Boletin de la Sociedad Matematica Mexicana Vol. 26 No. 1 1981

SIMPLICIAL DECOMPOSITION OF r-STRUCTURES

BY SOLOMON M. JEKEL

Introduction

Let Γ be a topological groupoid with objects \mathcal{O} , and $B\Gamma$ the classifying space for Γ -structures. The loop space of $B\Gamma$, $\Omega B\Gamma$, has the following description [2]: If θ is contractible then Ω BT is, up to weak homotopy type, the realization of a simplicial group $\mathscr{G}_*(\Gamma)$ whose group of *p*-cells is the free group on the *p*simplexes of Γ modulo relations defined for certain composable pairs of simplexes. In this paper we give a concrete description of the complex $\mathscr{G}_*(\Gamma)$.

Each $\mathscr{G}_p(\Gamma)$, $p \ge 0$ is isomorphic to the free product of the free group on the p-simplexes of Γ with an "isotropy group" of $S^{p}\Gamma$ with respect to a natural action of S^p on S^p . These isomorphisms then induce an isomorphism of $\mathscr{G}_*(\Gamma)$ with a simplicial group $\bar{\mathscr{G}}_*(\Gamma)$ which we refer to as a *simplicial group* decomposition of Γ .

The isomorphisms for each $p \geq 0$ depend on certain choices in much the same way that defining the fundamental group of a space depends on a choice of base point. In general these choices are not compatible under faces and degeneracies. When they are compatible we show that $\overline{\mathscr{G}}_*(\Gamma)$ splits into an isotropy part and a free part. Otherwise the faces and degeneracies mix the two complexes in a rather complicated way.

As an application of this construction we define a spectral sequence which converges to $H_*(B\Gamma)$ and whose E^1 term is given in terms of the homology of the isotropy groups of S^p . We compute the E^1 term of this spectral sequence for $B\Gamma_{1}^{\circ}$, the classifying space for codimension-one real analytic Γ -structures.

I am very grateful to Francisco Gonzalez-Acuna for discussing the material of this paper on numerous occasions. It is his observation that the universal groups of a discrete groupoid decompose in the described way.

§1 The Universal Simplicial Group of a Topological Groupoid

We begin by recalling the constructions and the main theorem of [2].

Let Γ be a *topological groupoid* which we view as a small topological category with all morphisms invertible. Let $\mathcal{M}(\Gamma)$ be the space of morphisms of Γ and $\mathcal{O}(\Gamma)$ the space of objects of Γ . $\mathcal{O}(\Gamma)$ is homeomorphic to the subspace of $M(\Gamma)$ consisting of identity morphisms. Therefore, when there is no confusion, we shall write Γ for $\mathcal{M}(\Gamma)$ and \mathcal{O} for the subspace of identity morphisms.

Consider first Γ with the *discrete* topology. The *reduced set of* Γ , Γ / \varnothing , obtained by identifying the identity morphisms to a point 1, inherits a sometimes-defined multiplication "*" from the groupoid composition "^{o"}.

- (i) $x * y = x \circ y$ if x, y and $x \circ y$ are not 1, and $(x, y) \rightarrow x \circ y$ is defined in Γ .
- (ii) $x \star x^{-1} = x^{-1} \star x = 1$ for all $x \in \Gamma / \mathcal{O}$.

(iii) $1 \times x = x \times 1 = x$ for all $x \in \Gamma / \mathcal{O}$.

The product \star makes Γ / \mathcal{O} into a pregroup [2].

Let $\mathscr{G}_0(\Gamma)$ be the *universal group of the pregroup* Γ / \mathscr{O} . It is the free group on the elements of $\Gamma/\mathcal{O}, F(\Gamma/\mathcal{O})$, modulo the relations $x \cdot y = x * y$, where $x \cdot y$ is the free product, $x * y$ the \star -product and there is a relation whenever $x * y$ is defined.

We will refer to $\mathscr{G}_0(\Gamma)$ as the *universal group of* Γ .

Now let Γ be a topological groupoid. Let $S^p\Gamma$ denote the set of singular *p*simplexes on Γ , $p \ge 0$ and *ST* the total singular complex of Γ .

 S^p *S^p* is, in a natural way, the set of morphisms of a discrete groupoid with objects $S^p \mathcal{O}$. Let $\mathcal{G}_p(\Gamma)$ be the universal group of (the discrete groupoid) $S^p \Gamma$.

Consider the disjoint union $\mathscr{G}_*(\Gamma) = \bigcup_{p \geq 0} \mathscr{G}_p(\Gamma)$. $\mathscr{G}_*(\Gamma)$ is a simplicial group with faces and degeneracies induced by those of *SI'* which we call the *universal simplicial group of I'.*

The following theorem is proved in [2].

THEOREM 1: Let Γ *be a topological groupoid with its space of objects* \emptyset *contractible. Let* $\mathscr{G}_*(\Gamma)$ *be the universal simplicial group of* Γ *. Let* $B\Gamma$ *be the classifying space for* Γ -structures. Then there is a weak homotopy equivalence

 $| \mathcal{G}_*(\Gamma) | \rightarrow \Omega B \Gamma.$

§2. Elements of **the Decomposition**

In this section Γ will be a discrete groupoid with objects \varnothing and source and target maps *s* and *t*. To Γ we associate an *isotropy group* $\mathcal{I}(\Gamma)$ and a *base path group* $\mathcal{F}(\mathcal{O})$ which will be the factors of the decomposition of $\mathcal{G}_0(\Gamma)$. The definition of these groups will depend, up to isomorphism, on a choice of ^a*base for* r.

(1) *I'-components and paths:*

Define an equivalence relation \sim on the objects of Γ by $x \sim y$ if there exists a morphism $\gamma \in \Gamma$ such that $s(\gamma) = x$, $t(\gamma) = y$.

A Γ -*component* $\mathcal{O}_\alpha \subset \mathcal{O}$ is an equivalence class of objects of Γ under the above equivalence.

A path of a component $\mathcal{O}_{\alpha} \subset \mathcal{O}$ is a morphism $p \in \Gamma$ such that $s(p)$ and $t(p)$ are in \mathcal{O}_{α} .

Let Γ_{α} be the set of paths of \mathcal{O}_{α} . Each Γ_{α} is a groupoid with objects \mathcal{O}_{α} , and the groupoid Γ is the disjoint union of the groupoids Γ_{α} . $\{\Gamma_{\alpha}\}\$ is a partition of Γ into its "groupoid" components.

(2) *A base for I':*

A base for Γ , $B = \{\beta, \rho\}$ is given by the following data.

a) A collection of *base points* $\beta = \{b_{\alpha}\}\$. This is a choice of a single element b_{α} \in $\mathcal{O}\alpha$ for each component \mathcal{O}_α .

b) A collection of *base paths* $\rho = {\rho(x)}$. This is a choice of a single morphism

 $\rho(x) \in \Gamma$ for each $x \in \mathcal{O}$ such that

(i) If $x \in \mathcal{O}_\alpha$ then $s(\rho(x)) = b_\alpha$ and $t(\rho(x)) = x$

(ii) $\rho(b_\alpha) = \mathrm{id}_{b_\alpha} = \text{identity morphism of } b_\alpha$.

A base for Γ , $B = {\beta, \rho}$ is given by the following data.

a) A collection of *base points* $\beta = \{b_{\alpha}\}\$. This is a choice of a single element b_{α} \in \mathcal{O}_{α} for each component \mathcal{O}_{α} .

b) A collection of *base paths* $\rho = \{\rho(x)\}\$. This is a choice of a single morphism $\rho(x) \in \Gamma$ for each $x \in \mathcal{O}$ such that

- (i) If $x \in \mathcal{O}_{\alpha}$ then $s(\rho(x)) = b_{\alpha}$ and $t(\rho(x)) = x$
- (ii) $\rho(b_\alpha) = id_{b_\alpha}$ = identity morphism of b_α .

(3) *The isotropy group of* I':

Let $x \in \mathcal{O}$. The *isotropy group of x,* $\mathcal{I}(x)$, is defined by $\mathcal{I}(x) = \{ \gamma \in \Gamma \mid s(\gamma) \}$ $= t(\gamma) = x$. $\mathcal{I}(x)$ is a group under the multiplication induced by the groupoid structure of Γ .

Now fix a collection $\beta = \{b_{\alpha}\}\$ of base points for Γ . The *isotropy group of* Γ (relative to the base points β) is given by

$$
\mathscr{I}(\Gamma)=\mathscr{I}(\Gamma,\beta)=\star_\alpha\mathscr{I}(b_\alpha)
$$

the free product over all the base points $b_{\alpha} \in \beta$.

When we write $\mathcal{I}(\Gamma)$ it is understood to be defined relative to a fixed collection β of base points for Γ .

(4) *The base path group of* Γ :

Let $\beta = \{b_{\alpha}\}\$ be a given collection of base points for Γ . The *base path group* of Γ (relative to the base points β) is given by

$$
\mathscr{F}(\mathcal{O})=\mathscr{F}(\mathcal{O},\beta)=F(\mathcal{O})/\{b_{\alpha}=1\}
$$

the free group on the objects of Γ modulo the relations $b_{\alpha} = 1$ for each base point b_{α} . $\mathcal{F}(\mathcal{O})$ is a free group.

When we write $\mathcal{F}(\mathcal{O})$ it is understood to be defined relative to a fixed collection of base points for Γ .

(5) *The base point map and the isotropy map:*

The base point map is a function $b:\Gamma \to \emptyset$ defined by letting $b(\gamma)$ be the base point of the component of which $\gamma \in \Gamma$ is a path.

Let $\beta = \{b_{\alpha}\}, \rho = \{\rho(x)\}\$ be a base for Γ , and let $\mathcal{I}(\Gamma)$ be the isotropy group of Γ (relative to β). The *isotropy map* $\iota : T \to \mathcal{I}(\Gamma)$ is given by

$$
\iota(\gamma) = \rho(s(\gamma)) \circ \gamma \circ \rho(t(\gamma))^{-1}.
$$

As in §1, " \circ " denotes composition in Γ .

When we write ι it is understood to be defined relative to a fixed base B for r.

Remarks: (i) If $\gamma \in \Gamma$ is a base path $\rho(x)$, then $\iota(\gamma) = id_{b(\gamma)} \circ \gamma \circ \gamma^{-1} = id_{b(\gamma)}$ which is the identity element of the group $\mathcal{I}(\Gamma)$.

(ii) i restricted to the isotropy group of an object $x \in \mathcal{O}$ takes $\mathcal{I}(x)$ to $\mathcal{I}(b(x))$ and is conjugation by $\rho(x)$ as a map between these two groups.

(iii) If Γ is the fundamental groupoid of a connected space *X*, then there is only one component. The base point map chooses a base point $x \in X$. $\mathcal{I}(\Gamma)$ is the fundamental group of *X.* The map described in (ii) above gives an isomorphism of the fundamental groups at two different base points via a particular path joining them.

§3. Decomposition of the Universal Group of I'.

Consider Γ with the discrete topology. Let $\mathscr{G}_0(\Gamma)$ be its universal group. Suppose we are given a base $B = \{ \beta = \{b_{\alpha}\}, \rho = \{\rho_{\alpha}\}\}\$ for Γ . We then obtain the following description of $\mathcal{G}_0(\Gamma)$. Compare [1].

THEOREM 2: The base B defines an isomorphism $B_{\#}$: $\mathscr{G}_0(\Gamma) \rightarrow$ $\mathscr{I}(\Gamma) \star \mathscr{F}({\mathcal{O}}).$

Proof: It is enough to consider the case when there is only one component. So we assume that \emptyset is itself a component and $b \in \emptyset$ its base point. $\{p_x\}$ is its family of base paths.

Let $\iota : \Gamma \to \mathcal{I}(b)$ be the isotropy map relative to the given base. Then each $\gamma \in \Gamma$ can be writen uniquely in Γ as $\rho(s(\gamma))^{-1} \circ \iota(\gamma) \circ \rho(t(\gamma))$. We define a function $B_0: \Gamma \to \mathcal{I}(b) * \mathcal{F}(\mathcal{O})$ by

$$
B_0(\gamma) = \langle s(\gamma) \rangle^{-1} \cdot \iota(\gamma) \cdot \langle t(\gamma) \rangle
$$

where $\langle x \rangle$ denotes the generator of $\mathcal{F}(\mathcal{O})$ determined by $x \in \mathcal{O}$, and "." indicates multiplication in the free product.

Note if $\gamma \in \mathcal{O} \subset \Gamma$ then $B_0(\gamma) = 1$, so that B_0 induces a function $B_1: \Gamma/\mathcal{O}$ $\rightarrow \mathscr{I}(b) * \mathscr{F}(\mathcal{O})$ and hence a homomorphism $B_2: F(\Gamma/\mathcal{O}) \rightarrow \mathscr{I}(b) * \mathscr{F}(\mathcal{O})$. B_2 respects the relations in the presentation of $\mathcal{G}_0(\Gamma)$ so induces a homomorphism $B_{\#}$: $\mathscr{G}_0(\Gamma) \to \mathscr{I}(b) \star \mathscr{F}(\mathcal{O})$.

A homomorphism $A_{\#}$: $\mathcal{I}(b) * \mathcal{F}(\mathcal{O}) \to \mathcal{G}_0(\Gamma)$ is completely determined by the following rule: $A_{\#}(\alpha) = [\alpha]$ for $\alpha \in I(b)$; $A_{\#}(\langle x \rangle) = [\rho(x)]$ for $x \in \mathcal{O}$. Here $\lceil \alpha \rceil$ and $\lceil \rho(x) \rceil$ indicate the elements in $\mathcal{G}_0(\Gamma)$ represented by the morphisms α and $\rho(x)$.

 $A_{\#}$ is a two sided inverse for $B_{\#}$, so that $B_{\#}$ is an isomorphism.

§4. Decomposition of the Universal Simplicial Group of r.

The decomposition of $\mathcal{G}_0(\Gamma)$ described in Theorem 2 induces a decomposition of $\mathscr{G}_*(\Gamma)$.

Let Γ be a topological groupoid with space of objects \mathcal{O} . Then $S^k \Gamma$ is a discrete groupoid with objects $S^k \mathcal{O}, k \geq 0$. For each $k \geq 0$ we fix a base $B^k =$ $\{\beta^k, \rho^k\}$ for S^k , and all the constructions which follow will be made with respect to the given bases.

Let $\overline{\mathcal{G}}_k(\Gamma) = \mathcal{I}(S^k \Gamma) \star \mathcal{F}(S^k \mathcal{O})$. Then $\overline{\mathcal{G}}_k(\Gamma) = \bigcup_{k \geq 0} \overline{\mathcal{G}}_k(\Gamma)$ is a simplicial group which is isomorphic to $\mathscr{G}(\Gamma)$, the universal simplicial group of Γ . The isomorphism is determined for each $k \ge 0$ by the choice of base B^k as in §3. The faces $\{\bar{\partial}_i\}$ and degeneracies $\{\bar{\sigma}_j\}$ of $\bar{\mathscr{G}}_{*}(\Gamma)$ are determined via these isomorphisms:

$$
\bar{\sigma}_j = \mathbf{B}_{\#}{}^k \circ \sigma_j \circ (\mathbf{B}_{\#}{}^{k-1})^{-1} \tag{2}
$$

We call $\bar{\mathscr{G}}_{*}(\Gamma) = \bigcup_{k \geq 0} [\mathscr{I}(S^k \Gamma) * \mathscr{F}(S^k \mathscr{O})]$ with face maps $\{\bar{\partial}_i\}$ and degeneracy maps $\{\bar{\sigma}_i\}$ a simplicial group decomposition of the topological groupoid Γ . Again, it depends on a choice of base B^k for $S^k\Gamma$ for each $k \geq 0$.

We reformulate Theorem 1.

THEOREM 3: Let Γ be a topological group with its space of objects \emptyset contractible. Let BT be the classifying space for Γ -structures. Let $\overline{\mathscr{G}}_*(\Gamma)$ be a simplicial group decomposition of Γ . Then there is a weak homotopy equivalence

$$
\bar{\mathscr{G}}_{*}(\Gamma) \to \Omega B\Gamma.
$$

(1)

18 SOLOMON **M.** JEKEL

The faces $\bar{\theta}_i$: $\bar{\mathscr{G}}_k(\Gamma) \rightarrow \bar{\mathscr{G}}_{k-1}(\Gamma)$ *and the degeneracies* $\bar{\sigma}_i$: $\bar{\mathscr{G}}_k(\Gamma) \rightarrow \bar{\mathscr{G}}_{k+1}(\Gamma)$ *are completely determined by the following rules, where* $\{\partial_i\}$ and (σ_i) denote the faces and degeneracies of ST .

\n- a)
$$
\bar{\partial}_i(x) = \iota(\partial_i(x))
$$
 for $x \in \mathcal{I}(b_\alpha)$.
\n- b) $\bar{\partial}_i(\langle y \rangle) = \langle \partial_i(b(y)) \rangle^{-1} \cdot \iota(\partial_i(p(y))) \cdot \langle \partial_i(y) \rangle$ for $y \in S^k \mathcal{O}$.
\n- c) $\bar{\sigma}_j(x) = \iota(\sigma_j(x))$ for $x \in \mathcal{I}(b_\alpha)$
\n- d) $\bar{\sigma}_j(\langle y \rangle) = \langle \sigma_j(b(y)) \rangle^{-1} \cdot \iota(\sigma_j(p(y))) \cdot \langle \sigma_j(y) \rangle$ for $y \in S^k \mathcal{O}$.
\n

Remarks: Computing the operators $\{\bar{\theta}_i\}$ and $\{\bar{\sigma}_i\}$ explicitly is a matter of evaluating the compositions on the right hand side of equations (1) and (2).

Recall, for each $k \ge 0$ we have the isotropy map $\iota^k : S^k \Gamma \to \mathcal{I}(S^k \Gamma)$ and the base point map b^k : $S^k\Gamma \rightarrow S^k\mathcal{O}$. We have suppressed the k in the notation when it is clear in which dimension the functions are acting.

We have $\mathcal{I}(S^k \Gamma) = \star_{b_\alpha} \mathcal{I}(b_\alpha)$ where $\beta^k = \{b_\alpha\}$. So to define $\bar{\partial}_i : \bar{\mathcal{G}}_k(\Gamma) \to$ $\bar{\mathscr{G}}_{k-1}(\Gamma)$ we had to define $\bar{\partial}_i(x)$ for each $x \in \mathscr{I}(b_\alpha)$ and for each b_α , and $\bar{\partial}_i(\langle y \rangle)$ for each $y \in S^k$ *O*. Then $\bar{\partial}_i$ extends to all of $\bar{\mathscr{G}}_k(\Gamma)$. Similarly to define $\bar{\sigma}_i: \bar{\mathscr{G}}_k(\Gamma) \to \bar{\mathscr{G}}_{k+1}(\Gamma)$ we had to define $\bar{\sigma}_i(x)$ for each $x \in \mathscr{I}(b_{\alpha})$ and for each b_{α} , and $\bar{\sigma}_i$ ($\langle y \rangle$) for each $y \in S^k \mathcal{O}$.

§5. Compatibility of Bases

Suppose the bases B^k for $S^k \Gamma$ can be chosen *compatibly* for all $k \geq 0$, that is any face and any degeneracy of each base point and base path is again a base point and base path. Then by remark (i) in §2 $\iota(\partial_i(\rho(y)))$ and $\iota(\sigma_i(\rho(y)))$ are the identity for all $y \in \mathcal{O}$. In this case, as formulas b) and d) show $\{\bar{\theta}_i\}$ and ${\bar{\sigma}}$ take elements of $\mathscr{F}_*(\mathcal{O}) = \bigcup_{k \geq 0} \mathscr{F}(S^k \mathcal{O})$ into itself. On the other hand, as formulas a) and c) show $\{\bar{\delta}_i\}$ and $\{\bar{\sigma}_j\}$ always map $\mathcal{I}_*(\Gamma) = \bigcup_{k \geq 0} \mathcal{I}(S^k \Gamma)$ into itself.

We therefore obtain the following theorem.

THEOREM 4: Let Γ be3 a topological groupoid and suppose there exists a *compatible choice of bases for* $S^k\Gamma$, $k \geq 0$. Then $\overline{\mathscr{G}}_*(\Gamma) = \mathscr{I}_*(\Gamma) * \mathscr{F}_*(0)$. The *faces and degeneracies are given by*

$$
\begin{aligned}\n\bar{\partial}_i(x) &= \partial_i(x), \\
\bar{\sigma}_j(x) &= \sigma_j(x), \quad \text{for} \quad x \in \mathscr{I}_*(\Gamma). \\
\bar{\partial}_i(\langle y \rangle) &= \langle \partial_i(b(y)) \rangle^{-1} \cdot \langle \partial_i(y) \rangle, \\
\bar{\sigma}_j(\langle y \rangle) &= \langle \sigma_j(b(y)) \rangle^{-1} \cdot \langle \sigma_j(y) \rangle, \quad \text{for} \quad y \in \mathscr{F}_*(\mathscr{O}).\n\end{aligned}
$$

Example: If $\Gamma = G$ is a topological group then $\mathcal{I}_*(G) = SG$ the singular complex of G, $\mathcal{F}_*(0) = 1$ in every dimension, and $\mathcal{F}_*(\Gamma) = SG$. Of course, as is well known there is a weak homotopy equivalence $|SG| \rightarrow \Omega BG$.

§6. A Spectral Sequence Converging to H. (Br).

Let Γ be a topological groupoid with contractible object space \mathcal{O} . Let $H_*(.)$ denote integral homology. We define a spectral sequence which converges to $H_*(BT)$ and whose E^1 term is given in terms of the isotropy and base path groups of Γ .

Consider the bigraded group $E_{p,q} = \tilde{H}_q(\bar{\mathscr{G}}_p(\Gamma)), p, q \ge 0.$

Then

$$
E_{p,q} = \begin{cases} 0 & q = 0\\ H_1(\mathcal{I}(S^p \Gamma)) \oplus H_1(\mathcal{F}(S^p \mathcal{O})) & q = 1\\ H_q(\mathcal{I}(S^p \Gamma)) & q \ge 2 \end{cases}
$$

and we have a differential $d: E_{p,q} \to E_{p-1,q}$ induced by the face maps $\{\partial_i\}$ of $\overline{\mathscr{G}}_{*}(\Gamma).$

PROPOSITION 1: ${E_{p,q}, d}$ *is the* E^1 *term of a spectral sequence which converges to* $\tilde{H}_{p+q}(B\Gamma)$.

Proof: This is a consequence of the proof of the main theorem of [2].

Let $\overline{N\Gamma}^p$ be the space of p-cells of the simplicial nerve of Γ . Let $\overline{N\emptyset}^o = \emptyset$, $N \ell^{p} =$ diagonal (ℓ^{p}), $p \geq 1$. $N \ell^{p}$ is a contractible subspace of $N \Gamma^{p}$ and $N \ell^{p}$ = $\bigcup_{p\geq 0} N(\mathcal{O}^p)$. Consider the bisimplicial set $S(N\Gamma, N(\mathcal{O})) = \bigcup_{p,q\geq 0} \frac{S^p N\Gamma^q}{S^p N(\mathcal{O}^q)}$ with

horizontal $(q$ -fixed) faces and degeneracies induced by those of S and vertical (p-fixed) faces and degeneracies induced by those of *NI'.* In [2] we show that there is a weak homotopy equivalence of the realization of the diagonal complex of $S(N\Gamma, N\ell)$ to $B\Gamma$. If then follows that $H_p^h H_q^v(|S(N\Gamma, N\ell)|)$ is the E^2 term of a spectral sequence converging to $H_{p+q}(B\Gamma)$. (Here $H_p^h H_q^{\nu}(\cdot)$ is the *p-th* homology of the horizontal simplicial abelian group obtained by taking the *q-th* homology of each of the vertical simplicial groups of a given bisimplicial set). But the *p*-th vertical simplicial set of $S(NT, N\ell)$ is a $K(\mathscr{G}_p(\Gamma), 1) = K(\bar{\mathscr{G}}_p(\Gamma), 1),$ [2]. Hence $H_q^{\nu}(|S(N\Gamma, N\mathcal{O})|)$ is the E^1 term described in the proposition.

§7. A Simplicial Group Decomposition of Γ_1^{ω}

The $E²$ term of the above spectral sequence simplifies considerably when $B\Gamma_1^{\omega}$ is the classifying space for codimension-1 real analytic foliations.

Let $\Gamma = \Gamma_1^{\omega}$ be the groupoid of germs of local, real analytic homeomorphisms of **R** with the sheaf topology. We will compute the groups $\overline{\mathscr{G}}_p(\Gamma)$.

First consider $\bar{\mathscr{G}}_0(\Gamma) = \mathscr{I}(S^0\Gamma) \star \mathscr{F}(\mathbf{R})$. There is only one $S^0\Gamma$ -component since any two points of **R** are joined by some germ. Suppose we choose $0 \in \mathbb{R}$ as a base point. Let $T = \mathcal{I}(0)$ *be the group of germs of* Γ *keeping* 0 *fixed.* (T is the group of convergent Taylor series expansions at the origin under composition). Then $\overline{\mathcal{G}}_0(\Gamma) \simeq T \star \mathcal{F}(\mathbf{R}) \simeq T \star \{F(\mathbf{R}) / \langle \text{origin} \rangle = 1\}.$

Now consider $\bar{\mathscr{G}}_p(\Gamma), p \geq 0$. There are uncountably many S^{*P*}T-components. The set of all $\sigma \in S^pR$ which are constant belong to the same $S^p\Gamma$ -component. Let us choose O^p , the *p*-simplex which is constant and equal to 0, as a base point. Then $\mathcal{I}(O^p) \simeq T$.

Let $\sigma = S^p$ **R** be any simplex of any other component. Then σ is not constant, hence its image contains some open set in R. By analytic continuation it follows that $\mathcal{I}(\sigma) = 1$.

Then we obtain

Proposition 2: $\bar{\mathcal{G}}_p(\Gamma) = T \star \mathcal{F}(S^p\mathbf{R})$ *for all* $p \geq 0$ *. The faces and degeneracies of* $\overline{\mathscr{G}}_*(\Gamma)$ *can be computed by Proposition 1.*

Note that the proposition implies that the E^2 term of the spectral sequence of proposition 1 in this case reduces to

$$
E_{p,q}^{2} = \begin{cases} 0 & q = 0; \quad p \ge 1 \quad \text{and} \quad q \ge 2 \\ H_q(T) & p = 0 \\ H_p(H_1(\overline{\mathcal{G}}_*(\Gamma)) & q = 1 \end{cases}
$$

since for fixed $q \ge 2$ we are computing the homology of the constant simplicial group which is $H_q(T)$ for all $p \ge 0$ and this is a $K(H_q(T), 0)$.

For the spaces $B\Gamma = B\Gamma'_{1}$, $0 \le r \le \infty$ we can also show that $E_{p,q}^{2} = 0$ for *p* \geq 1 and $q \geq$ 2, but this requires a more detailed analysis of $\mathscr{G}_*(\Gamma)$ in the E^1 term.

CENTRO DE lNVESTIGACION DEL IPN., MEXICO 14, D.F. NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS

REFERENCES

- [1] P. H. HIGGENS, *Presentations of Groupoids with Applications to Groups,* Proc. Cambridge Philos. Soc., 60(1964), 7-20.
- [2] S. JEKEL, *Loops on the Classifying Space for Foliations,* Amer. J. of Math., 102(1980), 13-23.