 277. 

We find the polar form for the curve c(v) which c(v, a) traces as a varies 
from Oto 77/2, by setting cf>= arg c = 2af3 - 77, and then 

(3) p = I c I= (2/3 sin(cf> + 77)//3)-1, -77 < cf> <77 - v. 

Let D (v) denote the complementary domain of c (v) which contains the origin, 
in other words the set I z I < p where p is given by (3). In the following, jj 
denotes the reflection of a domain D in the real axis. 

LEMMA 2. Let f: E - C be a normalized analytic function. Let zp E C. If 
f (E) is disjoint from Q; + w, i = 0, l, 2, or 3 respectively, then w lies in the 
complement of D(v), D(77 - v), -D(v), or -D(77 - v) respectively. 
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Proof We shall imitate very closely the argument given in [2] for convexity 
in one direction. First consider the case i = 0. Since 0 = /(0) E Qo + w we can 
write w = reu/> with r > 0, -'lT < </> < 'lT - P. Setting t = p/r where p is given by 
(3) we have c = tw for suitable 0 < ex< 'lT/2 and t > 0. Now the function tf(z) 
omits Qo + c and Fis univalent; consequently F- 1(t/(z)) is well defined from 
E to E and fixes the origin. By Schwarz's lemma, t < 1, and we conclude that 
w is in the complement of D(P). In the remaining cases i = 1, 2, 3 we use 
F.,,-.(z), -F.(-z), and -F,,-.(-z) in place of F(z). 

The image domain. 

THEOREM 1. The Koebe set of CD(P) is precisely R(P) = D(P) n D(P) n 
(-D(P)) n ("-D('lT - P)). 

Proof Let f E CD(P). If f omits the point w, it must in fact omit, by 
directional convexity, one of the rays L(0) + w, L('lT) + w. Likewise it omits 
one of L(-p) + w, L('lT - P) + w. As a result, /must omit some Q; +wand by 
Lemma 2, w cannot be in R(P). Conversely, the functions F(tz)/t, 0 < t < 1, 
and their reflections provide examples omitting any point not in R(P). 

The domain R (P) is symmetric in the directions of L(-P/2), L(('lT - P)/2), as 
would be expected from the fact e-i"f(ei"z) is in CD(P) when /is. R(0) is the 
domain which the results cited earlier specify for functions convex in the 
horizontal direction. For f E CD(P), both f and e;"f(e-i"z) are in CD(O), so we 
have trivially R (0) U e-ivR (0) !: R (P); in fact, this inclusion is strict for 0 < P 

s 'lT/2. 
The curves c(P), -c(P) meet at zo = (2/3 cos 'lT/2/3)-1ei(1r-v)/ 2 and at -zo. For 

this value of</>, c('lT - P) passes through (2(3, - /3))- 1ei(,r-v);z_ Therefore c(v), 
- c(P), and c('lT - P) (likewise c(P), -c(P) and -c('lT - P)) are concurrent when 
P = Po = '1T(2 - /30), where /3o satisfies the transcendental equation 

(4) /3 cos 'lT/2/3 = 3 - /3. 

The approximate value is Po z .18138'17'. For 0 s P s Po, D(P) n (-D(P)) is 
contained in D('lT- P) n (-D('lT - P)) and hence R(P) reduces to the former set 
(see Figure 1). When OS Pr< P2 S Po, R(P1) is properly contained in R (P2), but 
on the other hand when Po S P1 < P2 or P1 < Po < P2 neither of R (P1), R (P2) 
contains the other. All of the above statements may be verified by diligent 
application of trigonometry. 

We may also consider the class CD*(p) of normalized univalent functions 
convex in any two directions separated by the angle P. Its Koebe domain is 
clearly the largest disk contained in R (P ), centered at the origin. The radius of 
the largest such disk in D(P) n (-D(P)) is 1/2/3, for D('lT - P) n (-D('lT - P)) it 
is 1/2(3 - /3). Therefore we have 

THEOREM 2. The Koe be domain of CD* (P) is the disk I z I < 1/2/3. 

Nonuniualent functions. A review of the proofs in the preceding section 
reveals that the univalence of the functions in CD (P) is never used. This is an 
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instance of a more general phenomenon. In loose terms, for a class ?J of 
normalized analytic functions defined by a suitable geometric condition on the 
image, the Koebe set of ?J is the same as that of the family of univalent 
functions in ?J. 

THEOREM 3. Let f, g: E - C be normalized analytic functions. Suppose g is 
univalent and g (E) = tf(E) for some t > 0. If R h g (E) where R is star shaped 
with respect to the origin, then also Rh f(E). 

Proof The function g- 1 (tf(z)) is well-defined from E to E and by Schwarz's 
lemma, t ::s 1. By hypothesis f(E) contains C 1R, and since R is starshaped, 
t- 1R contains R. 

For a simple illustration we apply this to the classical Koebe-Bieberbach 
theorem and obtain the following: if f is normalized and if its (not necessarily 
one-to-one) image is simply connected, then that image must include the disk 
of radius ¼ about the origin. 

CENTRO DE lNVESTIGACION DEL IPN, MEXICO 14, D. F. 
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