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THE CONVERGENCE OF APPROXIMATING FRACTIONS 

BYP. WYNN* 

1. Introduction and summary 

Two methods for transforming possibly divergent power series have been 
extensively studied. The first of these was introduced by le Roy, and is an 
extension of the integral transformation subsequently investigated in detail by 
Borel; under appropriate conditions it yields an integral expression for the 
suitably interpreted sum of the series being transformed. The second method 
involves the iterative construction of approximating fractions, of which some 
are convergents of an associated continued fraction, and yields a sequence of 
rational functions which, again under appropriate conditions, converges to the 
sum in question. 

In this paper, two general results concerning the convergence of approxi
mating fractions derived from power series whose coefficients are Hamburger 
and Stieltjes moments respectively are derived. An extension of le Roy's 
method of transforming power series is introduced. After conditions upon the 
rate of growth of the above moments have been imposed, the summability of 
the series by use of le Roy's method and its extension is demonstrated, the 
convergence of certain sequences of approximating fractions obtained from the 
series is established, and the consistency of these two diverse methods of 
defining the sum of the series considered is proved. The results derived are 
refinements and extensions of theorems due to F. Bernstein, Hamburger and 
Wall. 

2. Notation and preliminaries 

With a, p prescribed real numbers (a :s P), [a, pr 1 is the set of points {t: (1/ 
t) E [a, {J]}. With 81, 82 prescribed real numbers (81 < 82), tJ.(81, 82) is the finite 
open sector containing the points of the set {z: 81 < arg(z) < 82, 0 :5 I z I < 
oo}; with 81 :5 82, ~(81, 82} is the finite closed sector ( or ray) containing the 
points of the set { z : 81 :s arg(z) :s 82, 0 :s I z I < oo}. With M a prescribed set of 
points in the complex plane, BE(M) is the point set {z: I z - t I ~ 8 for all t E 
M, I z I< T} where 8 E (0, co) arbitrarily small and TE (0, oo) arbitrarily large 
are fixed. An expression such as z", where z is complex and a E (-oo, oo), refers 
to that branch of this function which assumes positive real values for positive 
real z. x ! denotes r (x + 1) for general real values of x. 

The index of single summation is always v; if the upper limit is infinity it is 
omitted from the summation sign; if the lower limit is also zero, it too is 
omitted:~ 1nav, ~1 a, and l::a, denote l::,=ln av, l::v=loo av and l::,=O 00 a, respectively. 
Order relationships (e.g. f, = O(v!)) are tacitly assumed to hold for values of 
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the argument tending to infinity; furthermore, use of simple order relationships 
such as /. = O(v!e), f. = O(f"), • • • implies that t f, • • • are fixed finite 
positive real numbers. 

Simple integral expressions and Stieltjes integral expressions denote Rie
mann integrals and Riemann-Stieltjes integrals respectively. All real valued 
functions defined over an interval of the real axis are assumed to be normalised 
by a condition of the form a(t) = ½{ a(t+) + a(t-)} for all t E (a, f3 ), [a, /3] 
being the interval over which a is defined. With a, f3 prescribed real numbers• 
(as /3), a E BN([a, /3]) means that a is a real valued function, bounded and 
nondecreasing over [a, /3] with J~ da(t) > 0, and such that all moments 

(1) /. = ff/, t" da(t) (v = 0, 1, • • •) 

exist; conditions possibly imposed upon [a, /3] are inserted in the parentheses 
of the above notation; a E BN([a, /3] k [0, oo ]) means that a E BN([a, /3]) 
where [a, /3] k [0, oo]. With [a, /3], [a', f3']([a, /3] k [a', /3']) and a E BN([a, 
/3]) prescribed, a'= e(a; a', /3') is the extension of a over [a', /3'], so that a'(t) 
= a(a) for a' st< a if a'< a, a'(t) = a(t) for a St S /3, and a'(t) = a(/3) for 
/3 <ts /3' if /3' > /3. With a E BN([a, /3] k [-oo, oo]) and the fixed finite integer 
m ~ 0 prescribed, a<m> is the function for which da<m>(t) = tm da(t)(a S t s 
/3). The symbol {f.} = MS{a; a, /3} is used to indicate that the members of the 
moment sequence {/.} are defined by formula (1). Where convenient, the 
symbol {/.} = MS{a E BN([a, /3])} is used to indicate that {/.} = MS{a; a, 
/3} where a E BN([a, /J]). With a E BN([a, /J] k [-oo, oo ]) prescribed, a E DH 
means that the Hamburger moment problem deriving from the sequence {/.} 
= MS{a; a, /3} is determinate, in the sense that there is only one normalised 
function a' E BN([-oo, oo]) for which {/.} = MS(a'; -oo, oo) (it is a'= e(a; 
-oo, oo)). /(a: a, /3; z) is the function 

(2) J~ da(t) . 
l - tz 

ff is the power series 

(3) 

The approximating fraction (Naherungsbruch [10, 5]) or Pade quotient ([14], 
[15] Ch. 5, [21] Ch. 20) P;,j(i,j ~ 0 being fixed finite integers) derived from the 
series ffe, the {f.} being members of a field with /0 ~ 0, is that irreducible 
rational function whose numerator polynomial is of degree sj and whose 
denominator polynomial D;,j is of degree Si with D;J(0) = 1, whose series 
expansion is ascending powers of z agrees with ff for the greatest number of 
initial terms. The quotients {P;,j} may be placed in a two-dimensional array, 
the Pade table, in which i and j correspond to row and column numbers 
respectively. For convenience in exposition, we append the quotient Po,-i (z) 
= 0 to the Pade table. For a fixed finite integer m ~ 0, the quotients P;,i+m-i 
(i = 0, 1, • • •) and P;+m,i (i = 0, 1, • • •) lie on forward diagonals in the Pade 
table. 



THE CONVERGENCE OF APPROXIMATING FRACTIONS 59 

3. The convergence of forward diagonal sequences in the Pade table 

THEOREM 1. Subject to further conditions, let {/.} = MS{a E BN([a, ,8])}; 
let f(z) = f(a:a, ,8; z); let {P;,J be the approximating fractions derived from 
the series ffe, let n 2::: 0 be a fixed finite integer. 

(i) Let [a, ,8] k [-oo, oo] and let the series 

(4) 

diverge. Then for increasing i the forward diagonal sequences {Pi,i+2m-d (m 
= 0, 1, • • •, n) and {P;+2m-1,i} (m = 2, 3, • • •, n) converge uniformly to f over 
BE([a, ,er 1), and the forward diagonal sequences {P;,;+2m} (m = 0, 1, • • •, n) 
and {P;+ 2m,i}(ni = 1, 2, • • •, n) converge uniformly to f over BE([-oo, oo]). 

(ii) Let [a, ,8] k [0, oo], and let the series ~dn+,- 11<2•> diverge. Then for 
increasing i the forward diagonal sequences {Pi,i+m}(m = 0, 1, • • •, n) and 
{P;+m,i} (m = 1, 2, • • ·, n + 1) converge uniformly to f over BE([a, ,er 1). 

Proof. If a is a simple step function with salti M. > 0 at the distinct points 
t. E [a, ,8] (v = 1, 2, • • •, N < oo) and no other points of increase in [a, ,8], then 
f2T = "'.:E,1NM,t}T (T = 0, 1, •••);the series (4) diverges for all finite n 2::: 0. f is the 
rational function 

and [14] if none (one) of the {t.} is zero PN+i,N+J-1(z)(PN+i-1,N+J-1(z)) = f(z) 
for i,j = 0, 1, •••.All forward diagonal sequences of fractions {P;,J} ultimately 
consist of copies of f, and the results of both clauses are true. We assume 
henceforth that a is not degenerate in the above sense. 

Form= 0, 1, • • •, n, a<2m> E BN([a, ,8]). Since the series (4) diverges, a<2nJ E 
DH ([ 4] Ch. 8). If m < n, and the Hamburger moment problem associated with 

· the distribution da<2m> were to be indeterminate, two distinct normalised 
solutions du and da which differ at points other than the origin would exist 
([7] §15, [13] §14). The Hamburger moment problem associated with a<2nJ 

would then have two distinct solutions, &<2n- 2m> and a<2n- 2m>. However, since 
a<2n> E DH, a<2m> E DH (m = 0, 1, · · ·, n) also. 

Denote the Hankel determinant of order r + 1 whose (i, j) th element is 
fm+i+J-2 (i, j = 1, 2, • • ·, r + 1) by Hm,r (m, r = 0, 1, • • ·) and set Hm,-1 = 1 (m 
= 0, 1, •••).Let m be fixed in the range 0::: m::: n. a<2m> E BN([a, ,8] k [-oo, 
oo]) is nondegenerate; hence H 2m,r > 0 (r = 0, 1, • •,) ([7] §5, [13] §6). The series 
"'.:E,f2m+,z' generates an associated continued fraction whose extended conver
gents are 

(5) 
a (2m) a (2m)z2 a,-<2m)z2 

c.(2m) - 1 2 
' (z, T} - l - b/ 2m>z- 1 - b2<2mlz- ••• 1 - (b/2.m> + T)z 

(i = 2, 3, • ·,) 
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(with an obvious interpretation of C/ 2m>(z, T)). For a fixed finite z ~ [-oo, oo] 
the {C/2m)(z, T)} describe, as T varies in the range -oo ::s T ::s oo, a system of 
circles { <6'/2m\z)} in the complex plane. With c0 <2m>(z, T) = 0 and "6'0 <2m>(z) 
taken to be the line forming an angle -arg(z) with the real axis at the origin, 
'ffi'i+/2m)(z) touches <6'/2m>(z) at cpm)(z, 0) (i = 0, l, , .. ); 'ffi'i+/2m>(z) lies inside 
<6'/2m\z) (i = 1, 2, • • • ). The value of /(0<2m):a,/3;2) lies inside <6'/2m)(z) (i = 1, 2, 
... ). When 0<2m> E DH, the radii of the 'ffi'Pm>(z) tend to zero; the associated 
continued fraction is then said to be completely convergent (vollstandig kon
vergent [8, 7], [15] §38). In particular, the sequence {C/ 2m)(z, 0) converges to 
/(0<2m): a, /3; z) at an infinite sequence of distinct points in BE([-oo, oo]). The 
{CPm)(z, 0)} also have a decomposition 

M <2m) 
c.(2m)( 0) = l:! i i,, ' ' z, 1 1 t (2m) 

- i,, z 

where a< t;) 2m) < /3, M;) 2m) > 0 (v = 1, 2, •, •, i) and l:!/Mi) 2m) = /2m (i = 1, 
2, ··•). The {C;<2ml(z, 0)} are thus uniformly bounded over BE([a, /3r 1). 
Uniform convergence of the {C/2m)(z, 0} to /(0<2m): a, /3; z) therefore holds, by 
the Stieltjes-Vitali theorem, over BE([a, f3r 1). Furthermore 

Pi,i+2m-l (z) = l:o 2m-lr.z· + z 2mcpm)(z, 0) (i = 0, 1, ... ) 

and 

(6) 

The result concerning the sequences {Pi,i+2m-1} stated in the first part of the 
theorem follows. 

Although H2m,i > 0 (i = 0, 1, •••),it can occur that for a fixed i?: l, H2m+1,i-1 

= 0, when H2m+1,i-2 7'a 0, H2m+1,i 7'a 0 ([17] §22). The numbers 

T .(2m) _ 
' -

H2m+l,i-1H2m,i-2 (. _ l 2 ) 
l- ... 

H2m,i-1H2m+l,i-2 ' ' 

are well determined. From the theory given above, the sequence C/2m)(z, rpm)) 

converges to /(0< 2m>: a, /3; z) at an infinite sequence of distinct points in 
BE([-oo, oo]). The diameter of the circle "6'/2m>(z) described above is hml z/ 
Im(z) I, and is thus bounded for all z lying in a prescribed domain BE([ -oo, 
oo]). Hence the sequence {C/2m>(z, T/ 2m))} is uniformly bounded over this 
domain, and converges uniformly to /(u<2m>: a, /3; z) over it. As is easily deduced 
from theory given in [16] §18, [7] §13 

Joint use of this result and formula (6) establishes the result concerning the 
sequences {P;,;+2m (z)} stated in the first part of the theorem. 

The function g defined by the relationship 

lo 
(7) /(z) = 1 b 2 ( ) , 

- 1Z - Z g Z 
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where b1 = Ii/lo, has a representation g(z) = l(u: a', /3'; z) where o E BN([a', 
/J'] k [a, /J]) ([13] §1). Set {g,} = MS(a'; a', /J'). Then in conjunction 

(8) l(z) ~ "i:.l,z", g(z) ~ "i:.g,z' 

as z tends to zero along, in particular, the imaginary axis ([7] §5, [13] §1). The 
{/,} and {g,} are thus connected by the relationship 

(9) llgr = lolr+2 - ldr+I - lo"i:.{/,,gr-, (r = 0, 1, • • • ). 

Denote the approximating fractions derived from the series "i:.g,z" by A,J (i, j 
= 0, 1, •••).Then 

lo 
(10) PJ+2,i(Z) = 2 - (i,j = 0, 1, • • • ). 

1 - biz- z P;,J(Z) 

If, in the above, I a I, /3 < y < oo, then I g2, I < {a(/3') - a(a') }y2 ". The series 

(11) 

in particular, diverges. The results derived above may be used to establish 
uniform convergence of the sequences {P;,;+2m-i} (m = 0, 1, • • •, n - 1) over 
BE ([a', /J'r 1) ::1 BE ([a, /Jr 1) and { A,i+2m}(m = 0, 1, ••. n - 1) over BE ([-oo, 
oo ]), tog in both cases. Comparison of formulae (7, 10) leads to the remaining 
results of the first part of the theorem. 

If no y E (0, oo) exists for which I a I, /3 < y, then for any uo E (0, oo) an 
interval [a", /3"] for which I allj, I /3" I > uo exists such that a contains points 
of increase over it. Extracting the contribution to the integral expression for 
l2r+2 over the interval [a", /J"], integrating this component by parts, and using 
the mean value theorem, it is easily shown that for any B, Uo E (0, oo), a finite 
integer r' exists such that l2r+2 > Buo 2r(r = r', r' + 1, • • • ). Formula (9) yields 
the relationship 

2 , t2(u2r-1 _ t2r-1) _ 

lo g2r = /ofir+2 - ld2r+I - fo{ig2r-I - lo Je g, t da(t) da(u) 
u-

(in this and the following formulae r = 1, 2, •••).The integrand in the above 
double integral is positive. Hence 

/o2g2r < lo/2r+2 - /ifir+I - /ol1g2r-I 

or, since g2r and l2r+2 are positive, 

(12) 

For any Uo E (0, oo) and all u E (-oo, oo) 

and hence 

I u2r-I I ::s Uo2r + (2r - l)u2r 

2ruo 
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A similar inequality may be derived for I /2r+1 j. Formula (12) now yields an 
inequality of the form 

g2r < Af2r+2 + Bua2r + Cg2r 

where A, BE (0, oo) and C = I /11/(/luo). Uo can be so chosen that C < 1, and 
using the inequality derived above for {2r+2, we finally derive an inequality of 
the form g2r < Df2r+2 (r = r', r' + 1, • • •) where D E (0, oo) is independent of r. 
Since the series (4) diverges, the series (11) does likewise. The remaining 
results of the first part of the theorem are again established. 

To prove the second part of the theorem, we set ex'= -/3112, /3' = {3112 and y 
= a 112, and define the function a' over [ex', /3'] by setting a'(t) = ½ {a(y) -
a(t 2)} (ex' :St :S - y), a'(t) = 0 if y > 0 (-y < t < y), and a'(t) = -a'(-t)(y :S 

t :S /3'). Now a' E BN([ex', /3'] ~ [-oo, oo]) and /(z) = f(a':a', {3'; z') where z' 
= z112. With {/,} = MS(a; a, /3), {//} = MS(a'; a', /3'), /2/ = f» /2,+1' = 0(v = 0, 
1, ... ) and, denoting the approximating fractions derived from the series"'£/.' z" 
by {P;,/}, 

• P;,;(z) = A;+,,2;+/(z') (i,j = 0, 1, · · ·; v, r = 0, 1). 

The results of the second part of the theorem now follow from those concerning 
the sequences of the form { P;,;+2m-1'} and { P;+2m-1'} of the first. 

When n = 0, the above theorem yields no information concerning sequences 
of the form {Pi+m,d with m > 1, lying below the sub-principal diagonal in the 
Pade table. Nevertheless, something concerning the sequence { P;+2,d can be 
deduced in this case by the use of special methods. Carleman ([4] Ch. 8) 
showed that with {/,} = MS{a E BN([-oo, oo])} and <1 nondegenerate, the 
continued fraction associated with ff converges completely for fixed finite z 
(lm(z) ¥,. 0) if, in the notation of formula (5), the series "'£1 a,(o)-' 12 diverges (the 
a,' 0l are all positive real numbers). He then showed that this series diverges if 
the series (4) with n = 0 diverges. The partial numerators of the continued 
fraction associated with the series "'i:.g,z" of formulae (7-9) are a,+ 1 (o) (v = 1, 2, 
•••).If the series (4) with n = 0 diverges, the series °'£1a,+1 (0)-' 12 diverges. Hence, 
in particular, with f and g being as in the proof of Theorem 1, the sequence 
{ P;,;} converges uniformly tog over BE ([ -oo, oo ]) and, from formulae (7, 10), 
the sequence { P;+2,;} converges uniformly to / over BE ([ -oo, oo ]) . In the 
Stieltjes case in which {/.} = MS{a E BN([0, oo])}, no additional information 
is obtained in this way. 

Basing his analysis on an examination of the convergence behaviour of series 
whose terms are derived from the coefficients { a. <2ml} and { b. (Zm)} occurring in 
formula (5), Wall [19, 18] has given accounts of the convergence behaviour of 
the approximating fractions {P;,J} derived from the series ff in the two cases 
in which{/.}= MS{a E BN([-oo, oo])} and{/.}= MS{a E BN([0, oo])}. 

Using the notation of this paper, the description in the former case is as 
follows: for integers n, n' ~ - 1 a<2m) E DH(m = 0, 1, • • •, n) and a( 2m) E DH(m 
= 0, 1, • • •, n') and, with /(z) = /(a: -oo, oo; z), the forward diagonal sequences 
{Pi,i+m-1} (m = 0, 1, • • •, 2n + 1) and {Pi+m,d (m = 2, 3, • • •, 2n') converge 
uniformly to /over BE([-oo, oo]); the remaining diagonal sequences, although 
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behaving in a regular manner, may not converge as just described (details are 
given in [19]). In the latter case, and again with integers n, n' ===: -1, the 
Stieltjes moment problems associated with the functions u<m>(m = 0, 1, • •., n) 
and ;;<m>(m = 0, 1, • • •, n'), where 

lo f(u:0, oo; z) = ___ A ___ _ 

1 - zf(u: 0, oo; z) 

are determinate and, with !(z) = f(u: 0, oo; z), the forward diagonal sequences 
{Pi,i+m} (m = 0, 1, • • •, n) and {P;+m,;} (m = 1, 2, • • •, n' + 1) converge 
uniformly to/ over BE ([0, oo ]); thereafter, the above Stieltjes moment problems 
are indeterminate for m = n + 1, n + 2, • • • and m = n' + 1, n' + 2, ... 
respectively, and each of the remaining diagonal sequences converges uni
formly over BE([0, oo]), although no two limit functions associated with 
adjacent sequences are equal. (Before commenting further, we remark that the 
above theory may slightly be extended (see the proof of Theorem 1): if in the 
first of the above cases u is devoid of points of increase in [-oo, oo]\[a, ,8], then 
the even order sequences {P;,;+2m-d(m = 0, 1, • • •, n) and P;+2m-u(m = 2, 3, 
• • •, n') converge uniformly to f over BE([a, pr 1) (i.e. if a> -oo or ,8 < oo, a 
more extensive domain than BE ([-oo, oo ])); if in the second of the above cases 
u is devoid of points of increase in [0, oo]\[a, ,8], then all sequences {Pi,i+m}(m 
= 0, 1, • • •, n) and {P;+m,;} (m = 1, 2, • • •, n' + 1) converge uniformly to /over 
BE ([ a, pr 1)). In the first of the above cases it may occur that n = -1 and the 
first band of diagonal sequences is missing; alternatively it may occur that n 
= oo, and all sequences {Pi,i+m-d (m = 0, 1, • • •) converge uniformly as 
described; mutatis mutandis, the same considerations hold with regard to n'; 
a similar comment may be made upon the second case. 

In the first part of Theorem 1, the condition that the series (4) should 
diverge has been imposed (this implies that u<2m> E DH(m = 0, 1, ... , n)) and 
it has then been demonstrated that, subject to this additional restraint, n' ===: n 
in the first of the above descriptions; similarly for the second part. Carleman's 
criterion (namely that the divergence of the series (4) implies that u<2n> E DH) 
is a sufficient condition for the determinacy of the Hamburger moment 
problem, although no example is known (at least to the author) for which the 
series (4) converges when u<2n) E DH. Ifit transpires that Carleman's condition 
is also necessary, Wall's account as given above will have to be refined by the 
additional remark that the band of convergent sequences lying below the 
principal diagonal of the Pade table is at least as extensive as that lying upon 
and above it, in the sense that n' 2:: n. Again, similar considerations hold with 
regard to the Stieltjes case in which [a, ,8] i;;;; [0, oo ]. (For the sake of 
completeness, it is mentioned in this context that if, under the conditions of 
the first part of Theorem 1, the series (11) converges, then the series (4) does 
likewise.) 

4. Linear transformations of power series 

Adapting the version according to Hardy ([9] §4.13) of le Roy's method 
[11 ], the power series ffe with complex number coefficients {/,} is transformed 
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over the sector 3. ( 81, 82) as follows: it is assumed that for each z E 3. ( 81, 02), a) 
the series ~f.(zu)" /(xv)! converges for small values of u, b) the function fx(zu) 
defined by analytic continuation of the sum of this series is regular in u for all 
u E (O, co) and c) the integral 

(13) 

exists; :IF is then said to be summable (B', x) to Bx over~(81, 82). The case in 
which x = 1 was studied in detail by Borel ([3] Ch. 3). 

Hardy ([9] §13.16) remarks that under certain conditions the Euler
Maclaurin series is B2-summable (i.e. summable by a repetition of Borel's 
method). He does not provide an explicit definition ofB 2-summability but this 
is easily done: with regard to the transformation of the series :IF it is assumed 
that for each z E 3.(01, 82), a) the series ~f.(zuw)"/(v!) 2 converges for small 
values of u and w, b) the function f(zuw) defined by analytic continuation of 
the sum of this series is regular in u and w for all u, w E (O, co) and c) the 
double integral 

S(z) = Jo Jo e-v-wi(zuw) du dw 

exists; :IF is then said to be summable (B 2) to S over 3.(01, 82). 
A more concise definition of (B2) summability, involving an auxiliary series 

in one variable and a single integral, may be given: it is assumed that for each 
z E ~(81, 82), a) the series ~f.(zu)" /(v!) 2 converges for small values of u, b) the 
function f(zu) defined by analytic continuation of the sum of this series is 
regular in u for all u E (O, co) and c) the integral 

(14) S(z) = 2 JoKo(2u 112)f(zu) du 

exists (Ko being a modified Bessel function of the second kind); the series :!Fis 
then said to be summable (B 2) to S over ~(0 1, 02). (As is easily verified by use 
of the formula 

Jou-1exp (-u - ~) du= 2Ko(u 112) (0 < u < co) 

the above two definitions of B 2-summability are equivalent.) 
By varying the path of integration in formulae (13, 14) it is possible to extend 

the definitions of (B', x) and B 2-summability in such a way that certain series 
are summable over sectors larger than those for which the above methods are 
effective. The extended definitions are as follows. Firstly it is assumed that the 
series ~f.x' /(xv)! converges in the neighbourhood of the origin, and that the 
function fx obtained by analytic continuation of the sum of this series is 
uniformly bounded over ~(</>1, </>2); set 

(15) Rx(z) = x-lJoexp{i<J>(x,z)) exp(-ullx)u<lfx)-lfx(zu) du 

where 

(16) ( ) xrr{t(</>1 + <td - arg(z)} 
</> X, z = ---------; 

X'IT + </>2 - </>1 
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the series ffe is then said to be summable (B, x) to Rx over Ll(</n - ½X77, </>2 + 
½x77). Secondly, it is assumed that the series ~fvx"/(v!) 2 converges in the 
neighbourhood of the origin and that the function / obtained by analytic 
continuation of the sum of this series is uniformly bounded over K( </>1, </>2); set 

R(z) = 2 Jo'exp{i<1><2,z>J Ko(2u112){ (zu) du; 

the series ffe is then said to be summable (B 2) to R over Ll ( <f,1 - 77, <f,2 + 77). 
(That the above functions Rx and R are well defined over their associated 
sectors is easily demonstrated: with regard to the first function, -½x77 < </>(x, 
z) < ½X'lT and zu E Ll(</>1, <f,2) when z E Ll(</>1 - ½X77, </>2 + ½x77); the second 
function is dealt with similarly.) For any fixed z in the appropriate summability 
sector, the integral (15) also exists if <f,(x, z) is replaced by other sufficiently 
close values. However, by adopting the value given by formula (16), (B, x)
summability over the largest possible sector deriving from the sector ii(<f,1, <f,2) 
of boundedness of fx is ensured. Similar considerations hold with regard to B 2 -

summability. 

THEOREM 2. Subject to further conditions, let Uv} = MS{a E BN([a, ,BJ)}; 
for fixed X, ~." E (O, oo) and finite integer r::::: 0 let h•v = O((2r(xv +,c))!~"); let 
f(z) = f(a: a, ,B; z); let {PiJ} be the approximating fractions derived from the 
series ffe. 

(i) Let [a, ,B} i: [-oo, oo] and x E (O, 1]. 
a) ffeis summable (B', x) to f over both 

ii ( ½x77, i (2 - x)) 

and 

ii (i (x - 2), -½x77). 

b) ffeis summable (B, x) to f over both Ll(0, 77) and Ll(-77, 0). 
c) For increasing i, the forward diagonal sequences {Pi,i+2m+d (m = 0, 1, 

• • ·) and {P;+2m-u} (m = 1, 2, • • ·) converge uniformly to f over BE([a, ,er 1 ), 
and the forward diagonal sequences {Pi,i+2m} (m = 0, 1, • • •) and {Pi+2m,i} 
(m = 1, 2, • • •) converge uniformly to f over BE([-oo, oo ]). 

(ii) Let [a, ,B] i: [O, oo] and XE (O, 2]. 

a) ffe is summable (B ', x) to f over ii ( ½X77, i (4 - x)) . 

b) ffe is summable (B, x) to f over Ll(0, 2'1T). 
c) For increasing i, the forward diagonal sequences {Pi,i+m} (m = 0, 1, 

• • •) and {Pi+m,d (m = 1, 2, • • •) converge uniformly to f over BE([a, ,B]-1 ). 

(iii) Let [a, ,B] i: [O, oo] and x = 2. 
a) ffeis summable (B 2 ) to f over (-oo, OJ. 
b) ffe is summable (B 2) to f over Ll(0, 277). 
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Proof Set tY> = {z,.(p = 0, 1, •.. ). When r > 1 we have u.r-1} = MS(CTr-1; 0, 
oo) where dCTr-1(t) = CT'(t112'- 1

) + CT1 (-(t 112'- 1 ))(0 < t :S oo), dCTr-1(0) = dCT'(0), CT1 

being the extensional CT' = e(CT; -oo, oo) of the function CT defined under the 
conditions of part (i). Since CTr-i E BN([0, oo]), /z,+/r-ll :S (/ 2,<r-1>/2,<r-1>)112 (v 
= 0, 1, . •.).Also tz_<r-I) = f/r> = O((2r(xv + K))le). Hence, as is easily verified, 
f,<r-i> = O((2r- 1(xv + K'))!f")(0 < K', f < oo). Proceeding in this way, it is shown 
that /2. = O((2(xv + K ))!f")(O < K, f < oo). Since CT E BN([a, ,B] k [-oo, oo]), /zv+1 
:S (/2./z.+2) 112 (v = 0, 1, •••),and hence f. = O((xv + K)!f')(O < K, f < 00). By 
choosing T/ slightly larger than f, it follows that/.= O((xv)h]'). 

Mittag- Leffler' s function 

Ex(x) = ~x'/(xv)! 

is, for 0 < x :S 2, uniformly bounded over .3. ( fx7T, i (4 - x)) ([12] Th. 8.a). 

Under the conditions of part (i), the series ~f.(zu)"/(xv)! converges for any 
fixed finite z and I ul < l/611 z I) to 

(17) fx(zu) = f~"" Ex(zut) da(t). 

When z E A ( fx7T, i (2 - x)) U A (i (x - 2), -tx7T), fx(zu) is regular for 0 

:S u < oo, and the integral (17) is absolutely convergent. Furthermore, in the 

notation of formula (13), Bx (z) = /(CT: a, ,B; z) for all z E A ( fx7T, i (2 - x)) U 

A (i (x - 2), -½x7T); clause (ia) has been proved. Clauses (ib), (iia, b) are 

demonstrated in the same way. 
Under the conditions of part (i), all series (4) of Theorem 1 diverge for n = 

0, 1, • • •. The result of clause (ic) now follows directly from part (i) of Theorem 
1; the result of clause (iic) is a consequence of part (ii) of that theorem. 

Under the conditions of part (iii), the series ~f.(zu) • /(v!) 2 converges for any 
fixed finite z and u < l/(111 z I) to 

f(zu) = Jo Jo {2i(zut) 112} da(t) 

(Jo being a Bessel function of the first kind). I Jo{2i(zut) 112} I is uniformly 
bounded for z E (-oo, 0] and u, t E [0, oo); and hence /(zu) is uniformly 
bounded for all z E (-oo, 0] and u E [0, oo): hence, in the notation of formula 
(14), 

S(z) = /(a: a, ,B; z) 

for all z E (-oo, 0]. The result of clause (iiia) has been proved, and that of 
clause (iiib) is derived in the same way. (We remark that the result of part (iic) 
holds a fortiori under the conditons of part (iii).) 

It will have been noted that the series of the class considered in Theorem 2 
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are (B', x) or B 2-summable not over two half-planes or a single cut plane, but 
over sectors belonging to them. That this corresponds to the facts may be 
shown by means of simple examples. One of the series to which clause (ia) 
refers is that obtained by taking the function a to have salti of magnitude ½ at 
the two points ±t'(t' E (0, oo)) and no other points of increase when, with [a, 
,8] = [-oo, oo ], /2• = t' 2" (v = 0, I, • •. ). This series satisfies the stated conditions 
with, in particular, x =I.Since E1(x) = ex, {1(zu) = cosh(zut'), and 

Si(z) = Jo e-ucosh(zut') du. 

This integral exists for I Re(z) I < 1/t'. For any z for which Re(z) 'F 0, a 
sufficiently large t' can be found (i.e. a series to which clause (ia) refers can be 
constructed) for which the above integral fails to exist: (B', 1) summability of 
all series of the type just considered holds only over the finite part of the 
imaginary axis, as the result of clause (ia) indicates. Similar critical examples 
may be constructed for the more general processes of (B ', x) and B 2-summation 
considered in the theorem. Naturally, certain series to which Theorem 2 refers 
are summable over larger sectors than the stated results suggest. For example, 
when a(t) = a(-t) = ½(I - e-t)(0 :'St< oo) and [a, ,8] = [-oo, oo], /2. = (2v)!, /2.+1 
= 0 (v = 0, 1, •••).These coefficients satisfy the conditions of clause (ia) with, 
in particular, x = I. In this case /1(zu) = (I - z2u2)-1, and 81 exists (i.e. the 
series in question is (B', 1) summable) over the maximal open sectors Ll(0, 'IT) 
and Ll(-'IT, 0). 

The restricted regions over which the processes of (B ', x) and B 2 summation 
are effective have a significant interest with regard to the series concerned and 
their related generating functions. The theory is illustrated with reference to 
an example. Denote the function defined by an expression of the form (2) with 
a = -oo, ,8 = oo, a E BN([-oo, oo ]) over the half-plane Im(z) > 0 by f+, and that 
similarly defined over the half-plane lm(z) < 0 by f-. For simplicity, let [a', 
,8'] C (0, oo) and [a", ,8"] = [1/,8', 1/a'], and let w be a function of a complex 
variable, which is analytic in a domain D containing the segment [a', ,8'] in its 
interior. Let da(t) = w(t) dt for all t E [a', ,8']. Regard expression (2) as an 
(incomplete) contour integral, and distend that part of the contour coincident 
with the segment [a', ,8'] in such a way that the deformed part lies in the 
upper half-plane but still in D (the value of /+(z) for Im(z) > 0 is unchanged by 
this operation). Allow z- 1 (which when Im(z) > 0 lies in the lower half-plane) 
to cross the segment (a', ,8') with z- 1 still in D. /+(z) has now been expressed 
for a new value of z for which lm(z) < 0 by means of a contour integral. 
Deform the distended part of the contour in such a way that it becomes the 
segment [a', ,8'] again, together with a small circle about the new value of z- 1. 
Since, for the new value of z, lm(z) < 0, the integrals over the segments [ -oo, 
a'], [a', ,8'], [,8', oo] together yield the value of /-(z). Evaluating the integral 
over the small circle, the relationship 

(18) 
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which offers a basis for the analytic continuation off+ across the segment [a', 
f3'], is obtained. The same formula may also be derived from the representation 

(19) 

, 1 w(u) {a' - u} f+(z) = f(a:-oo, ex; z) +-2 . Jw-1-- ln ~ du 
1ft - zu f' - u 

-z- 1w(z- 1 )ln{ ~ ~ ;: : } + f(a: /3', oo; z) 

where <{? is a simple loop surrounding all points of [a', ,B'] but lying entirely 
within D, and z- 1 lies within <{?, If a is equivalent to other analytic functions of 
a complex variable over other segments of the real axis, further branches off+ 
are determined by relationships of the form (18), and further representations 
of the form (19) hold. 

Let da(t) = exp (- 1tl 11x) dt (O < x < 1; -oo < t < oo) so that da(t) = 
exp(-t 11x) dt (0 :St< oo) and da(t) = exp(-(-t) 11x) dt (-oo < t :SO). For the 
branch off- obtained by analytic continuation across the positive real axis 

(20) 

and for that obtained by analytic continuation across the negative real axis 

(21) 

In the case being considered a E BN([-oo, oo]), and with Uv) = MS(a; -oo, 
oo), /+(z) ~ 'i:.fvz" as z tends to zero in A(0, 71'). However, lim z-rexp(-z- 11x) = 
0 (r = 0, 1, ••• ) as z tends to zero in A(0, ½x7T) so that, from relationship (20), 
f-(z) ~ 'i:.fvz" also as z tends to zero in this open sector. Similarly, with f- now 

defined by formula (21), f-(z) ~ 'i:.fvz" as z tends to zero in A (i (2 - x), 7T). 

Over the two sectors A(0, ½x7T) and A(i (2 - x), 7T) the series ff represents f+ 

as directly defined by formula (2), and also functions of the two branches off-, 
Also {2v = 2x(2xv + x)! (v = 0, 1, • • • ): the series ff is (B', x) summable to f+ 

over a( ½X7T, i (2 - x)) . This sector is precisely the complement in A(0, 71') of 

the two sectors over which ff represents two functions, and is the sector in 
which ff represents one function, namely f +, alone. 

The above observations are complemented by the remark that although 
certain of the functions to which part (i) of Theorem 2 refers are defined by 
analytic continuation over sectors larger than A(0, 71') and A(-71', 0), nevertheless 
these sectors are optimal CB, x) summability sectors with respect to the class 
of relevant series. When a E BN([-oo, oo ]) and a is non-analytic at every point 
of (-oo, oo) then (see [16] §59, [17] §19] and the footnote top. 268 of part I of 
[7]) the real axis is a natural barrier for the functions f± ( a: -oo, oo; z), and 
clearly an integral expression of the form (15) whose use would permit analytic 
continuation across the real axis does not exist. Similar remarks can be made 
concerning the further parts of the theorem. 
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As a matter of further interest it is pointed out that the relationships 
between the rates of growth of the coefficients { f.} and { g,} established in the 
proof of Theorem l lead to the following result: if{{.} = MS{o- E BN([-oo, 
oo])},f(z) = f(a: -oo, oo; z), for x E (0, l] the{{.} satisfy the order relationship 
stated at the commencement of Theorem 2, and { h.} are the coefficients of 
the power series reciprocal to ffe(so that ho= {0-1. hr= -ro- 1"'2.or-lh.fr-,(r = 1, 
2, • • • )), then the series "'2.h,z" is (B', x) summable to 1/f over the sectors 

a( ½x77, i (2 - x)) and a( i (x - 2), -tx77) . Similar results may be formulated 

concerning (B, x) summability of the above reciprocal series and, when [-oo, 
oo] in the above is replaced by [0, oo], with regard to (B', x) and (B', x) and 
summability when x E (0, 2], and to B2- and B2-summability. 

In a classic memoir [6], Hamburger investigated the convergence of the 
continued fraction associated with the power series :IF in the case in which { f.} 
= MS{ o- E BN([-oo, oo ]) } and f. = O(v! C); he showed that this continued 
fraction converges to the (B', 1) sum of ff over the finite part of the imaginary 
axis and, since the convergents are uniformly bounded over BE([-oo, oo]), that 
convergence holds over this domain. The convergents ( { C; (z, O)} in the 
notation of formula (5)) in question are the approximating fractions {P;,;-1 (z)} 
(of a single diagonal sequence) derived from ff. Part (i) of Theorem 2 is an 
extension of Hamburger's work in two senses: firstly, a relationship between 
(B', x) summability and convergence of an associated continued fraction has 
been established for general values of x in the range (O, 1 ]; secondly convergence 
has been shown to hold for all forward diagonal sequences of approximating 
fractions. 

Carleman's criterion for the convergence of the continued fraction associated 
with the series ff in the case in which {/.} = MS{o- E BN([-oo, oo])} (namely 
that the series (4) with n = 0 diverges) appears to be more general than 
Hamburger's criterion developed in the paper referred to in the preceding 
paragraph (namely that f. = 0 ( v! g')) in the sense that if the second criterion 
is satisfied, the first is also. It is nevertheless an interesting open question as 
to whether Hamburger moment sequences exist which satisfy the first condi
tion and violate the second. (It is remarked that such sequences for which f. 
= O((v + -r(v))! C) (~ E (0, oo)) with -r(v) = O(v/ln(v)) satisfy the first test, but 
only appear to violate the second: an f E (0, oo) exists for which f. = O(v! 
e·).) 

Wall ([20] Th. 3) has shown that if{{.}= MS(a E BN([-oo, oo])}, f. = O(p! 
C) and for the series "'2.h,z' reciprocal to?, h, = O(v! f'), then with f(z) = f(a: 
-oo, oo; z) all forward diagonal sequences of approximating fractions {P;J} 
derived from ff converge uniformly to f over BE([-oo, oo ]). As is clear from 
part (i) of Theorem 2, the assumption concerning the reciprocal series can be 
discarded. (As has been remarked above, once the stated conditions upon the 
{f.} have been imposed, the coefficients { h,} necessarily satisfy the required 
conditions.) Wall ([20] Th. 1) has also shown that if { f.} and f are as just 
described but now f. ~ O(C), then all forward diagonal sequences of approxi-
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mating fractions derived from ff converge uniformly to f over BE([-oo, oo]). As 
is evident from part (i) of Theorem 2, a further term of the form v! may be 
in~erted with impunity in the stated order relationship. 

F. Bernstein [1] has shown that if Uv} = MS{o-E BN([0, oo])} and {v = 
O((xv)! e) for some XE (0, 2) and! E (0, oo) then, with /(z) = /(o-: 0, oo; z), ff 

is summable (B', x) to f over a( ½x77, i (2 - x)) anda(i (x - 2), -½x77) and 

that the continued fraction associated with ff converges uniformly to f over 
BE([0, oo]). In a footnote top. 46 of [2], Bernstein remarks that it follows as a 
corollary to Hamburger's work referred to above, that ff is (B', 2) summable 
to f over the finite part of the nonpositive real axis, and that uniform conver
gence of the associated continued fraction over BE([0, oo ]) also holds for x = 2. 
Part (ii) of Theorem 2 offers a slight extension to Bernstein's work in that (B ', 
x) summability is shown to hold over the closed sectors corresponding to the 
open sectors given above for 0 < x :s 2; furthermore, convergence also holds 
for all forward diagonal sequences of approximating fractions, ·not just that 
upon which the convergents of the associated continued fraction lie. 

Wall ([20] Th. 3) has shown that if Uv} = MS{o-E BN([0, oo])}, fv = O(v! 
C), and the coefficients of the series reciprocal to ff (see above) satisfy a 
similar relationship, then with /(z) = /(o-: 0, oo; z) all forward diagonal 
sequences of approximating fractions derived from ff converge to f uniformly 
over BE([0, oo ]). As part (ii) of Theorem 2 indicates, v! may be replaced by (2v)! 
in the above order relationship and the assumption concerning the reciprocal 
series may be discarded. 

CENTRO DE lNVESTIGACION EN MATEMATICAS, A. C. 
GUANAJUATO, GTO., MEXICO 
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