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INVARIANCE PRINCIPLE FOR BRANCHING RANDOM MOTIONS 

BY LUIS G. GOROSTIZA * AND NORMAN KAPLAN* 

1. Introduction 

We define a branching motion process as a supercritical age-dependent 
branching process with the population elements, which we call particles, 
moving randomly in space. The evolutions of particles that belong to different 
branches are independent conditional upon the initial data of their movements. 
To each branch of time-length T there corresponds a random process, which 
is interpreted as the motion of the ancestry line of the particle that lives on the 
branch at time T. Considering a single branch of length T (i.e. a renewal 
process) and introducing suitable time and space scalings, the corresponding 
motion process is assumed to converge weakly to a process Las T- oo. The 
empirical distribution of the branching motion process at time Tis defined for 
each realization of the model by selecting at random a branch from those of 
length T, and taking its corresponding motion process realization. This empir­
ical distribution is a random probability measure on an appropriate function 
space for each T, and our aim is to show that it converges weakly as T - oo, 
for almost all realizations, to a process £ which is obtained from the single 
branch limit process L in a certain way. 

Results of this type have been obtained for Galton-W atson branching 
processes with general motions, and for age-dependent Markov branching 
processes with Brownian motions by Gorostiza and Ruiz-Moncayo [17, 18]. In 
both cases the limits L and £ coincide. In the former case this is due to the 
trivial age structure of the Galton-W atson process and in the latter it is due to 
the independence and stationarity of Brownian motion increments. The nat­
ural conjecture would be that in the general age-dependent case £ should be 
the same as L, except that the particle lifetime distribution G (dt), on which L 
typically depends, is replaced by G (dt) = me-"tG (dt), where mis the mean of 
the particle production law and a is the Malthusian parameter. For Brownian 
motion along the ancestry lines this change is of course not apparent. A special 
case where the conjecture is meaningful and has been proved is age-dependent 
Markov branching random walk [15]. In this paper we prove the conjecture in 
general, i.e. for general age-dependent branching processes with general mo­
tions (under certain technical restrictions). The proof of the general result is 
based upon a particular decomposition of the process. This type of approach 
has been used in different ways by a number of authors to solve a variety of 
problems. Some relevant papers are: Athreya and Kaplan [1], Kaplan and 

* The first named author was partially supported by CONACYT grant PNCB 1627. The authors 
gratefully acknowledge the hospitality of the Instituto de Investigaci6n en Matematicas Aplicadas 
y Sistemas, Universidad Nacional Aut6noma de Mexico, and the Centre de Recherche de 
Mathematiques Appliquees, Universite de Montreal, where parts of this research were done. 

63 



64 LUIS G. GOROSTIZA AND NORMAN KAPLAN 

Asmussen [23], Kaplan [22], Gorostiza and Ruiz-Moncayo [17, 18]. A general 
discussion of the decomposition method is given by Athreya and Kaplan [2]. 
In the present case the application of the decomposition method is difficult 
due to the generality of our model; a detailed analysis of the age structure and 
recent results of Biggins [5] on the asymptotic shape of a random walk are 
employed. 

A brief account of the development of the subject of empirical distributions 
of supercritical branching random motions is contained in [19]. Most of the 
existing single-time-point results (as opposed to time-interval results) deal with 
the asymptotics of the empirical distribution of the particle positions at a given 
time, as this time tends to infinity. Many of these results can be obtained from 
our present limit theorem (see Section 3). 

Other recent works of related interest are the following: Bensoussan, Lions 
and Papanicolaou [ 4] study asymptotics of branching transport processes, 
using a scaling where the initial density of particles increases, and they derive 
as a consequence the diffusion approximation of neutron transport theory. An 
invariance principle proved by Fleischmann and Siegmund-Schultze [9] con­
cerns a Galton-W atson model similar to that of [17], with a critical branching 
law. Branching diffusion models with infinitely many initial particles are 
investigated e.g. by Dawson and Ivanoff [7], and Holley and Stroock [20]. In 
some of the references we have cited, as well as in the present paper, due to 
the time scalings the branching motion process originated by each initial 
particle does not converge to a branching motion process. Using a different 
type of scaling Gorostiza and Griego [16] obtain convergence of branching 
transport processes to branching Brownian motion. 

In Section 2 we describe the branching motion model and state the invari­
ance principle. Section 3 gives some examples and Section 4 contains the 
proofs. 

Proofs of results that we use without reference from the theory of branching 
processes can be found in Athreya and Ney [3]. Similarly, the relevant results 
of weak convergence can be found in Billingsley [6]. 

2. Branching transport processes and the invariance principle. 

We will consider random processes with trajectories in the spaces D[O, oo)d 
or D[O, Tt (i.e. the spaces of functions from [O, oo) or [O, T] to !Rd, right­
continuous with left limits), equipped with the Skorohod topology. C[0, oo)a 
and C[0, Tt denote the corresponding subspaces of continuous functions. 

Weak convergence of probability measures is denoted S , and II • II is 
the Euclidean norm on /Ra. 

By a transport process 

X = {X({r;}, t), t ~ 0} 

based on the times { r;} we mean that r;, i = l, 2, • • • , are independent, 
identically distributed (i.i.d) random variables, and if So = 0 and S; = l:}-1rj, 
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i ~ 1, then for each i, given the position and velocity (when it exists) of the 
process X at time S;-, its evolution in the time interval [S;, S;+i) is governed 
by a distribution which is independent of the past. We assume X(O) = 0. The 
T; are the waiting times, the S; are the renewal times, andN(t) = max{i:S; ~ 
t}, t ~ 0, is the renewal function of the transport process. 

The following cases exemplify different types of transport processes. 

(a) Brownian motion: Suppose that at each renewal time a new Brownian 
motion starts out from the point where the previous one stopped. Then Xis a 
Brownian motion on C[O, oo)d_ In this case the T; are irrelevant due to the 
stationarity and independence of Brownian motion increments. 

(b) Random walk: Let f;, i = 1, 2, , , • , be i.i.d. random vectors in R.d, with 
finite, positive definite covariance matrix. Then 

X(t) = X({T;}, t) = 'l:.~~>t;, t ~ 0, 

is a random walk with jumps f; and jump-times S;. 

(c) Linear transport process: Let {0;, i = 0, 1, . , . } be a sequence of random 
directions (unit vectors in R.'1, d ~ 3) with a given distribution (as a discrete­
time process), independent of the T;. Then 

X(t) = X({T;}, t) = 'l:.~~>oi-ITi + oN<t><t - sN(t)), t ~ o, 
is a linear transport process with directions O; and direction-change-times S;. 
The special case where 8;+1 is distributed with radial symmetry about 0; for 
each i is relevant in neutron transport theory and polymer chemistry (see e.g. 
[10], [13], [24]). 

The transport processes in the examples above converge weakly with certain 
time and space scalings and under certain technical conditions, and the limits 
are Brownian motions. There are also examples of transport processes whose 
limits are not Brownian motions ( e.g. if space dependence of the transport 
motion is allowed; see e.g. [24]). 

In general we will consider transport processes that converge weakly, but 
they and their limits need not be specified. However, we will require that the 
increments of the transport processes satisfy one of the following conditions 
for large h: 

(2.1) (a) supt E[supo.. ... h II X(t + s) - X(t) II 

(b) supi E[supo.. ... h II X(t + s) - X(t) 11 

h) - N(t)], 

renewal times] ~ Kh, 
renewal times]~ K[N(t + 

and in the case of processes having directions, 
(c) sup1 supo .. sd II X(t + s) - X(t) II ~ Kh, 

where K is a positive constant. 

It is easily verified that examples (a), (b), (c) above satisfy conditions (2.1) 
(a), (b), (c) respectively. 

Given a process X = {X(t), 0 ~ t ~ T} with trajectories in D[O, T]d, the 
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process Xr defined by the time scaling 

Xr(t) = X(Tt), 0 ~ t ~ 1, 

is in D[0, l]d. We will consider processes X such that under a space scaling ar 
we have 

(2.2) 

where L is a random element of C[O, 1t. Moreover, we assume ar to be of the 
form 

(2.3) 

where /3 > 0 and 1/ is a positive constant which niay depend on moments of T1. 

A centering may be needed for convergence of Xr, and we will comment on 
this later on. 

The linear transport process, unlike the two other examples cited, does not 
have independent increments on the intervals [Si, Si+1), i = 0, 1, • • • . Indeed, 
the distribution of X(t) - X(s), t > s, depends on the direction of the process 
at time s-. Therefore we make the following assumption for transport proc­
esses having directions that may depend on their past directions. 

(2.4) The distribution of X(t) - X(s), t > s, depends on the process up to 
times only through its direction at s-, and 

-ix d L ar r ~ as 

uniformly in the initial direction. 

This condition is fulfilled in many cases. For example, it follows from 
Lemmas 3.4 to 3.7 in [12] that the linear transport processes in [12] and [13] 
satisfy (2.4) 

Now we introduce the branching. We consider an age-dependent (Bellman­
Harris) branching process, with particle production law {Pkh-o 00 which is 
supercritical, i.e. m = l:.';-opkk > 1, and such that l:.k pkk 2 < oo, and particle 
lifetime distribution G with finite mean µ,. In order to avoid complications that 
are not essential we suppose that po = 0 (hence all the branches are infinite 
and we don't have to condition on non-extinction), G is non-lattice and has no 
atom at O (hence ordinary renewal theory can be used), and that there is a 
single initial particle, constituting generation number 0, of age O at time 0. 

The Malthusian parameter a is the (unique) root of 

m I~ e-°' 1G (dt) = 1, 

and the distribution G is defined by 

(2.5) 

whose (finite) mean we denoteµ,. 

Let r r denote the set of branches of time-length Tin the family tree, and Zr 
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its cardinality, i.e. Zr is the number of particles alive at time T. For each 
branch y E r r, N ( y, t) denotes the generation number of the particle alive on 
y at time t, 0 ~ t ~ T, and r;( y), i = 1, • • •, N( y, T) + 1, are the ( G-distributed) 
lifetimes of the successive particles on y. Let S 0 (y) = 0, S;(y) =l:J-1rj(y), i;.,, 
1, and observe that the corresponding renewal function is precisely N ( y, t), 0 
~t~ T. 

We define a branching transport process 

{X(y), y E I'r}, T> 0, 

as an age-dependent branching process, as above, such that for each T > 0, to 
each branch y E r r there is associated a transport process X ( y) from 
D[0, T]d such that 

X(y) = {X({r;(y)}, t), 0 ~ t~ T}, 

i.e., X ( y) is based on the lifetimes { r; ( y)} of the successive particles on y. The 
increment process corresponding to the life-span of a particle on y can be 
interpreted as a motion performed by that particle, and X ( y) itself as the 
motion of the ancestry line of the particle alive on y at time T. Particles that 
lie on different lines of descent are assumed to evolve independently of each 
other and of everything else in the past, conditional upon the initial data of 
their movements. Clearly, the motions of different particles may be dependent 
when their ancestry lines have a common part; this is the case for example in 
branching linear transport processes, because the direction of a particle affects 
the evolutions of all its descendants. 

Branching transport processes as defined above are what we have generically 
called branching motion processes in the introduction. 

Our main hypothesis is that the convergence condition (2.2) introduced 
above for the transport processes holds on the branches of the branching 
process, in the sense that if y denotes a single branch oflength T (i.e. a renewal 
process with G-distributed waiting times), then 

I A d (2.6) ar- Xr(y)- Las T- oo. 

(Observe that the processes Xr( y) associated to realizations of different 
branches y behave in general differently). 

We are assuming the existence of a basic probability space (n, F, P) where 
our branching transport process is defined, with O containing all genealogies 
and motions, and F being sufficiently large to provide all the measurability we 
need for our arguments. 

The empirical distribution of the branching transport process {X(y), y E 
I'r }, T > 0, is defined on (0, F, P) for each T > 0 by 

(2.7) Pr(w, A) = Zr(w)- 1 l:yErr(w)l[ar- 1Xr(w, y) EA], w E 0, 

where A varies in the Borel field of D[0, l]d, and 1[ •] is the indicator function; 
i.e., the empirical distribution is obtained for each realization (w) of the model 
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by selecting a branch y at random (uniformly) from I'r(w) and taking its 
corresponding transport process realization Xr(w, y). Thus Pr(w, A) is a 
random probability measure on D[O, l]d, and we will prove that it converges 
weakly (i.e. as a function of A) almost-surely (a.s.) (i.e. for P-almost all w) to 
the process £ described below. 

The limit process £ is related to the single branch limit process L as follows: 
if we take a single branch (i.e. a renewal process with G-distributed waiting 
times), substitute G by G, defined in (2.5), and denote by Xr the process 
obtained in the place of Xr, i.e. 

(2.8) X= {X({T;}, t), o~ t~ T}, 

and Xr(t) = X( Tt), o ~ t ~ 1, 

where the Ti are i.i.d., G-distributed, then our hypothesis (2.6) implies that 

(2.9) 

This is so because the convergence (2.6) depends on G only through some of 
its moments, and moreover £ bears the same dependence on the moments of 
G as L does on those of G. A centering may be necessary in (2.9) and a 
modification of ar can be made; this is discussed in Remark 2 below. We note 
that£ also has continuous sample paths and X satisfies conditions (2.1) (and 
2.4) if relevant). 

Summarizing, the almost-sure invariance principle for the empirical distri­
bution (2.7) of the branching transport process {Xr( y ), y E I'r} is the following 

THEOREM. 

d ~ 
P({w: Pr(w,•)- Las T- oo}) = 1, 

i.e. 

Zr- 1 :EyEPT l[ar- 1Xr(y) EA]- P[L EA] a.s. as T- oo, 

where A is any £-continuous Borel set of C[O, 1] d. 

Remarks. 
1. The theorem states that the proportion of branches y E I'r whose 

corresponding transport processes Xr( y) lie in the Borel set arA tends a.s. to 
P[L EA] as T- oo. Therefore, using the continuous mapping theorem and 
special continuous functionals, we can obtain results on the proportion of 
particles alive at time Twhose ancestry line trajectories satisfy given conditions 
(Section 3 contains examples). 

d 
2. If a centering Cr(t) is required in (2.6), i.e. ar- 1(Xr - Cr)- L, then a 

~ - - d centering Cr(t) will also be needed in (2.9), i.e. ar- 1(Xr - Cr)- L, and in 
order to have convergence of the empirical distribution of the branching 
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transport process {ar- 1Xr(y), y Err}, the Xr(y) also have to be centered by 
Cr, not by Cr; this is clear from the proof of the theorem (convergence of 
cp3,r). Moreover, since in the normalization ar = r,Tf1, Y/ may depend on 
moments of G, we can replace ar in (2.9) by ar = ~Tf1, where~ depends on 

~ , ~ ~ d -
moments of Gin the same way as T/ on those of G. Thus ar- 1(Xr - Cr)- L 
substitutes (2.9), and then we must also replace ar by ar in the branching 
transport process to maintain the limit £. Summarizing, if 

I d 
ar- (Xr - Cr) - Las T- oo, 

then 

I - - d -ar- (Xr - Cr)- Las T- oo, 

and the empirical distribution of the branching transport process 

{ar- 1(Xr(y, t) - Cr(t)), 0 ~ t ~ l, y Err} 

converges weakly a.s. to£ as T- oo. 

3. The moment condition l":.pkk2 < oo can probably be replaced by the 
(minimal) condition "£.pk k log k < ao, using the methods of Athreya and Kaplan 
[1], and Kaplan [22], but we did not endeavor to do this. 

4. This theorem is used in [27] to obtain a Gaussian limit for supercritical 
branching random fields. 

3. Examples 

A large variety of examples can be given, since from many functional central 
limit theorems one can obtain, using our invariance principle, respective limit 
theorems for the corresponding branching motion processes. A collection of 
(single branch) functional central limit theorems is contained in Iglehart [21], 
general types of transport processes are treated by Papanicolaou [24], and 
Papanicolaou, Stroock and V aradhan [25], random motions of Rd are studied 
in Gorostiza [14], to mention only a few sources that contain models of different 
kinds from which one can derive branching versions. In particular there are 
examples where the normalization ar is not the typical T 112. 

We restrict our examples to the special transport processes contained in 
Section 2. Standard d-dimensional Brownian motion starting at O will be 
denoted Bd. 

Branching Brownian motion: If X(y), y E rr, is Bd on C[O, 1t, then 
r- 112Xr(y) is Bd on C[O, 1t for all T, and therefore hypothesis (2.6) is trivially 
satisfied with L = Bd. On the other hand, Xis also Bd (since the waiting times 
are irrelevant), and hence, from (2.9), £ = Bd. It follows from the invariance 
principle that the empirical distribution of the branching Brownian motion 
{T- 112Xr(y), y E rr} converges a.s. to Bd as T - ao. This is the simplest 
example. 



70 LUIS G. ROSTIZA AND NORMAN KAPLAN 

Convergence of the err u -distribution of positions at time T for branching 
Brownian motion assoc .. u,ect to an age-dependent branching process was first 
studied by S. Watanabe in the Markovian case (see [3], p. 243), and a general 
result was obtained by Kaplan and Asmussen [23]. The invariance principle in 
the Markovian case was proved by Gorostiza and Ruiz-Moncayo [18]. 

Branching random walk: Let g;, i = l, 2, •. • , be i.i.d. random vectors in !Rd, 
with mean vector 0 and finite, positive-definite covariance matrix C. Recall 
that the lifetime distribution G has finite mean µ. Then the random walk 

r-112c-112µ 112~~t1) t;, 0 ~ t ~ 1, 

(the matrix c-112 is the square root of c-1) converges weakly to Bd as r- 00 

(see [21]). The invariance principle then implies that the empirical distribution 
of the branching random walk 

{r-112c-112,z112 ~~iy,Tt) g;(y), 0 ~ t ~ l, y E I'r} 

converges weakly a.s. to Bd as T - oo (recall that µ, is the mean of G and see 
Remark 2). 

We now look at random wa11is on IR with general mean. Let t;, i = l, 
2, • • • , be i.i,d. random variables, with mean v and finite variance p2. Assume 
the waiting times r; have mean µ and finite variance a2. Then we have the 
following result, which is probably well-known. 

PROPOSITION. 

{T-1;2(p2µ-1 + v2a2µ-a)-1;2(~~ir1) g; - Ttvµ-1), 0 ~ t ~ l} -1 B1 as r- oo. 

Proof The cases a2 = 0 and p2 = 0 are well-known. Hence we assume a2 > 
0 and p 2 > 0 (and obviouslyµ> 0 and v #- 0). We have 

r-1/2(p2µ-1 + v2a2µ-3)-l/2(~~iTt) ti_ Ttvµ-1) 

= [T-1;2p-1µ112(~~\Tt) t; _ N(Tt)v)](l + v2p-2a2µ-2)-1;2 

+ [T-1;2a-1µa;2(N(Tt) _ Ttµ-1)]va(p2µ2 + v2a2)-1;2_ 

The two terms in brackets on the right-hand side converge weakly to respective 
standard Brownian motions B/ 1> and B/ 2> (see [21]), and the result follows by 
noting that B1 <1> and B1 <2> are independent. 

From this proposition and the invariance principle we have that the empir­
ical distribution of the branching random walk 

{T-l/2(p2µ,-l + v2a2µ,-3)-l/2(~~iy,Tt) t;(y) _ Ttvr,,-1), 0 ~ t ~ l, y E I'r} 

converges weakly a.s. to B1 as T - oo, where µ, and o-2 are the mean and 
variance of G (see Remark 2). 

Several results can be derived from this. For example: 

(1) LetZr(y) denote the number of particles alive at time Tlocated at points 
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~ y, and let 

Yr(u) = uTll2(p2µ-I + v2o2µ-3)1/2 + Tvµ-1, u E R-

Then (using the functional x - x(l), x E D[0, 1]) we have 

Zr(yr(u))/Zr- (2'77)-112 f~00 e-Y212 dy a.s. as T- oo. 

This result is also a special case of a theorem proved by Kaplan (22] under 
"Zpkk log k < oo, using a different method. Previous work in the line of [22] was 
done by Athreya and Kaplan [1], and Kaplan and Asmussen [23]. The 
invariance principle for the centered random walk (v = O) in the Markovian 
case was proved by Gorostiza [15], using another approach. 

(2) The case i; = 1 yields results on the generation numbers along the 
ancestry lines. The empirical distribution of the branching generation process 
(branching renewal process) 

{T- 112a- 1µ312(N(y, Tt) - Ttµ- 1), 0 ~ t ~ 1, y E I'r} 

converges weakly a.s. to Bi as T - oo. In particular, if Rr(y) denotes the 
number of particles alive at time T whose generation numbers are .,;;_y, and if 

Yr(u) = uT 112aµ- 312 + Tµ.-1, U E R, 

then (using the functional x - x(l) on D[0, 1]) we have 

Rr(yr(u))/Zr- (2'77)-112 f~"' e-Y212 dy a.s. as T- oo. 

Samuels [26] obtained this result with convergence in probability, and it also 
follows from [22]. 

From the invariance principle for the branching generation process, or more 
directly from the corresponding individual branch limit theorem for renewal 
times, one can obtain results for the branching times along the ancestry lines. 
For example, using the functional supo...1 .. 1 I x(t)I, x E D[0, l], it can be shown 
that the proportion of particles alive at time T such that on their ancestry 
lines the branching (renewal) times S; differ from iµ by less than T I12u(u > 0) 
in the time interval [O, Ty] (0 < y ~ 1) converges a.s. as T- oo to 

4'17"-1 :l:k=O (-l)k(2k + 1)-l exp{-'11"2(2k + 1)2y/8u 2{i.o-2}. 

(3) The effect of the branching mean m on the trajectories of a branching 
random walk can be seen in the case v = 0, p2 = 1, ,and G exponential with 
parameter "A.. In this case G is exponential with parameter "A.m, and the empirical 
distribution of the branching random walk 

{T-112 :1;~\y,Tt) i;(r), 0 ~ t ~ 1, y E I'r} 

converges weakly a.s. to ("A.m)I12B1 as T- oo. Using the functional supo._1.,.1 x(t) 
on D[0, l], one can show that the proportion of particles alive at time T such 
that the trajectories of their ancestry lines exceed the level T 112 a (a > O) in 
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the time interval [0, Ty] (0 < y ..;; 1) converges a.s. as T-+ oo to 

(2/ )1/2 Joo -u 2/2 d 
7T a(>,_my)-1/2 e u. 

Therefore increasing m causes an increase of this limiting proportion. This 1 

phenomenon is absent in the Galton-Watson case, where the limit is indepen-' 
dent of m (see [17]). 

Branching linear transport process: Now we look at the linear transport 
process in Rd (d ~ 3) defined in Section 2, already scaled: 

T- 112xT(t) = T- 112[l:1~Yt) fh-1Ti + ON(Tt)(Tt - SN(Tt))], 0..;; t..;; 1. 

Observe that under the scaling the particle is traveling at a speed of T 112. For 
definiteness, and due to its interest in neutron transport theory and polymer 
chemistry, we consider only the special case of radially symmetric direction 
changes, i.e., we assume that for each i, 

8;+1 = 0; cos /J;+1 + fi sin /J;+1, 

where fi is uniformly distributed on the unit sphere in the hyperplane perpen­
dicular to O;, and the random angles /J; are i.i.d., independent of the 0;. In 
isotropic transport theory the {J; are uniformly distributed on [0, w ]; in polymer 
theory the {J; take on a constant value called valence angle. 

If ET1P < oo for some p > 3 and if the distribution of /31 is not supported on 
{0, 'IT}, then 

where 

v2 = µ- 1[a 2 + µ2(1 + E cos /31)(1 - E cos /31)-1], 

µ and o-2 being the mean and variance of T1. This is proved in [13]. 

It follows from the invariance principle that the empirical distribution of the 
branching linear transport process • 

{T- 112[1:~r,Tt> oi-1<rhi<r> + oN(y,Tt><r><Tt - sN(y,Tt><r»J, o..;; t..;; 1, r E rT} 

converges weakly a.s. as T-+ oo to vBd, where 

v2 = ,r-1[e12 + µ2(1 + E cos /31)(1 - E cos /31)-1], 

µ and a2 being the mean and variance of G. (In the special case where G is 
exponential with parameter A, as is commonly assumed in physics, then v2 = 
2/Am(l - E cos /31)). 

Then, for example, the proportion of particles alive at time T whose ancestry 
line trajectories remain during the time interval [0, Ty] (0 < y ..;; 1) inside the 
ball centered at the origin with radius aT 112 (a > 0), converges a.s. as T-+ oo 
to 
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where Qu is the first passage time through u > 0 of a Bessel process of index v 
= (d - 2)/2 starting at 0, and Qu has Laplace transform 

Ee-sQ. = (u(2s) 112)"r(v + l)I.(u(2s) 112) 

(see Getoor and Sharpe [11]). 

4. Proofs 

We list for easy reference some results from branching processes and renewal 
theory that are well-known or not hard to derive, and which are valid under 
the conditions we are assuming. 

Branching processes (see [3]). 

Recall {pk}, m, G, a, G, Zr. 

Definitions: 

A(z) = (f~ e-"u[l - G(u)] du)(J; e-"u[l - G(u)] du)-1, z;, 0 

(stationary age distribution). 

Gz(x) = [G(z + x) - G(z)][l - G(z)r\ X;, 0, Z;, 0, 

with G taken as distribution function (Gz( •) is the lifetime distribution function 
of a particle initially of age z). Similarly (see (2.5)), 

Gz(x) = [G(z + x) - G(z)][l - G(z)r1. x;, 0, z;, 0. 

V(z) = m I; e-auGz(du), z ;, 0 

(reproductive age value). 

We denote expectation when the initial particle has lifetime distribution G2 

byEz. 

Results: 

Al. e-"1Z1 - W a.s. as t - oo, where Wis an a.s. positive random variable. 

A2. EZr =s; Keat and EZ; =s; Ke 2" 1 for all t, where K is a positive constant. 

A3. Let A(z, t) = proportion of particles alive at time t of age::;;;; z. Then 

A(z, t) - A(z) a.s. as t- oo, 

and 

f"" V(z)A(dz, t) - f"" V(z)A(dz) = mµ,a(m - 1)- 1 a.s. 
0 0 

as t- oo. 

A4. mGz(dx) = e"xV(z)Gz(dx). 

Renewal theory (see [8]). 

Let T1, T2, • • •, be i.i.d. random variables with non-lattice distribution 
function G, with finite meanµ; So = 0, Sn = ~?=1 T;, n ;, l; and N(t) = max{n 
: Sn =s; t}, t;, 0. 
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Result: 

BL 

where 

Consequence: 

d 
SN(t)+l - t- H as t- oo, 

P[H ~ x] = µ- 1 r [I - G(y)] dy, 
0 

x;;i:0. 

Let T1, T2, • • •, be i.i.d. random variables with distribution G(dx) = 
me-"xG(dx), meanµ,; So= 0, Sn = I:?-1 T;, n ;;i: 1, N(t) = max{n : Sn~ t}, t ;;i: 0. 
Then Bl (and uniform integrability) implies 

B2. 
as t- oo. 

Weak convergence will be proved using the following lemma, which can be 
obtained from standard theory. Before stating the lemma we need to define a 
class of complex-valued functions on D[0, It. For x = (x1, • • •, xd) E D[0, I]d, 
let 

Fo = {f: f(x) = exp(i I:j,kUJkX 1(tk)), tk E [O, 1], 

Ujk ER, j = I, • • •, d; k = I, • • •, m; m = I, 2, .. • }, 

and 

F 1 = {/: f(x) = exp(iuw'(x, 8)), u ER, 0 < 8 < 1}, 

where 

w'(x, 8) = max1,s;,.;d max{supt-1Js.t',.;t,.;t",.;t+6 min[I xi(t) - xi(t') I, I xi(t) - xi(t") \], 

sup0,.;t,.;6 I x;(t) - xi(O) I, sup1-6,.;t,.;1 I x;(t) - x;(l) I}, 

and let F = Fo U Fi. 

It is easy to show that for each f E F there exists a constant M > 0 such that 

(4.1) 
I f(x) - f(y) I ~ M sup0,.;,"'1 II x(t) - y(t) II, x, y E D[0, It. 

LEMMA. Let Xr, T > 0, and X be random elements of D[0, It defined 
respectively on probability spaces (Or, 'isr, Pr), T> 0, and (0, 'is, P). If 

as r- 00 

for each f E F, and X is left-continuous at t = I P-a.s., then 

Proof of the Theorem. 

Take f E F and let 

Xr-1 X as T- oo. 
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Due to the lemma, the theorem will be proved if we show that 

(4.2) <Pr - Ef (L) a.s. as T- oo. 

(The space (nr, 'IJr, Pr) of the lemma corresponds to the random choice of y 
E I'r ). 

Let sr be a time such that O < sr < T, and consider the decomposition 

</)T = </)1,T + </)2,T + </)3,T, 

where 

cf,1,r = Zr- 1 l:yErT [f(ar- 1Xr(y)) - f(ar 1Xr•T(y))], 

cf,2,r = Zr- 1 l:yEr,, {l:y'Er;, f(ar- 1XrsT(y')) - E•T {l:y'Er;.f(ar- 1Xrsr(y'))}, 

<Pa,T = zr-l l:yEr.T EST l:y'Er; f(ar -Ixr•T(y') ), 

with E•r meaning conditional expectation given everything up to time sr, 

x•T( t) = {O, ,, O:s;; t<pr(y)/T, 
T y, Xr(y, t) -Xr(y,pr(y)/T), pr(y)/T:;;; t:;;; I, 

where 

Pr(y) = SN(y,sr)+1(y) I\ T, 

and r ,J. denoting the elements of I'r that are continuations of y E rs, s < T. 

We will prove (4.2) by showing that with an appropriate choice of sr one 
obtains 

cf,1,r - 0, </)2,r - 0 and </)3,T - Ef(L) a.s. as T- oo. 

At this point we require that sr = o(t) (hence T- sr- oo) and sr = o(ar) 
as T - oo. A more precise choice of sr will be made later on. 

Proof that </)1,r - 0. We have, using (4.1), 

where 

Hence 

l<P1,rl :;;;Zr- 1 l:yErr lf(ar- 1Xr(y)) - f(ar- 1Xr 8T(y)) I 

:,;; zr- 1Mar -ll:yErr supo,s;t,s;1IIXr(y, t) - XrsT(y, t) II 

= zr- 1Mar- 1l:yErr supo,s;t,s;PT(y)/TIIXr(y, t) II 

= zr- 1Mar- 1 l:yEI'T supo,s;t,s;pT(y)IIX(y, t) II 

Z -1111 -1~ ~N(Y, 8T)D() :;;; T 1.v.1.ar """yEI'T """i=O i y ' 

i = 0, • • •, N(y, sr). 
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and since ar- 1sr - 0 a.s., it suffices to show that 
_ 1 ..._,N(-y,sT) D ( ) 

ST maxyErs,. .,i=O i Y 

remains bounded a.s. as T- oo, but this holds due to results on the asymptotic 
shape of a branching random walk. Indeed, Biggins' Corollary to Theorem B 
[5] can be applied to show that there is a finite random variable K such that 

maxyEr,,. N ( y, sr) :,:;;;; [ Ksr] a.s. for large sr, 

where [ •] denotes integer part. Then for each y E r •r' 

N(y,sT) D ( ) ..._,[KsT]+l (8) c 1 l:;=o ; y :,:;;;; .. ;=1 D; a.s. 1or arge sr, 

where 8 is the terminal node of an arbitrary continuation of y up to generation 
number [Ksr] + 1, and the D;(O) denote the D; along the corresponding branch. 
Therefore 

where Hr is the set of nodes (particles) of generation [Ksr] + 1. Now, by 
Theorem A [ 5], 

is a.s. bounded as sr - oo. This yields the desired result. 

Proof that <p2,T- 0. Let 

R(y) = l:y'Er;f(ar- 1Xr•r(y')) - E•Tl:y'Er;/(ar- 1Xr•T(y')), 

Due to Al, it suffices to prove that 

e-"Tl:rEr,TR(y)- 0 a.s. 

Using Chebyshev's inequality, the fact that the R(y) are (conditionally) 
independent andE•rR(y) = 0, and 1/1 = 1, we have, fore> 0, 

P[le-"Tl:yEr,,.R(y) I> e]:,:;;;; E- 2e- 2"TEE•Tll:yEr,,.R(y) 12 

= E- 2e- 2"TE l:yEr, E•TI R ( y) 12 
7' 

:,:;;;; e- 2e- 2"TE l:yEr,,. E•TI l:y'Er} f(aiXr•T(y')) 12 

:,:;;;; e-2e-2"TE l: E•T(Z Y)2 
yErsT T ' 

where ZrY denotes the cardinality of rrr (i.e. the number of descendants of y 
E r.T at time T). Conditioning upon the remaining lifetime of a particle at 
time sr and using A2 it is easy to show that 

E•T(Zry)2,,:;;;; K1e2a(T-sr) 

for all y E r.r, where K1 is a constant independent of T, sr. Hence, by A2 



again, we obtain 

(4.3) 

where K2 is a constant. 
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Let Tn - oo on a lattice {n<S}n(8 > O) and choose sr so that ~n exp(-asr) 
< oo (e.g. Sr"= 2a- 1 log n). Then by the Borel-Cantelli 1emma and (4.3), " 

cf,2,Tn - 0 a.S. as n- oo. 

Further arguments are needed to obtain the result for T - oo continuously, 
but this will be taken care of at the end of the proof. 

Proof that cf,s,T- Ef(L). 

There are two cases to consider depending on whether the increments {X(u 
+ S;) - X (S;), 0 ~ u ~ -r;+ i}, i = 0, 1, • • •, of the underlying transport process 
are independent or not. We will carry out the arguments for the non indepen­
dent case (satisfying conditions (2.l}(c) and (2.4)) and indicate the modifica­
tions needed to handle the independent case. 

Observe that 

cf,s,T = Zr-I ~yEr,,, EST ~y'Er~ f(ar -lxr 8T(y')) 

= (ZsTZr -l )ZsT-I ~yErsT EST ~y'Er; f(ar- 1XrsT (y')) 

= (ZsTzr- 1 ) ff (Ez,O ~/Er~' f(ar- 1XT 8T(y'))) A(dz, d0, Sr), 

where yo is a fixed (arbitrary) branch in I'sr, and under the conditional 
expectation Ez,o the particle living on y0 at time sr has age z and is traveling 
(at time sr-) in the direction 0 (0 is a unit vector in Rd). A(dz, d0, sr) is the 
proportion of particles alive at time sr with ages in (z, z + dz) and directions 
in (0, 0 + d0). 

In the last expression we used the fact that for transport processes under 
consideration the conditional distribution of X(t) - X(s), t > s, given the 
process up to times depends only on the direction of the process at times-. 

In the independent case, 0 is not a relevant quantity and so A(dz, d0, sr) 
becomes A (dz, sr), which represents the proportion of particles alive at time 
sr with ages in (z, z + dz). 

Hence 

where 

(4.4) lpT = e-a(T-sT) ff (Ez,O ~y'Erra,} f(ar -l Xr 8T(y'))) A (dz, d0, ST), 

and since (e-c,sTzsT)(e-"'TZr)-1 - a.s., by Al, we must show that 

(4.5) if;r - Ef(L) a.s. as r- oo. 
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We have 

(4.6) Ez,0 l:y'cr;· f(ar -lxr 8T(y')) 

= Ir-•r (E0l:y'Err'''' f(ar- 1Xr 5T(y')))Gz (dx) + o(l) as T.- oo, 

where y(x) is a fixed branch in r.r such that the particle at sr has remaining 
life x, and the o (1) term accounts for the possibility that this particle does not 
die by time T. 

In the following calculation, yo(x) is a fixed branch in r.r+x, N(y, (sr + x, 
T]) denotes the number of splits on y in the interval (sr + x, T], fk is the 
number of kth generation descendants of yo{x), and y1, • • •, Yf,, are the 
corresponding branches. 

E0 l:y'Err*' /(ar- 1Xr•r(y')) = mE0 l:rr'Er}"'"' f(ar- 1Xr•r(y')) 

(where~* denotes summation over y' such that y' E rrr 0<x> and N(y', (sr + x, 
T]) = k) 

= m l:k-o E0 ~o/'-1 f(ar- 1Xr•r(y 1))l[N(y 1, (sr + x, T]) = k] 

= ml:k-oE0faEf(ar- 1Xr•r(y1))l[N(y1, (sr+ x, T]) = k] 

= m l:k-o mkEof(ar- 1Xr•r(y1))l[N(y1, (sr + x, T]) = k]; 

in the last three lines we conditioned upon fk, and used the facts that the terms 
with the different Yi have the same distribution and E gk = m k_ 

We are now concerned with a single branch, yo(x) followed by y1. We omit 
writing the branch but we write X' in place of X in order to remember the role 
of x inX. So, 

E0 l:r'Err''"' f(ar- 1Xr•r(y')) = ~k~o mk+ 1Eof(ar- 1Xr"r)l[N((sr + x, T]) = k]. 

To proceed with the calculation we denote T / the waiting times after time 
sr + x, and correspondingly S ;' the renewal times and N' the renewal function, 
and we bring in the factor exp{-a(T.,... sr)} from (4.4). 

-a(r-sr)E ~ E,( -lx •r( ')) e 8 "'y'Err''·'' I' llr r Y 

= e-a(r-sr) ~k-0 mk+lEo{(ar -lxr'•T)l[N'(T - Sr - x) = k] 

= e-a(r-sr) ~k-0 mk+lE0f(ar- 1Xr 18T)l[S/:,;;; T- Sr - X < Sk+1'] 

_ e-a(r-sr) ~00 mk+I I* E [f(a -lx /Sr)) I~/_ t ~ I_ t ] - "'k-0 8 r r •1 - 1, • '•, ·•k+l - .k+l 

(where J * denotes integration over t1, , • •, tk+ 1 such that t1 + . , . + tk :,;;; T -
sr - x < t1 + • • • tk+d 
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-me-" 11 G(dt1) • • • me-" tk+l G(dtk+1) 

= Eo[(ar- 1Xr'•!)exp[a{S,v,(T-sr-x>+1 1 - (T- sr)} ], 

because the distribution of the T/, which was G, has been replaced by G, 
defined by (2.5); the tilde over S' and N' refers to this fact and the prime has 
the same meaning as above; Xr•T is defined by 

_ {O, O:s;;t=s;;ftr/T, 
(4•7) Xrsr(t) = Xr(t) - Xr(ftr/T), ftr/T$. t $. I, 

with 

Pr= SN(sr)+I /\ T, 

where Xr is given by (2.8), and the prime on X r 18 r keeps reminding us that in 
the calculation the remaining life at time sr is x. 

Now we go back to (4.6) and change the distribution of the particle at time 
sr, which has remaining life x from G to G by means of A4. 

e-a(r-sr) Ir-•r (Eo'l:.y'EI'r*' f(ar- 1Xr 5T(y')))Gz(dx) 

= Ir-•r Eo(f(ar -lxr'"T) 

(4.8) • exp[a{SN'(r-sr-x)+1' - (T - sr)} ])m- 1e"XV(z)Gz(dx) 

= m- 1v(z) Ir-•r Eo(f(ar- 1Xr 8T) 

• exp[a{SN'(T-sr-x>+i' - (T- Sr - x)} ])Gz(dx). 

From (4.4), (4.6), (4.8) and (4.11) below we have 

i/;r = m-l II (Jr-•r Eo{f(ar- 1Xr'•T) 

(4.9) 

• V(z) A (dz, d0, sr )+ o(l) as r- oo. 

Let, for B > 0, 

if;rB = m- 1 JI (Jf-•rl/\b Eu{f(ar- 1Xr"'T) 

(4.10) • exp[a(Siv'(T-sr-x>+i' - (T -sr - x)) ]}Gz(dx)) 

• V(z) (dz, d0, sr) 

Then, since E11{ } is bounded (see B2) and (see A3) 

(4.11) J; J; Gz(dx)V(z) A(dz) < oo a.s., 

it follows from (4.9) and (4.10) that (4.5) will be proved if we show that 

(4.12) limn-,oo limr-,oo i/;rB = Ef (L) a.s. 
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Let qr(x) be such that Sr+ x < Qr(x) < T, 

Qr(x) = (sr + X + §Ff,(qT(x)-sT-x)+1') j\ T, 

and 

(4.13) 

Replacing x,;•T by Xr in (4.10), we define 

(4.14) 

JrB = m- 1 ff (Jt-•Tl/\B Ee{f(ar -i.xr) exp[a(Siv·<r-sT-xl+l' 

- (T - sr - x))]} Gz(dx)) V(z)A(dz, d0, sr). 

We will show that with an appropriate choice of Qr(x), 

(4.15) 

and 

(4.16) 

which proves (4.12). 

We now prove (4.15). First, using (4.1) we have 

I it,? - J? I:,;;;; m- 1 JJJt-•Tli\B Eel{f(ar- 1Xr'•T) - /(ar- 1.Xr) I exp[a(Siv·<T-sT-x)+l 

- (T- sr - x))]} Gz(dx)V(z)A(dz, d0, sr) 

:;;;; m- 1Mar- 1 JJJ~r-sT)/\B Ee{supqT(x),,,;t,,,;rllX(t) - X(qr(x)) II exp[a(SN'(r-sT-x>+i' 

- (T - sr -- x))]} Gz(dx) V(z)A(dz, d0, sr). 

Now, denoting er(x) = exp[a(Siv-<r-sT-xi+i' - (T- sr - x))] and using condition 
(2.1) (c) for X, 

Ee{supqT<x),,,;t,,,;rll X(t) - X(qr(x)) II er(x)} :,;;;; K(T - Qr(x))Eer(x) 

for large T - Qr(x). Note that the dependence on 0 is no longer present. It 
follows from B2 that 

Thus 

and since x :;;;; B and T - sr - oo we can choose qr = Qr(x) independently of 
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x so that ST+ x <QT< T for all x ~ B. So, using A3 and (4.11), 

Io/TB - i/lTB I ~ m- 1MKN ft-sTl/\B J; Gz(dx) V(z)A(dz, ST)aT-1(T - QT) 

~ QaT- 1(T - QT), 

where Q > 0 is a constant. Taking QT such that T - QT - oo and T - QT = 
o(aT) as T- oo obtains (4.15). 

In the independent case the preceding argument to prove (4.15) is somewhat 
more involved because (2.l)(c) cannot be used. We will give the details using 
(2.l)(b), which is satisfied by the random walk (the case (2.l)(a) is easier). 
Note that fJ does not appear here. 

E{supqT<x)Eoe..TUX(t) - X(,fr(x)) II eT(x)) 

= E { E[ SUJ)q(x)E;t,,;T II X(t) - X( QT(X)) 111 renewal times]eT(x)} 

~ KE{[N'(T- ST- x) - N'(qT(x) - ST- x)]eT(x)) 

~ KE{[N'(T - ST - x) - N'(qT(x) - ST - x)] exp(aTN(T-sT-x>+1']}. 

By standard arguments one can show that 

E[(N'(T- ST- x) - N'(<h(x) - ST- x)) 

-exp(a7°.N'(T-srx>+1') I N'(q-z{x) - ·ST- x)] 

= :E*(k - N'(qT(x) - ST - x))E[l[Bk' ~ T - ST - x] 
•E[l[TN'(T-srx)+I 1 > T- ST- X - Bk'] 

•exp(aTN'<T-sT-x>+i') I Bk', N'(qT(x) - ST- x)] I N'(,fr(x) - ST- x)], 

(where :E* denotes summation over k such that k ;;a, N'(qT(x) - ST - x)), and, 
recalling (2.5), 

E[l[TN'(T-srx)+1 1 > T- ST- X - Bk'] 

Hence 

•exp(aT.N'(T-srx)+1') I Bk', N'(qT(X) - ST - x)] 

= J;_8T-%-S' ea"G(du) = m h-sT_%_8,G(du) ~ m. 
• • 

E{sup 11,.1%> ..... TIIX(t) - X(qT(x)) II eT(x)) 

~ KmE :E*(k - N'(qT(x) - ST - x))P[N'(T- ST- x) 

;;a, k I N'(qT(x) - ST - x)] 

= KmE(N'(T- ST- x) - N'(qT(x) - ST- x)) 2, 
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and conditioning upon ijr(x), 

~ H E(T - Sr - x - (qr(x) - sr - x))2 

= H E(T - qr(x)) 2 ~ H(T - Qr(x))2 

for large T - Qr(x), where H > 0 is a constant. Therefore 

1 V'TB - JrB I ~ m- 1MHar -i ft-87')/\B (T - Qr(x))2 J; Gz(dx) V(z)A(dz, sr), 

and as before we can choose Qr = QrtX) independently of x so that sr + x < QT 
< Tforallx~B. So 

I V'TB - JrB I ~ m- 1MH ft-87')/\B f;' Gz(dx) V(z)A(dz, sr)ar - 1(T - Qr)2 

~ Qar - 1(T - Qr)2, 

where Q > 0 is a constant. Taking QT such that T- Qr._ oo and (T- Qr)2 = 
o(ar) as T .- oo obtains (4.15). 

Now (4.16). We will show first that for all x ~ B, 
lA -

(4.17) Ee{f(ar- Xr) exp[a(Siv-(T-sr-x>+1' - (T- Sr - x))]} 

.- Ef(E)(m - l)(ji.a)- 1 uniformly in() as T.- oo. 

Xr and sr + x + 8v-<T-srx>+1' - qr(x) are independent conditional upon Qr(x), 
provided that qr(x) < T. Since T - Qr.- oo implies that T - qr(x) .- oo a.s. for 
all x ~ B, then • 

l A -Eo{/(ar- Xr) exp[a(Siv'(T-srx>+i' - (T- Sr - x))]} 

= Eo{l[qr(x) < T]Eo[f(ar- 1X) I Qr(x)]E[exp (a(sr + x + Siv'<T-•rx>+i' - Qr(x) 

- (T - qr(x)))) I qr(x)]} + o(l) as T .- ix>; 

moreover, T - Qr(x) .- oo a.s. implies, by B2, that 

E[exp(a(sr + x + Siv'<T-srx>+i' - qr(x) - (T- qr(x)))) I qr(x)] 

.- (m - l)(µa)- 1 a.s. as T-+ oo. 

Then it is easy to see that (4.17) follows if we show that 

(4.18) Eo{(ar- 1Xr) .- Ef(l) uniformly in() as T.- oo, 

which we will do by proving that 

(4.19) EosUPo<t,.;1 II ar- 1Xr(x) - ar- 1Xr(t) II-+ 0 uniformly in() as T .- oo, 

for this, with (2.9) and condition (2.4) for X can be shown to imply (4.18). 

From (2.8), (4.7) and (4.13) we have, denoting tr= Qr(Pr - sr)(= Qr(x)), 

supo.,s;t,,;;1 II ar -lxr(t) - ar -lJlr(t) II 
= ar- 1 supo.,s;t,,;;rllX(t) - X(t) Ii 
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:s;;; aT- 1(Supo,,;r,,;;j,rllX(t) II+ SUPtr""t,;;TIIX(t) - _x'sr(tT) 11) 

:s;;; aT- 1(2 supo,.t,;;j,rll.X(t) II+ sup1,....t<;TIIX(t) - X(tT) II), 

and the result follows using condition (2.l)(c)for .X similarly as below. 

Under condition (2.l)(b) we have 

E II I A I~ 
supo""1.;1 UT- XT(t) - aT- XT(t) 11 

:s;;; M- 1.K[2(E(N(sT) + 1) + E(N(T) - N(qT))] 

=s;;; H(aT- 1ST + aT- 1(T - qT)) + o(l) as T- oo, 
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where H > 0 is a constant, and then (4.19) follows because ST = o(aT) and T 
- qT = o(aT). Finally, from (4.14), (4.17) and A3 we have 

and 

~;: J; Gz(dx) V(z)A(dz) = mjia(m - 1)-1, 

and therefore (4.16) is proved. 

This finishes the proof that cpa,T- Ef(L,) a.s. 

We have now proved the theorem in the special case when T- oo on lattices 
{n8}, i.e. 

(4.20) Zn8-ILrErn81[an8-lXniy) EA] - P[[ EA] a.s. as n - oo, 

for all 8 > 0, where A is any £-continuous Borel set of D[0, It. 

The final step is to pass from the lattice to the continuum, i.e. to prove that 
(4.20) implies 

as T- oo. 

For T > 0, and 8 > 0 small, let the integer n be such that (n - 1)8 :s;;; T < n8, 
and set 8T = n8. Then T J 8T - I as T - oo, and therefore aT/ a8T - I as T -
oo, due to the form of aT (2.3). Thus we can replace aT by a8r in (4.21). Hence, 
to prove (4.21) it is sufficient to show 

(4.22) lim SUPT--->00 zT- 1 l:yErr l[a8T-IXT(y) E F] ,s;;; P[[ E F] a.s. 

for closed sets Fin D[0, It. 

Without loss of generality we can assume that the sum in (4.22) is over the 
branches in rT which do not split before time 8T. This follows because 

lim SUPT--->oo Zr 1l:yErr ![particle on y dies in next 8 time unit) 

is a.s. arbitrarily small as 8 - 0, as can be shown using the arguments of 
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Athreya and Kaplan [I] (p. 47). Therefore 

zr- 1 l:yEI'T l[asT- 1Xr(y) E FJ = Zr- 1 l:yEI's l[asT- 1Xr(y) E F] 
T 

= Cr(8)ZoT-I l:yEr8,, l[aBT-IXr(y) E F], 
(4.23) 

where 

(4.24) 

Let E > 0, and F. = F + S., where S. is an open Skorohod ball of center O and 
radius E. Then 

z8T-ll:yEI's l[a8T-IXr(y) EF],s;;ZsT-ll:yEI's l[a8T-Ix8T(y) EFe] 
(4.25) T T 

+ z8T-l l:yEI's l[p(asT- 1Xr(y), a8T -lxsT(y)) ~ E], 
T 

where p denotes the Skorohod metric 

(4_26) p(x, y) = max1._;.w inf;'-EA {supo.., .. 1 I x;(t) - yt\(t)) I+ supo..t .. 1 It- ;\.(t) I}, 
x = (x1, • • •, xd) and y = (y 1, •••,yd) in D[O, It, 

with A being the set of all strictly increasing and continuous mappings of [O, I] 
onto itself. 

If we show that 

(4.27) as T- oo, 

then it will follow from (4.23), (4.24), (4.25), Al and the invariance theorem for 
the lattice (4.20), that 

lim supr----,oo Zr- 1 l:yErT l[aoT- 1Xr(y) E F],;;; e"8P[L E F.] a.s., 

where Eis taken so that F. is £-continuous, whence (4.22) results by letting 8 
-o ande-o. 

We now prove (4.27). 

Setting d = I and deleting y to simplify notation, we have from (4.26), 

p(a8T- 1Xr, a8T -lx8T) ,s;; 

where 

Ar(t) = {~r'r 1t~ 0,;;; t,;;;;; rr, 
lmear m rr ,;;;;; t ,;;;;; I, 

with O < rr < T8r- 1 <I.Hence 

SUPo..t..1 It - Ar(t) I = (8rT- 1 - I)rr,;;;;; (8r(8r - 8)- 1 - I)rr, 

and 
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supo .. i .. d XT(AT(t)) - XBT(t) I = SUPrT .. t..1 IXT(A(t)) - x8T(t) I 

,;;;; SUPrT,;;;t._1 IXr(Ar(t)) - Xr(Ar(rr)) I 

+ SUPrT,;;;t,,c;l I x8T(t) - x8T(rr) I 

:,;;;; 2 sup8TrT"-t,;;;6T I X(t) - X(Brrr) I 

= 2 supo,;;;s._oT(l-rT) I X(8rrr + s) - X(8rrT) j. 
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Choosing rT = 1 - s8T/8T (remember sr?), which is clearly possible, we have, 
for each y E r 8T, 

p(a8T -lxr(y), a8T -lx8T(y)) :,;;;; p~(y) + (8r(8r - 8)-l - l)rr, 

where 

Since (8T(8T- 8)- 1 - l)rT- 0, (4.27) will be proved ifwe show that 

(4.28) as T- oo. 

By any of the conditions (2.1) and ST= o(aT) we have that v8/y) - 0 in 
probability as T- oo for each y. The random functions defined by 

y8T(y, t) = f 0, IX ( ) X ( ) I ~ supo,., ... i-rT sT y, rT + s - BT y, rT , 

for y E rsT, satisfy the conditions of the invariance principle by construction, 
and asT-iy"r(y) converges in distribution to the function O for all y because 
supo .. i..i aBT-1 I YBT (y, t) I = PBr(y). Since the Y8r(y) are indexed on the lattice 
{n8}, the invariance principle in the lattice case (4.20) and the functional x 
- x(l), x E D(O, 1], can be applied to obtain (4.28) because PBr(y) = a8T-1YBT(y, 

1). 

The theorem is proved. 
CENTRO DE INVESTIGACI0N DEL JPN, MEXICO 14, D. F. 
NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, 

NORTH CAROLINA, U.S.A. 
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