Boletín de la Sociedad Matemática Mexicana Vol. 26, No. 1, 1981

THE STRONG LAW OF LARGE NUMBERS IN LOCALLY CONVEX SUSLIN SPACES

By Walter Schachermayer

Introduction

G.E.F. Thomas raised the question, whether the strong law of large numbers is valid for i.i.d. totally summable sequences $\{X_n\}_{n=1}^{\infty}$ of random variables with values in a quasicomplete locally convex Suslin-space E. We show by a simple truncation-argument that the answer is yes and—using an idea of Chatterji that for Saksspaces E the assumption of total summability is also necessary for the strong law of large numbers to hold. A final example shows that the assumption that E is Suslin, is essential. The theorem generalizes the result of Mourier [7], Padgett and Taylor [8] who considered the case of separable Banach and Fréchet spaces.

1. Denote by (Ω, Σ, μ) an (abstract) probability space, by (E, τ) a vector space E with a locally convex Hausdorff topology τ . Throughout this paper—except in the example 10)—we shall assume that E is a Suslin space. The letter X denotes a random variable defined on Ω with values in E (measurable with respect to the Borel- σ -algebra of E).

2. Definition (c.f. [6], §5): X is called *totally summable*, if there is a closed, absolutely convex, bounded subset B of E, such that if $\|\cdot\|_B$ denotes the gauge-function of B,

$$\int_{\Omega} \| X(\omega) \|_B d\mu(\omega) < \infty.$$

If E is assumed to be quasicomplete, then one may define for $A \in \Sigma$ the Pettisintegral

$$\int_A X(\omega) \ d\mu(\omega),$$

which is an element of E([6]).

3. Let $\{X_n\}_{n=1}$ be a sequence of independent identically distributed (i.i.d.) *E*-valued random-variables and denote by S_n the partial sums $X_1 + \cdots + X_n$.

4. LEMMA. Assume there is a compact, convex, metrisable subset K of E such that X_1 takes its values almost surely in K. Then the strong law of large numbers holds, i.e.

$$\lim_{n\to\infty} n^{-1}S_n(\omega) = E(X_1) \qquad \mu - a.s.$$

Proof. K being metrisable, there is a sequence $\{f_k\}_{k=1}^{\infty}$ in E' which induces the τ -topology on K(c.f. [2] for example). For each of the sequences of i.i.d. realvalued, bounded random variables $\{f_k \circ X_n\}_{n=1}^{\infty}$ we may apply the strong law of large numbers, i.e. for each $k \in \mathbb{N}$

$$\lim_{n\to\infty} n^{-1} f_k \circ S_n(\omega) = E(f_k \circ X_1) \qquad \mu - \text{a.s.}$$

WALTER SCHACHERMAYER

Whence, as $n^{-1}S_n$ lies almost surely in the convex set K,

$$\lim_{n\to\infty} n^{-1} S_n(\omega) = E(X_1) \qquad \qquad \mu - \text{a.s.},$$

where $E(X_1)$ denotes the expectation of X_1 , which is an element of K . q.e.d.

5. THEOREM. Let $\{X_n\}_{n=1}^{\infty}$ be an i.i.d. sequence of totally summable random variables with values in a quasicomplete locally convex Suslin space E. Then the strong law of large numbers holds, i.e.

$$\lim_{n\to\infty} n^{-1}S_n(\omega) = E(X_1) \qquad \qquad \mu - a.s.$$

Proof. Replacing if necessary Ω by $E^{\mathbb{N}}$ and μ by its image under the map $\omega \to \{X_n(\omega)\}_{n\in\mathbb{N}}$, we may assume without loss of generality that the underlying probability space is a product space $(\Omega^{\mathbb{N}}, \Sigma^{\mathbb{N}}, \mu^{\mathbb{N}})$ and there is one random-variable $X: \Omega \to E$ such that $X_n = X \circ p_n$, p_n denoting the projection onto the *n*-th coordinate in $\Omega^{\mathbb{N}}$.

Let B be a closed, absolutely convex, bounded subset of E such that

$$\int \|X(\omega)\|_B d\mu(\omega) < \infty.$$

Fix $\epsilon > 0$. There is $\delta > 0$ such that $A \subseteq \Omega$, $\mu(A) < \delta$ implies $\int_A ||X(\omega)||_B d\mu(\omega) \le \epsilon$. *E* being a Suslin space, every probability measure on the Borel sets of *E* is tight ([4], p. 122 th. 10). Applying this to the image of μ under *X* we can find a compact set K_1 in *E* such that $\mu\{\omega: X(\omega) \in K_1\} > 1 - \delta$. By the quasicompleteness of *E*, the closed convex hull *K* of $K_1 \cup \{0\}$ is still compact and—using again the fact that *E* is Suslin-metrisable (c.f. [4], p. 106, cor. 2).

Let $\Omega^1 = \{\omega \in \Omega : X(\omega) \in K\}$ and $\Omega^2 = \Omega \setminus \Omega^1$. Let $X^1 = X \cdot \chi_{\Omega^1}$ and $X^2 = X \cdot \chi_{\Omega^2}$. Note that $\{X^1 \circ p_n\}_{n=1}^{\infty}$ and $\{X^2 \circ p_n\}_{n=1}^{\infty}$ are both sequences of i.i.d. random variables, the former satisfying the hypothesis of the preceding lemma. Whence

$$\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} X^{1} \circ p_{i}((\omega_{m})_{m=1}^{\infty}) = E(X^{1})$$

for $\mu^{\mathbb{N}}$ - almost all $(\omega_m)_{m=1}^{\infty}$ in $\Omega^{\mathbb{N}}$. Note that $|| E(X) - E(X^1) ||_B = || E(X^2) ||_B$ $\leq E(|| X^2 ||_B) \leq \epsilon$. Of the remaining part $\{X^2 \circ p_n\}_{n=1}^{\infty}$ the following estimate takes care:

$$\begin{split} \lim \sup_{n \to \infty} \| n^{-1} \sum_{i=1}^{n} X^{2} \circ p_{i}((\omega_{m})_{m=1}^{\infty}) \|_{B} \\ &\leq \limsup_{n \to \infty} n^{-1} \sum_{i=1}^{n} \| X^{2} \circ p_{i}((\omega_{m})_{m=1}) \| \qquad \mu - \text{a.s.} \\ &\leq \epsilon. \end{split}$$

The last inequality holds almost surely, as $\{\|X^2 \circ p_n\|_B\}_{n=1}^{\infty}$ is a sequence of positive i.i.d. random variables. By the scalar strong law of large numbers we know that their means converge a.s. to $E(\|X^2\|_B)$ which is less than ϵ .

Noting that

$$n^{-1}\sum_{i=1}^{n} X \circ p_n = n^{-1}\sum_{i=1}^{n} X^1 \circ p_n + n^{-1}\sum_{i=1}^{n} X^2 \circ p_n$$

we see that for each $\epsilon > 0$ the sequence $\{n^{-1}S_n\}_{n=1}^{\infty}$ may almost surely be

written as a sum of a sequence, τ -converging to a value which is ϵ -close to E(X) in the $\|\cdot\|_{B}$ -gauge and a sequence with the lim sup of the $\|\cdot\|_{B}$ -gauge bounded by ϵ . Letting $\epsilon = k^{-1}$, $k = 1, 2, \cdots$, one concludes that on a set of measure 1

$$\lim_{n\to\infty} n^{-1}\sum_{i=1}^n X \circ p_i((\omega_m)_{m=1}^\infty) = \lim_{n\to\infty} n^{-1}S_n((\omega_m)_{m=1}^\infty) = E(X). \quad \text{q.e.d.}$$

6. If on a locally convex space E there is one closed bounded absolutely convex set such that its scalar multiples form a fundamental system for the bounded sets in E, E is called a Saks space. For definitions and notations we refer to [2].

The following result was proved by Chatterji for the case of Banach-valued Pettis-integrable functions ([1]). His argument carries over to the following more general case, establishing a converse to proposition 5 for the case of Saksspace.

7. PROPOSITION. Let $(E, \|\cdot\|, \tau)$ be a Saks-space and $\{X_n\}_{n=1}^{\infty}$ an i.i.d. sequence of τ -measurable E-valued random variables. If

$$\lim_{n\to\infty} n^{-1}S_n(\omega)$$

converges almost surely with respect to the mixed topology $\gamma(\|\cdot\|, \tau)$, then

 $\int_{\Omega} \|X_1\| d\mu < \infty,$

i.e., X_1 is totally summable.

Proof: If $\{n^{-1}S_n(\omega)\}_{n=1}^{\infty}$ γ -converges, it is γ -bounded and therefore normbounded ([2]). As

$$n^{-1}X_n = n^{-1}(S_n - S_{n-1})$$

= $n^{-1}S_n - (1 - 1/n) \cdot (n - 1)^{-1}S_{n-1},$

we infer that $\{n^{-1}X_n(\omega)\}_{n=1}^{\infty}$ is almost surely bounded. Hence there is M > 0 such that

 $\mu\{\omega: \limsup \| n^{-1}X_n(\omega) \| \leq M\} > 0.$

By Kolmogoroff's 0-1-law the probability of the above event is actually 1.

The Borel-Cantelli-lemma implies that

$$\sum_{n=1}^{\infty} \mu\{\|X_n\| \leq n \cdot M\} < \infty.$$

As the sequence $\{X_n\}_{n=1}^{\infty}$ is identically distributed

 $\sum_{n=1}^{\infty} \mu\{\|X_1\| \leq n \cdot M\} < \infty$

or equivalently

$$\int_{\Omega} \|X_1(\omega)\| d\mu(\omega) < \infty. \qquad \text{q.e.d.}$$

8. COROLLARY. Let F be a separable Banach space and let E = F' with $\tau = \sigma(F', F)$. (Then E is quasicomplete and Suslin.) If $(X_n)_{n\geq 1}$ is a sequence of

WALTER SCHACHERMAYER

i.i.d. Pettis summable random variables with values in (E, τ) and $\frac{1}{n}S_n$ converges almost surely in (E, τ) the X_n are totally summable, i.e. $\int ||X_n|| d\mu < +\infty$.

Proof. By the theorem of Banach-Steinhaus $\{\frac{1}{n}S_n(\omega)\}\$ is bounded almost surely, hence converges a.s. with respect to $\gamma([2], p. 9, \text{ proposition 1-10})$.

9. In particular we can construct the following: Example. Of a case where E is Suslin, quasi complete, but where for Pettis summable i.i.d. random variables the strong law of large numbers fails.

It suffices to take $E = l^2$, τ the weak topology, $\Omega = [0, 1]^{\overline{N}} \mu$ product Lebesgue measure, and $X_n(\omega) = X(\omega_n)$ where $X:[0, 1] \to l^2$ is Pettis integrable but not Bochner integrable (e.g. if $[0, 1] = \sum_{n=1}^{\infty} A_n$ with $|A_n| = c/n^2 X(t) = ne_n$ for $t \in A_n$, $(e_n)_{n\geq 1}$ being the canonical basis of l^2).

10. *Example*. We now give an example of a locally convex space E that fails to be Suslin and an i.i.d. sequence $\{X_n\}_{n=1}^{\infty}$ of Borel-measurable, uniformly bounded Pettis-integrable E-valued random variables such that

$$\lim_{n\to\infty} n^{-1} S_n(\omega)$$

does not exist almost surely.

Denote by $[0, \omega_1]$ (resp. $[0, \omega_1[$) the compact (resp. locally compact) space of ordinals less than or equal to (resp. less than) ω_1 , the first uncountable one. Let $C([0, \omega_1])$ be the Banach space of continuous functions on $[0, \omega_1]$ and $(M([0, \omega_1]), \sigma^*)$ the dual space, the Radon-measures on $[0, \omega_1]$, equipped with the weak*-topology.

Let $(\Omega, \Sigma, \mu) = ([0, \omega_1[^N, Borel ([0, \omega_1[)^N, \nu^N), where \nu denotes the <math>\sigma$ -additive Borel measure on $[0, \omega_1[$ that gives measure 1 or 0 to each Borel set in $[0, \omega_1[$, according to whether it contains an uncountable closed set or not. (This famous example, due to J. Diendonné, may be found in [3] for example). Let $\delta: [0, \omega_1[\to M([0, \omega_1]) \text{ denote the Dirac transform, i.e., the map associating to$ $each <math>\alpha \in [0, \omega_1[$ the Dirac measure δ_{α} . Define a sequence $\{X_n\}_{n=1}^{\infty}$ of i.i.d. $M([0, \omega_1])$ -valued Borel-measurable (w.r. to the σ^* -topology) random variables on Ω by putting $X_n = \delta \circ p_n$, p_n denoting the projection onto the *n*-th coordinate of $[0, \omega_1[^N]$.

It is easily seen that a Σ -measurable subset of Ω has measure 1 iff it contains a set of the form $F^{\mathbb{N}}$ for some uncountable closed subset F of $[0, \omega_1]$.

But as it is evidently absurd that for some closed uncountable F of $[0, \omega_1[$ we have, that for each sequence $\{\alpha_n\}_{n=1}^{\infty}$ in F the limit

$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^n \delta_{\alpha_i}$$

converges in the weak-*-topology of $M[0, \omega_1]$, we arrive at a contradiction, showing that the strong law of large numbers does not hold for $\{X_n\}_{n=1}^{\infty}$.

Centro de Investigacion del IPN, Mexico, D. F. Johannes Kepler Universität Linz, Linz, Austria.

References

- D. S. CHATTERJI, Vector-valued martingales and their applications, Lecture Notes in Mathematics 526, Springer Verlag, Berlin-Heidelberg-New York, 1976.
- [2] J. B. COOPER, Saks Spaces and Applications to Functional Analysis, North Holland Mathematics Studies 28, Amsterdam, 1978.
- [3] P. R. HALMOS, Measure Theory, Van Nostrand, Princeton, 1950.
- [4] L. SCHWARTZ, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press, Bombay, 1973.
- [5] G. E. F. THOMAS, Totally summable functions with values in locally convex spaces, Lecture Notes in Mathematics 541, Springer Verlag, Berlin-Heidelberg-New York, 1976.
- [6] ——, Integration of functions with values in locally convex Suslin spaces, Amer. Math. Soc. Transl. 212(1975), 61–81.
- [7] J. E. MOURIER, Eléments aléatoires dans un espace de Banach, Ann. Inst. Henri Poincaré 13(1952), 159–244.
- [8] W. J. PADGETT AND R. L. TAYLOR, Laws of large numbers for normed linear spaces and certain Fréchet spaces, Lecture Notes in Mathematics 360, Springer Verlag, Berlin-Heidelberg-New York, 1973.