Boletin de la Sociedad Matematica Mexicana Vol. 26, No. 1, 1981

SYMMETRIC PRODUCTS OF HYPERELLIPTIC CURVES

BY XAVIER GOMEZ-MONT

Let *C* be a complete smooth curve of genus $g > 1$ over an algebraically closed field and C_n its *n*-th symmetric product. Kempf proved [4] that if C is nonhyperelliptic then any small deformation of C_n is a symmetric product of a deformation of the original curve *C.* The non-hyperelliptic hypothesis enters in his argument when he applies Max Noether's theorem on the product of higher differentials on *C*. In the present paper, using a complement of Noether's theorem for hyperelliptic curves in characteristic distinct from 2 and following Kempf's argument we prove that for $g > 2$ we may remove the non-hyperelliptic hypothesis and that if $g = 2$ and $n > 1$

$$
\dim H^1(C_n, \Theta_{C_n}) = \dim H^1(C, \Theta_C) + 1
$$

Then working for the genus 2 case over the complex numbers we construct for $n = 2$ an effective and complete family of dimension 4, while for $n > 2$ we show that all first ordered obstructions vanish. I would like to thank George Kempf and Roy Smith for helpful conversations during the elaboration of this paper.

1. Computations of $H^1(C_n, \Theta_C)$

Let *C* be a hyperelliptic curve over an algebraically closed field *k* with char $(k) \neq 2$, genus $g > 1$ and ω the sheaf of differentials. The hyperelliptic involution splits $H^0(C, \omega^m)$ into ± 1 eigenspaces. These spaces may be explicitly constructed using a plane model for *C.* With this decomposition the following is a simple computation [10]:

PROPOSITION 1. *For every m* > 0 *the map*

$$
H^0(C, \omega) \otimes H^0(C, \omega^m) \to H^0(C, \omega^{m+1})
$$

given by multiplication is surjective except if $g = m = 2$ *or* $g > 2$ *and* $m = 1$ *, where the codimension of the image is* 1 *and* $g - 2$ *respectively.*

We assume that the reader is familiar with $[4]$. Let C_n be the *n*-th symmetric product of *C*, D_n the divisor on $C \times C_n$ obtained as image of the map $C \times C_{n-1}$ \rightarrow *C* \times *C_n* given by $(p, D) \rightarrow (p, p + D)$ and denote by γ_n : $C \times C_{n-1} \rightarrow D_n$ the corresponding isomorphism. For any variety X denote by Θ_X the sheaf of vector fields on X . We recall from [4] the following results:

LEMMA 2. γ_n^* ($\mathcal{O}_{C \times C_n}(D_n)$) $\approx \pi_c^* \Theta_c \otimes \mathcal{O}_{C \times C_{n-1}}(D_{n-1})$

PROPOSITION 3. *For g* > I, *there exists a natural exact sequence*

$$
0 \to H^1(C, \Theta_C) \to H^1(C_n, \Theta_{C_n}) \to H^0(C, \Theta_C \otimes R^1 \pi_{C} \cdot C_{C \times C_{n-1}}(D_{n-1})) \to 0
$$

Our first objective will be to calculate the last term of the sequence. On

22 XAVIER GOMEZ-MONT

 $C \times C_m$ with $m \geq 1$ we have an exact sequence

$$
0 \to \pi_C^* \Theta_C \to \pi_C^* \Theta_C \otimes \mathcal{O}_{C \times C_m}(D_m) \to \pi_C^* \Theta_C \otimes \mathcal{O}_{C \times C_m}(D_m) \mid_{D_m} \to 0.
$$

Using Lemma 2 and viewing $\mathcal{O}_{C \times C_{m-1}}$ as a module on $C \times C_m$ via γ_m we obtain the sequence

$$
0 \to \pi_C^* \Theta_C \to \pi_C^* \Theta_C \otimes \mathcal{O}_{C \times C_m}(D_m) \to \pi_C^* \Theta_C^2 \otimes \mathcal{O}_{C \times C_{m-1}}(D_{m-1}) \to 0
$$

We look at the exact sequence of direct image sheaves on *C*

$$
0 \to \Theta_C \overset{\approx}{\to} \Theta_C \otimes \pi_C \cdot \Theta_{C \times C_m}(D_m) \overset{0}{\to} \Theta_C^2 \otimes \pi_C \cdot \theta_{C \times C_{m-1}}(D_{m-1}) \overset{\psi m}{\to} \Theta_C
$$

$$
\otimes H^1(C_m, \ \theta_{C_m}) \to \Theta_C \otimes R^1 \pi_C \cdot \theta_{C \times C_m}(D_m) \to \Theta_C^2 \otimes R^1 \pi_C \cdot \theta_{C \times C_{m-1}}(D_{m-1}).
$$

Using the canonical isomorphisms $H^1(C_m, \mathcal{O}_{C_m}) \approx H^1(C, \mathcal{O}_C)$ and π_{C^*} $\mathcal{O}_{c \times c_{m-1}}(D_{m-1}) \approx \mathcal{O}_c$, we decompose this sequence into two short exact sequences on *C*

$$
0 \to \Theta_C^2 \to \Theta_C \otimes H^1(C, \mathcal{O}_C) \to \text{Cok }\psi_m \to 0 \tag{1_m}
$$

$$
0 \to \mathrm{Cok}\ \psi_m \to \Theta_C \otimes R^1 \pi_{C}^* \mathcal{O}_{C \times C_m}(D_m) \to \Theta_C^2 \otimes R^1 \pi_{C}^* \mathcal{O}_{C \times C_{m-1}}(D_{m-1}) \qquad (2_m)
$$

Tensoring (1_m) with Θ_c^p for $p \ge 0$ and writing out the long exact sequence we have

$$
0 \to H^0(C, \Theta_C^p \otimes \text{Cok }\psi_m) \to H^1(C, \Theta_C^{p+2}) \xrightarrow{H^1(\Theta_C^p \otimes \psi_m)}
$$

$$
\to H^1(C, \Theta_C^{p+1}) \otimes H^1(C, \mathcal{O}_C) \to H^1(C, \Theta_C^p \otimes \text{Cok }\psi_m) \to 0.
$$

Kempf has shown that, using Serre duality

$$
H^1(\Theta_C^p \otimes \psi_m)^*: H^0(C, \omega) \otimes H^0(C, \omega^{p+2}) \to H^0(C, \omega^{p+3})
$$

corresponds to multiplication, so using Proposition 1 we obtain:

PROPOSITION 4. *For* $m \ge 1$: **a**) *If* $g = 2$, dim $H^0(C, \text{Cok } \psi_m) = 1$. **b**) *If* $g > 2$ *and* $p \ge 0$ *or g* = 2 *and* $p \ge 1$, $H^0(C, \Theta_C^p \otimes \text{Cok }\psi_m) = 0$.

LEMMA 5. $H^0(C, \Theta_C^P \otimes R^1 \pi_{C^*} \mathbb{O}_{C \times C_m}(D_m)) = 0$ for $p \ge 2$ and all $m \ge 0$.

Proof. We prove it by induction on *m*. For $m = 0$ we have that $R^1 \pi_{C^*} \mathcal{O}_C = 0$ so it is trivially satisfied. Assume it is true for $m \ge 0$ and all $p \ge 2$ and we prove it for $m + 1$ and arbitrary $p \ge 2$. The exact sequence of global sections of (2_{m+1}) tensored with Θ_c^{p-1} gives

$$
0 \to H^0(C, \Theta_C{}^{p-1} \otimes \text{Cok }\psi_{m+1}) \to H^0(C, \Theta_C{}^p \otimes R^1 \pi_C \otimes_{C \times C_{m+1}} (D_{m+1}))
$$

$$
\to H^0(C, \Theta_C{}^{p+1} \otimes R^1 \pi_C \otimes_{C \times C_m} (D_m)).
$$

The first term is zero by Proposition 4.b and the last is zero by induction, hence the middle term is zero. ||

We arrive at our first objective:

PROPOSITION 6. For $n > 1$, $H^0(C, \Theta_C \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{\alpha}}(D_{n-1})) = 0$, except if g = 2, *in which case it is I-dimensional.*

Proof: The short exact sequence of (2_{n-1}) is

 $0 \rightarrow H^0(C, \text{Cok }\psi_{n-1}) \rightarrow H^0(C, \Theta_C \otimes R^1 \pi_{C} \cdot \mathcal{O}_{C \times C_{n-1}}(D_{n-1}))$

 $\rightarrow H^0(C, \Theta_C^2 \otimes R^1 \pi_{C^*} \mathcal{O}_{C \times C_{n-2}}(D_{n-2}))$

The last term is zero by Lemma 5 and Proposition 4 now gives the desired result. II

THEOREM 7. **a**) If $g = 2$ and $n > 1$, then the natural injection $H^1(C, \Theta_C) \rightarrow$ $H^1(C_n, \Theta_C)$ has codimension 1.

b) Let \ddot{C} be a curve with $g > 2$, then there exists a natural isomorphism $H^1(C_n, \Theta_C) \approx H^1(C, \Theta_C)$

c) Let $S_n: \mathcal{V}_n \to \mathcal{F}$ be the deformation of C_n constructed by symmetrising *the universal deformation s:* $\mathcal{V} \rightarrow \mathcal{T}$ of C. Then for $g > 2$ s_n is the universal *deformation of Cn.*

Proof: **a)** and **b)** follow from Proposition *3* and 6. **b)** is the only ingredient lacking for hyperelliptic curves in Kempf's theorem 4.2 in [4]. So b) and his argument give c).

2. The complete family of C_2 for $g = 2$

We can conclude that deformation theory of higher symmetric products of curves of genus 2 differs from those of $g > 2$, at least up to first order and we are interested in seeing if this difference extends to actual deformations. For the rest of this paper we assume that *k* is the complex number field C and that *C* is a curve of genus 2.

It will be important to look at the Abelian integral map $u_n: C_n \to P_n$ where P_n is the Picard variety of *C* of degree *n*. From the point of view of C_n , u_n is the Albanese map obtained by integrating the global 1-forms on C_n modulo periods. The basic idea is that for any deformation of C_n there exists a natural deformation of u_n and this will allow us to compare the deformation of C_n with the deformation of P_n .

To begin, we briefly recall the definition of the Albanese mapping of a local family. Let $p: \mathcal{V} \rightarrow U$ be a family of compact Kähler manifolds, where *U* is a neighborhood of O which may be shrinked at will. In particular we may assume that $\mathscr V$ is topologically $V_0 \times U$. Let $\Omega^1_{\mathscr V|U}$ be the sheaf of relative differentials. Then $p \cdot \Omega_{\nu}^1$ is a vector bundle on *U*. After shrinking *U* we may choose a basis $\sigma_1, \cdots, \sigma_q$ which may be thought as a family of basis for the 1-forms on $V_t =$ $p^{-1}(t)$. After choosing a local section s of p we can integrate $\sigma = (\sigma_1, \dots, \sigma_q)$ over paths starting in $s(t)$ and contained in V_t defined modulo periods; i.e. if $\alpha_1, \cdots, \alpha_{2q}$ is a basis for $H_1(V_0, Z)$ and

$$
\Phi(t)=(\int_{\alpha_i}\sigma_i)
$$

we obtain the Albanese map

$$
\mathscr{V} \qquad \text{Alb}(\mathscr{V}) = U \times \mathbf{C}^q/\Phi
$$

$$
U
$$

 Φ is called the period map and may be thought as a holomorphic map of U into D , where D is the period matrix space [1].

Denote by *S* the space of 2×2 matrices *A* with $\det(Im A) > 0$. Then over *S*

we may construct a family of complex tori $\mathscr{W} \to S \mathscr{W} = C^2 \times S/\sim$, where two points are equivalent $(z_1, z_2, A) \sim (w_1, w_2, A)$ if and only if

$$
\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} m \\ n \end{pmatrix} + A \begin{pmatrix} p \\ q \end{pmatrix}
$$

where *m, n, p, q* are integers. $q^{-1}(A)$ is the complex tori with period matrix A. In [5] it is shown that this family of normalized complex tori is complete and effectively parametrized.

It will be easier to understand first the case $n = 2$. We can view $u_2: C_2 \rightarrow P_2$ as the blow up of the canonical point in P_2 . Now P_2 corresponds to a point s \in S and there exists a unique isomorphism between P_2 and $q^{-1}(s)$ which sends the canonical point to 0. Let $\tilde{\mathscr{W}}$ be the variety obtained by blowing up \mathscr{W} along $0 \times S$:

$$
\begin{array}{ccc}\n\bar{\mathcal{W}} & \xrightarrow{\phi} & \mathcal{W} \\
\searrow & \swarrow & & \\
S & & & \\
\end{array}
$$
\n(3)

 $\varphi_t: \tilde{\mathscr{W}}_t \to \mathscr{W}_t$ is the blow up at 0, hence \mathscr{W} is a deformation space of $\tilde{\mathscr{W}}_s = C_2$.

THEOREM 8. The family \tilde{W} is complete and effectively parametrized at s. In *particular, for curves of genus 2 there are deformations of* C_2 *which are not symmetric products of curves, moreover which are not even algebraic.*

Proof: The Kodaira-Spencer map of (3) at *s* gives a commutative diagram

$$
H^1(C_2, \Theta_{C_2}) \xrightarrow{\widetilde{d} \phi} H^1(P_2, \Theta_{P_2})
$$

By construction ρ is an isomorphism. By the behaviour of $H^q(\, ,\, \Theta)$ under blowing up [2, p. 798] $d\varphi$ is an isomorphism, hence $\tilde{\rho}$ is an isomorphism. So the first part follows from Kodaira-Spencer's theorem of completeness [6]. The second part follows since a general torus of dimension 2 is not algebraic and the Albanese variety of an algebraic variety is algebraic. II

SYMMETRIC PRODUCTS 25

3. First order obstructions for $g = 2$ **and** $n > 2$

Now, we investigate the deformations of C_n with $n > 2$. The Abelian integral map $u_n: C_n \to P_n$ gives a representation of C_n as a bundle of projective spaces P^{n-2} . Let τ be the sub-bundle of Θ_{C_n} consisting of those vector fields which are everywhere tangent to the fibers of u_n . We can fit it into an exact sequence

$$
0 \to \tau \to \Theta_{C_n} \to u_n^* \Theta_{P_n} \to 0 \tag{4}
$$

PROPOSITION 9. **a**) $R^q u_{n^*} \tau = R^q u_{n^*} \mathcal{O}_{C_n} = R^q u_{n^*} \Theta_{C_n} = 0$ for $q > 0$ **b**) For every $q: H^q(C_n, \tau) \approx H^q(P_n, u_{n^*}\tau)$ and $H^q(C_n, \Theta_{C_n}) \approx H^q(P_n, u_{n^*}\Theta_{C_n})$ **c**) $H^q(C_n, \Theta_{C_n}) = H^q(C_n, \tau) = 0$ for $q > 2$. **d)** We have an exact sequence

$$
0 \to H^0(P_n, \Theta_{P_n}) \to H^1(C_n, \tau) \to H^1(C_n, \Theta_{C_n}) \to H^1(P_n, \Theta_{P_n})
$$

$$
\to H^2(C_n, \tau) \to H^2(C_n, \Theta_{C_n}) \to H^2(P_n, \Theta_{P_n}) \to 0 \quad (5)
$$

Proof: For U an affine open set in P_n we have $H^q(U \times P^{n-2}, \tau) = H^0(U, \tau)$ $\mathcal{O}(0) \otimes H^q(P^{n-2}, \Theta_{P^{n-2}}) = 0$ for $q > 0$ since we know that $H^q(P^{n-2}, \Theta_{P^{n-2}}) = 0$ for $q > 0$. Hence $R^q u_{n^*} \tau = 0$. Repeating the same argument for \mathcal{O}_{C_q} we obtain that $R^q u_{n^*} \mathcal{O}_{C_n} = 0$ for $q > 0$. Now using that $u_n^* \Theta_{P_n} \approx \mathcal{O}_{C_n} \oplus \mathcal{O}_{C_n}$ we can conclude that the only non-zero part of the long exact sequence of higher cohomololgy groups of (4) is

$$
0 \to u_n \cdot \tau \to u_n \cdot \Theta_{C_n} \to \Theta_{P_n} \to 0 \tag{6}
$$

In particular $R^q u_{n^*} \Theta_{C_n} = 0$ for $q > 0$. This proves **a**). **b**) follows from **a**) since the spectral sequence for $u_{n^*}\tau u_{n^*}\Theta_{C_n}$ degenerates. c) follows from **b**) since P_n has dimension 2. Writing the long exact sequence of (6) together with **b)** and the fact that C_n has no vector fields gives **d**).

Let $p \in C$ and consider the sheaf $\mathcal{O}_{C_n}(p + C_{n-1})$. The dual of its direct image sheaf $W = (u_n \cdot \mathcal{O}_{C_n}(p + C_{n-1}))^*$ is a Picard sheaf on P_n and $C_n = \text{Proj}(W)$. The Euler sequence for the tangent bundle of a projective space globalizes to

$$
0 \to \mathcal{O}_{C_n} \to u_n^* W \otimes \mathcal{O}_{C_n}(p + C_{n-1}) \to \tau \to 0
$$

The only non-trivial part of the exact sequence of higher direct image sheaves is by Proposition 9.a

$$
0 \to \mathcal{O}_{P_n} \xrightarrow{\alpha} W \otimes W^* \to u_n \to 0
$$

 α corresponds to multiplying by the identity automorphism of W, but this map splits naturally via $(1/n)$ Trace, hence we obtain a family of short exact sequences for $q \geq 0$:

$$
0 \to H^q(P_n, \mathcal{O}_{P_n}) \to H^q(P_n, W \otimes W^*) \to H^q(P_n, u_n \cdot \tau) \to 0 \tag{7}
$$

THEOREM 10: Let C be a curve of genus 2 over the complex numbers and n \geq 3. Then:

a) dim $H^1(C_n, \tau) = 2$ and $H^2(C_n, \tau) = 0$

26 **XAVIER** GOMEZ-MONT

b) The sequence (5) gives rise to canonical isomorphisms

$$
H^q(C_n, \Theta_{C_n}) \approx H^q(P_n, \Theta_{P_n}) \quad \text{for} \quad q = 1, 2.
$$

c) The graded Lie algebgra $H^*(C_n, \Theta_C)$ is non-zero only in degrees 1 and 2, and it is Abelian.

Proof: In [3, p. 272], Kempf has computed the dimension of $H^q(P_n, W \otimes$ W^*), which is 4 and 1 for $q = 1, 2$ respectively. Since P_n is isomorphic to the Jacobian of C, $H^q(P_n, \mathcal{O}_P)$ has dimension 2 and 1 for $q = 1, 2$. So **a**) follows from (7) and these calculations. Now **b)** follows from a) and the long exact sequence (5).

To check **c)** we only have to prove that the map

$$
[\quad,\quad]:H^1(C_n,\Theta_{C_n})\otimes H^1(C_n,\Theta_{C_n})\to H^2(C_n,\Theta_{C_n})
$$

given by the Poisson bracket of (0, 1)-vector forms vanishes, since all the other cohomology groups vanish. To do this, consider the $\overline{\partial}$ -resolution of (4)

where $E^{p,q}$ # means the C^{∞}-sections of the sheaf #. The complex is vertically exact and the complex of global sections computes horizontally the cohomology of the first sheaves.

We may choose a harmonic basis for $H^1(P_n, \Theta_{P_n})$ of the form $\varphi_{ij} = (\partial/\partial z_i) d\bar{z}_j$ where (z_1, z_2) are affine coordinates of the universal cover of P_n . Since the spectral sequence of $u_{n^*}(u_n^*\Theta_{P_n})=\Theta_{P_n}\otimes u_{n^*}\mathcal{O}_{C_n}=\Theta_{P_n}$ degenerates by Propo sition 9, we may consider φ_{ij} as elements of $H^0(C_n, E^{0,1} \Theta_{P_n})$ and they form a basis for $H^1(C_n, u_n^* \Theta_{P_n})$. Since $H^1(C_n, \Theta_{C_n}) \to H^1(C_n, u_n^* \Theta_{P_n})$ is an isomorphism, we may choose $\bar{\mathfrak{d}}$ -closed liftings $\tilde{\varphi}_{ij} \in \dot{H}^0(C_n, E^{0,1} \Theta_{C_i})$. In local coordinates $(y_1, \ldots, y_{n-2}, z_1, z_2)$

$$
\tilde{\varphi_{ij}}=(\partial/\partial z_i+A_{ij}(\,y,\,z))\,\,d\bar{z_j}+\textstyle\sum_{m=1}^{n-2}B_{ij}{}^m(\,y,\,z)\,\,d\bar{y_m}
$$

where A and B are sections of τ , that is vector fields in $\partial/\partial y_m$. Since $[\varphi_{ii}, \varphi_{rs}]$ $= 0$, and by the local definition of the Poisson bracket of $(0, 1)$ -vector forms we have $[\tilde{\phi}_{ij},\tilde{\phi}_{rs}]\in H^0(C_n,E^{0,2}\tau),$ but since $H^2(C_n,\,{\mathscr{T}})=0$ by part a) we have that $[\tilde{\varphi}_{ii}, \tilde{\varphi}_{rs}] = \bar{\partial} \psi$ with $\psi \in E^{0,1}$ *S*. But this implies that on the level of cohomology the Poisson bracket is trivial, hence $H^*(P_n, \Theta_P)$ is an Abelian Lie Algebra. ||

The fact that the Lie algebra is abelian means that all first order obstructions

SYMMETRIC PRODUCTS 27

vanish. Whether higher order obstructions vanish for $n > 2$ is unsettled at this point.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

REFERENCES

- [1] PH. GRIFFITHS, *Periods of integrals on albebraic manifolds* II, Amer. J. Math. 90(1968), 805-865.
- [2] ----, *Some remarks on continuous systems and moduli.* J. Math. Mech. 16(1967), 789-802.
- [3] G. KEMPF, *Toward the inversion of abelian integrals* I, Ann. of Math. 110(1979), 243-273.
- [4] \rightarrow , *Deformations of symmetric products, Riemann surfaces and related topics, Proc. of* the 1978 Stony Brook Conference, Ann. of Math. Studies, to appear
- [5] K. KoDAIRA AND D. SPENCER, *On deformations of complex analytic structures.* Ann. of Math. 67(1958), 328-466.
- [6] $--, A$ theorem for completeness for complex analytic fibre spaces, Acta Math., 100(1958), 281-294.
- [7] **M.** KuRANISHI, *On the locally complete families of complex analytic structures,* **Ann.** of Math. 75(1962), 536-577.
- [8] A. MATTUCK, *Symmetric products and Jacobians,* Amer. J. Math. 83(1961), 189-206.
- [9] D. MUMFORD, Abelian Varieties, Oxford Univ. Press, Oxford, 1970.
- [10] X. G6MEZ-MONT, *Differentials on hyperelliptic curves.* An. Inst. Math. Univ. Nae. Aut6noma Mexico, Univ. Nae. Aut6noma de Mexico, 19(1979), in press.