Boletín de la Sociedad Matemática Mexicana Vol. 26, No. 1, 1981

SYMMETRIC PRODUCTS OF HYPERELLIPTIC CURVES

BY XAVIER GOMEZ-MONT

Let C be a complete smooth curve of genus g > 1 over an algebraically closed field and C_n its *n*-th symmetric product. Kempf proved [4] that if C is nonhyperelliptic then any small deformation of C_n is a symmetric product of a deformation of the original curve C. The non-hyperelliptic hypothesis enters in his argument when he applies Max Noether's theorem on the product of higher differentials on C. In the present paper, using a complement of Noether's theorem for hyperelliptic curves in characteristic distinct from 2 and following Kempf's argument we prove that for g > 2 we may remove the non-hyperelliptic hypothesis and that if g = 2 and n > 1

$$\dim H^1(C_n, \Theta_{C_n}) = \dim H^1(C, \Theta_C) + 1$$

Then working for the genus 2 case over the complex numbers we construct for n = 2 an effective and complete family of dimension 4, while for n > 2 we show that all first ordered obstructions vanish. I would like to thank George Kempf and Roy Smith for helpful conversations during the elaboration of this paper.

1. Computations of $H^1(C_n, \Theta_{C_n})$

Let C be a hyperelliptic curve over an algebraically closed field k with char $(k) \neq 2$, genus g > 1 and ω the sheaf of differentials. The hyperelliptic involution splits $H^0(C, \omega^m)$ into ± 1 eigenspaces. These spaces may be explicitly constructed using a plane model for C. With this decomposition the following is a simple computation [10]:

PROPOSITION 1. For every m > 0 the map

$$H^0(C, \omega) \otimes H^0(C, \omega^m) \to H^0(C, \omega^{m+1})$$

given by multiplication is surjective except if g = m = 2 or g > 2 and m = 1, where the codimension of the image is 1 and g - 2 respectively.

We assume that the reader is familiar with [4]. Let C_n be the *n*-th symmetric product of C, D_n the divisor on $C \times C_n$ obtained as image of the map $C \times C_{n-1}$ $\rightarrow C \times C_n$ given by $(p, D) \rightarrow (p, p + D)$ and denote by $\gamma_n : C \times C_{n-1} \rightarrow D_n$ the corresponding isomorphism. For any variety X denote by Θ_X the sheaf of vector fields on X. We recall from [4] the following results:

LEMMA 2. $\gamma_n^*(\mathcal{O}_{C \times C_n}(D_n) | _{D_n}) \approx \pi_C^* \Theta_C \otimes \mathcal{O}_{C \times C_{n-1}}(D_{n-1})$

PROPOSITION 3. For g > 1, there exists a natural exact sequence

$$0 \to H^1(C, \Theta_C) \to H^1(C_n, \Theta_{C_n}) \to H^0(C, \Theta_C \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{n-1}}(D_{n-1})) \to 0$$

Our first objective will be to calculate the last term of the sequence. On

XAVIER GOMEZ-MONT

 $C \times C_m$ with $m \ge 1$ we have an exact sequence

$$0 \to \pi_C^* \Theta_C \to \pi_C^* \Theta_C \otimes \mathscr{O}_{C \times C_m}(D_m) \to \pi_C^* \Theta_C \otimes \mathscr{O}_{C \times C_m}(D_m) \mid_{D_m} \to 0.$$

Using Lemma 2 and viewing $\mathcal{O}_{C \times C_{m-1}}$ as a module on $C \times C_m$ via γ_m we obtain the sequence

$$0 \to \pi_C^* \Theta_C \to \pi_C^* \Theta_C \otimes \ \mathscr{O}_{C \times C_m}(D_m) \to \pi_C^* \Theta_C^2 \otimes \ \mathscr{O}_{C \times C_{m-1}}(D_{m-1}) \to 0$$

We look at the exact sequence of direct image sheaves on C

$$\begin{array}{l} 0 \to \Theta_C \stackrel{\widetilde{\Rightarrow}}{\to} \Theta_C \otimes \pi_{C^*} \Theta_{C \times C_m}(D_m) \stackrel{0}{\to} \Theta_C^2 \otimes \pi_{C^*} \mathscr{O}_{C \times C_{m-1}}(D_{m-1}) \stackrel{\psi_m}{\to} \Theta_C \\ & \otimes H^1(C_m, \ \mathscr{O}_{C_m}) \to \Theta_C \otimes R^1 \pi_{C^*} \mathscr{O}_{C \times C_m}(D_m) \to \Theta_C^2 \otimes R^1 \pi_{C^*} \mathscr{O}_{C \times C_{m-1}}(D_{m-1}). \end{array}$$

Using the canonical isomorphisms $H^1(C_m, \mathcal{O}_{C_m}) \approx H^1(C, \mathcal{O}_C)$ and π_{C^*} $\mathcal{O}_{C \times C_{m-1}}(D_{m-1}) \approx \mathcal{O}_C$, we decompose this sequence into two short exact sequences on C

$$0 \to \Theta_C^2 \to \Theta_C \otimes H^1(C, \ \mathcal{O}_C) \to \operatorname{Cok} \psi_m \to 0 \tag{1}_m$$

$$0 \to \operatorname{Cok} \psi_m \to \Theta_C \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_m}(D_m) \to \Theta_C^{-2} \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{m-1}}(D_{m-1}) \quad (2_m)$$

Tensoring (1_m) with Θ_C^p for $p \ge 0$ and writing out the long exact sequence we have

$$0 \to H^{0}(C, \Theta_{C}{}^{p} \otimes \operatorname{Cok} \psi_{m}) \to H^{1}(C, \Theta_{C}{}^{p+2}) \xrightarrow{H^{1}(\Theta_{C}{}^{p} \otimes \psi_{m})} \to H^{1}(C, \Theta_{C}{}^{p+1}) \otimes H^{1}(C, \mathscr{O}_{C}) \to H^{1}(C, \Theta_{C}{}^{p} \otimes \operatorname{Cok} \psi_{m}) \to 0.$$

Kempf has shown that, using Serre duality

$$H^1(\Theta_C{}^p \otimes \psi_m)^* : H^0(C, \omega) \otimes H^0(C, \omega^{p+2}) \to H^0(C, \omega^{p+3})$$

corresponds to multiplication, so using Proposition 1 we obtain:

PROPOSITION 4. For $m \ge 1$: a) If g = 2, dim $H^0(C, \operatorname{Cok} \psi_m) = 1$. b) If g > 2and $p \ge 0$ or g = 2 and $p \ge 1$, $H^0(C, \Theta_C^p \otimes \operatorname{Cok} \psi_m) = 0$.

LEMMA 5. $H^0(C, \Theta_C{}^p \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_m}(D_m)) = 0$ for $p \ge 2$ and all $m \ge 0$.

Proof. We prove it by induction on m. For m = 0 we have that $R^{1}\pi_{C^{*}} \mathcal{O}_{C} = 0$ so it is trivially satisfied. Assume it is true for $m \ge 0$ and all $p \ge 2$ and we prove it for m + 1 and arbitrary $p \ge 2$. The exact sequence of global sections of (2_{m+1}) tensored with Θ_{C}^{p-1} gives

$$0 \to H^{0}(C, \Theta_{C}{}^{p-1} \otimes \operatorname{Cok} \psi_{m+1}) \to H^{0}(C, \Theta_{C}{}^{p} \otimes R^{1}\pi_{C} \mathscr{O}_{C \times C_{m+1}}(D_{m+1}))$$
$$\to H^{0}(C, \Theta_{C}{}^{p+1} \otimes R^{1}\pi_{C} \mathscr{O}_{C \times C_{m}}(D_{m})).$$

The first term is zero by Proposition 4.b and the last is zero by induction, hence the middle term is zero. $\|$

We arrive at our first objective:

22

PROPOSITION 6. For n > 1, $H^0(C, \Theta_C \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{n-1}}(D_{n-1})) = 0$, except if g = 2, in which case it is 1-dimensional.

Proof: The short exact sequence of (2_{n-1}) is

 $0 \to H^0(C, \operatorname{Cok} \psi_{n-1}) \to H^0(C, \Theta_C \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{n-1}}(D_{n-1}))$

 $\to H^0(C, \Theta_C^2 \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{n-2}}(D_{n-2}))$

The last term is zero by Lemma 5 and Proposition 4 now gives the desired result. $\|$

THEOREM 7. a) If g = 2 and n > 1, then the natural injection $H^1(C, \Theta_C) \rightarrow H^1(C_n, \Theta_C)$ has codimension 1.

b) Let C be a curve with g > 2, then there exists a natural isomorphism $H^1(C_n, \Theta_{C_n}) \approx H^1(C, \Theta_C)$

c) Let $S_n: \mathscr{V}_n \to \mathscr{T}$ be the deformation of C_n constructed by symmetrising the universal deformation $s: \mathscr{V} \to \mathscr{T}$ of C. Then for $g > 2 s_n$ is the universal deformation of C_n .

Proof: **a**) and **b**) follow from Proposition 3 and 6. **b**) is the only ingredient lacking for hyperelliptic curves in Kempf's theorem 4.2 in [4]. So **b**) and his argument give **c**). \parallel

2. The complete family of C_2 for g = 2

We can conclude that deformation theory of higher symmetric products of curves of genus 2 differs from those of g > 2, at least up to first order and we are interested in seeing if this difference extends to actual deformations. For the rest of this paper we assume that k is the complex number field C and that C is a curve of genus 2.

It will be important to look at the Abelian integral map $u_n: C_n \to P_n$ where P_n is the Picard variety of C of degree n. From the point of view of C_n , u_n is the Albanese map obtained by integrating the global 1-forms on C_n modulo periods. The basic idea is that for any deformation of C_n there exists a natural deformation of u_n and this will allow us to compare the deformation of C_n with the deformation of P_n .

To begin, we briefly recall the definition of the Albanese mapping of a local family. Let $p: \mathscr{V} \to U$ be a family of compact Kähler manifolds, where U is a neighborhood of 0 which may be shrinked at will. In particular we may assume that \mathscr{V} is topologically $V_0 \times U$. Let $\Omega_{\mathscr{V}|U}^1$ be the sheaf of relative differentials. Then $p \cdot \Omega_{\mathscr{V}|U}^1$ is a vector bundle on U. After shrinking U we may choose a basis $\sigma_1, \dots, \sigma_q$ which may be thought as a family of basis for the 1-forms on $V_t = p^{-1}(t)$. After choosing a local section s of p we can integrate $\sigma = (\sigma_1, \dots, \sigma_q)$ over paths starting in s(t) and contained in V_t defined modulo periods; i.e. if $\alpha_1, \dots, \alpha_{2q}$ is a basis for $H_1(V_0, Z)$ and

$$\Phi(t) = (\int_{\alpha_i} \sigma_i)$$

we obtain the Albanese map

$$\begin{aligned} & \mathscr{V} \qquad \text{Alb}(\mathscr{V}) = U \times \mathbb{C}^q / \Phi \\ & \searrow \qquad \swarrow \\ & U \end{aligned}$$

 Φ is called the period map and may be thought as a holomorphic map of U into D, where D is the period matrix space [1].

Denote by S the space of 2×2 matrices A with det(ImA) > 0. Then over S

we may construct a family of complex tori $\mathscr{W} \xrightarrow{q} S \mathscr{W} = \mathbb{C}^2 \times S/\sim$, where two points are equivalent $(z_1, z_2, A) \sim (w_1, w_2, A)$ if and only if

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} m \\ n \end{pmatrix} + A \begin{pmatrix} p \\ q \end{pmatrix}$$

where m, n, p, q are integers. $q^{-1}(A)$ is the complex tori with period matrix A. In [5] it is shown that this family of normalized complex tori is complete and effectively parametrized.

It will be easier to understand first the case n = 2. We can view $u_2: C_2 \rightarrow P_2$ as the blow up of the canonical point in P_2 . Now P_2 corresponds to a point $s \in S$ and there exists a unique isomorphism between P_2 and $q^{-1}(s)$ which sends the canonical point to 0. Let $\tilde{\mathcal{W}}$ be the variety obtained by blowing up \mathcal{W} along $0 \times S$:

$$\begin{array}{cccc}
\bar{\mathscr{W}} & \stackrel{\varphi}{\longrightarrow} & \mathscr{W} \\
\searrow & \swarrow & & & \\
S & & & & \\
\end{array}$$
(3)

 $\varphi_t \colon \widetilde{\mathscr{W}_t} \to \mathscr{W}_t$ is the blow up at 0, hence \mathscr{W} is a deformation space of $\widetilde{\mathscr{W}_s} = C_2$.

THEOREM 8. The family \tilde{W} is complete and effectively parametrized at s. In particular, for curves of genus 2 there are deformations of C_2 which are not symmetric products of curves, moreover which are not even algebraic.

Proof: The Kodaira-Spencer map of (3) at s gives a commutative diagram

$$\begin{array}{c} H^{1}(C_{2}, \, \Theta_{C_{2}}) \xrightarrow{d\varphi} H^{1}(P_{2}, \, \Theta_{P_{2}}) \\ & \stackrel{\sim}{\rho} & T_{*}S \end{array}$$

By construction ρ is an isomorphism. By the behaviour of $H^q(\quad,\Theta)$ under blowing up [2, p. 798] $d\varphi$ is an isomorphism, hence $\tilde{\rho}$ is an isomorphism. So the first part follows from Kodaira-Spencer's theorem of completeness [6]. The second part follows since a general torus of dimension 2 is not algebraic and the Albanese variety of an algebraic variety is algebraic. \parallel

24

SYMMETRIC PRODUCTS

3. First order obstructions for g = 2 and n > 2

Now, we investigate the deformations of C_n with n > 2. The Abelian integral map $u_n: C_n \to P_n$ gives a representation of C_n as a bundle of projective spaces P^{n-2} . Let τ be the sub-bundle of Θ_{C_n} consisting of those vector fields which are everywhere tangent to the fibers of u_n . We can fit it into an exact sequence

$$0 \to \tau \to \Theta_{C_n} \to u_n^* \Theta_{P_n} \to 0 \tag{4}$$

PROPOSITION 9. a) $R^q u_{n^*\tau} = R^q u_{n^*} \mathcal{O}_{C_n} = R^q u_{n^*} \Theta_{C_n} = 0$ for q > 0b) For every $q: H^q(C_n, \tau) \approx H^q(P_n, u_{n^*\tau})$ and $H^q(C_n, \Theta_{C_n}) \approx H^q(P_n, u_{n^*}\Theta_{C_n})$ c) $H^q(C_n, \Theta_{C_n}) = H^q(C_n, \tau) = 0$ for q > 2. d) We have an exact sequence

$$0 \to H^{0}(P_{n}, \Theta_{P_{n}}) \to H^{1}(C_{n}, \tau) \to H^{1}(C_{n}, \Theta_{C_{n}}) \to H^{1}(P_{n}, \Theta_{P_{n}})$$
$$\to H^{2}(C_{n}, \tau) \to H^{2}(C_{n}, \Theta_{C_{n}}) \to H^{2}(P_{n}, \Theta_{P_{n}}) \to 0$$
(5)

Proof: For U an affine open set in P_n we have $H^q(U \times P^{n-2}, \tau) = H^0(U, \mathcal{O}) \otimes H^q(P^{n-2}, \Theta_{P^{n-2}}) = 0$ for q > 0 since we know that $H^q(P^{n-2}, \Theta_{P^{n-2}}) = 0$ for q > 0. Hence $R^q u_n \cdot \tau = 0$. Repeating the same argument for \mathcal{O}_{C_n} we obtain that $R^q u_n \cdot \mathcal{O}_{C_n} = 0$ for q > 0. Now using that $u_n \cdot \mathcal{O}_{P_n} \approx \mathcal{O}_{C_n} \oplus \mathcal{O}_{C_n}$ we can conclude that the only non-zero part of the long exact sequence of higher cohomololgy groups of (4) is

$$0 \to u_n \cdot \tau \to u_n \cdot \Theta_{C_n} \to \Theta_{P_n} \to 0 \tag{6}$$

In particular $R^q u_{n^*} \Theta_{C_n} = 0$ for q > 0. This proves **a**). **b**) follows from **a**) since the spectral sequence for $u_{n^*\tau} u_{n^*} \Theta_{C_n}$ degenerates. **c**) follows from **b**) since P_n has dimension 2. Writing the long exact sequence of (6) together with **b**) and the fact that C_n has no vector fields gives **d**).

Let $p \in C$ and consider the sheaf $\mathcal{O}_{C_n}(p + C_{n-1})$. The dual of its direct image sheaf $W = (u_n \cdot \mathcal{O}_{C_n}(p + C_{n-1}))^*$ is a Picard sheaf on P_n and $C_n = \operatorname{Proj}(W)$. The Euler sequence for the tangent bundle of a projective space globalizes to

$$0 \to \mathcal{O}_{C_n} \to u_n^* W \otimes \mathcal{O}_{C_n}(p + C_{n-1}) \to \tau \to 0$$

The only non-trivial part of the exact sequence of higher direct image sheaves is by Proposition 9.a

$$0 \to \mathcal{O}_{P_n} \xrightarrow{\alpha} W \otimes W^* \to u_n \cdot \tau \to 0$$

 α corresponds to multiplying by the identity automorphism of W, but this map splits naturally via (1/n)Trace, hence we obtain a family of short exact sequences for $q \ge 0$:

$$0 \to H^q(P_n, \mathcal{O}_{P_n}) \to H^q(P_n, W \otimes W^*) \to H^q(P_n, u_n \cdot \tau) \to 0$$
(7)

THEOREM 10: Let C be a curve of genus 2 over the complex numbers and $n \ge 3$. Then:

a) dim $H^1(C_n, \tau) = 2$ and $H^2(C_n, \tau) = 0$

XAVIER GOMEZ-MONT

b) The sequence (5) gives rise to canonical isomorphisms

$$H^q(C_n, \Theta_{C_n}) \approx H^q(P_n, \Theta_{P_n})$$
 for $q = 1, 2$.

c) The graded Lie algebgra $H^*(C_n, \Theta_{C_n})$ is non-zero only in degrees 1 and 2, and it is Abelian.

Proof: In [3, p. 272], Kempf has computed the dimension of $H^q(P_n, W \otimes W^*)$, which is 4 and 1 for q = 1, 2 respectively. Since P_n is isomorphic to the Jacobian of C, $H^q(P_n, \mathcal{O}_{P_n})$ has dimension 2 and 1 for q = 1, 2. So a) follows from (7) and these calculations. Now b) follows from a) and the long exact sequence (5).

To check \mathbf{c}) we only have to prove that the map

$$[,]: H^1(C_n, \Theta_{C_n}) \otimes H^1(C_n, \Theta_{C_n}) \to H^2(C_n, \Theta_{C_n})$$

given by the Poisson bracket of (0, 1)-vector forms vanishes, since all the other cohomology groups vanish. To do this, consider the $\overline{\partial}$ -resolution of (4)

where $E^{p,q}$ # means the C^{∞} -sections of the sheaf #. The complex is vertically exact and the complex of global sections computes horizontally the cohomology of the first sheaves.

We may choose a harmonic basis for $H^1(P_n, \Theta_{P_n})$ of the form $\varphi_{ij} = (\partial/\partial z_i) d\bar{z}_j$ where (z_1, z_2) are affine coordinates of the universal cover of P_n . Since the spectral sequence of $u_{n^*}(u_n^*\Theta_{P_n}) = \Theta_{P_n} \otimes u_{n^*} \mathcal{O}_{C_n} = \Theta_{P_n}$ degenerates by Proposition 9, we may consider φ_{ij} as elements of $H^0(C_n, E^{0,1}\Theta_{P_n})$ and they form a basis for $H^1(C_n, u_n^*\Theta_{P_n})$. Since $H^1(C_n, \Theta_{C_n}) \to H^1(C_n, u_n^*\Theta_{P_n})$ is an isomorphism, we may choose $\bar{\partial}$ -closed liftings $\tilde{\varphi}_{ij} \in H^0(C_n, E^{0,1}\Theta_{C_n})$. In local coordinates $(y_1, \dots, y_{n-2}, z_1, z_2)$

$$\tilde{\varphi}_{ij} = (\partial/\partial z_i + A_{ij}(y, z)) \ d\bar{z}_j + \sum_{m=1}^{n-2} B_{ij}^m(y, z) \ d\bar{y}_m$$

where A and B are sections of τ , that is vector fields in $\partial/\partial y_m$. Since $[\varphi_{ij}, \varphi_{rs}] = 0$, and by the local definition of the Poisson bracket of (0, 1)-vector forms we have $[\tilde{\varphi}_{ij}, \tilde{\varphi}_{rs}] \in H^0(C_n, E^{0,2}\tau)$, but since $H^2(C_n, \mathscr{T}) = 0$ by part a) we have that $[\tilde{\varphi}_{ij}, \tilde{\varphi}_{rs}] = \bar{\partial}\psi$ with $\psi \in E^{0,1}\mathscr{T}$. But this implies that on the level of cohomology the Poisson bracket is trivial, hence $H^*(P_n, \Theta_{P_n})$ is an Abelian Lie Algebra.

The fact that the Lie algebra is abelian means that all first order obstructions

26

vanish. Whether higher order obstructions vanish for n > 2 is unsettled at this point.

Universidad Nacional Autonoma de México

References

- PH. GRIFFITHS, Periods of integrals on albebraic manifolds II, Amer. J. Math. 90(1968), 805-865.
- [2] —, Some remarks on continuous systems and moduli. J. Math. Mech. 16(1967), 789– 802.
- [3] G. KEMPF, Toward the inversion of abelian integrals I, Ann. of Math. 110(1979), 243–273.
- [4] ——, Deformations of symmetric products, Riemann surfaces and related topics, Proc. of the 1978 Stony Brook Conference, Ann. of Math. Studies, to appear
- [5] K. KODAIRA AND D. SPENCER, On deformations of complex analytic structures. Ann. of Math. 67(1958), 328-466.
- [6] ——, A theorem for completeness for complex analytic fibre spaces, Acta Math., 100(1958), 281–294.
- [7] M. KURANISHI, On the locally complete families of complex analytic structures, Ann. of Math. 75(1962), 536-577.
- [8] A. MATTUCK, Symmetric products and Jacobians, Amer. J. Math. 83(1961), 189-206.
- [9] D. MUMFORD, Abelian Varieties, Oxford Univ. Press, Oxford, 1970.
- [10] X. GÓMEZ-MONT, Differentials on hyperelliptic curves. An. Inst. Math. Univ. Nac. Autónoma México, Univ. Nac. Autónoma de México, 19(1979), in press.