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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF 
SUPERLINEAR PROBLEMS* 

BY ALFONSO CASTRO 

1. Introduction 

In this paper we develop a method with which we prove that a certain class 
of superlinear problems has infinitely many solutions. Though our main result 
can be stated for an abstract operator equation we prefer to present it in the 
specific context of a variational system of ordinary differential equations. 

Throughout this paper F: Rn - R denotes a function of class C1 such that: 
(A) There exist a positive integer N0, C E R and a sequence of functions 

FN: Rn - R, N ~ No, of class C1 such that i) FN(x) = F(x) for II xii ::s exp(N 2 

+ 2N - C), ii) (VFN(X) - VFN(y), X - y) ::S (N 2 + 2N)II X - y 112 for all X, y E Rn, 

iii) for all x E Rn, FN(X) ~ ((N 2 + l)llxll 2/2) - exp(N 2 + C) - C), and iv) 
II VFN(x)II ::s exp(N)(JI x II + 1). 

If F: Rn - Risa function of class C 1 with F(x) = II x ll2(log(II x 112 ) - 1)/4 for 
II x II large, then F satisfies condition (A). In fact, in this case we may take FN(x) 
= II xll2(2N 2 + 4N - 1)/4 for llxll ~ exp(N 2 + 2N). More examples of functions 
satisfying condition (A) can be obtained by using that condition (A) is stable 
under Lipshitzian perturbations. 

We observe that condition (A) implies that Fis super linear, i.e., F (x) /II x 112 

tends to infinity as II x II - oo. Also condition (A) implies that VF(x)/11 x II does 
not tend to infinity too fast. In fact, in the one dimensional case, F'(x)/1 x I 
tends to infinity as fast as log(! x !). Unfortunately our techniques do not cover 
the case where F'(x)/1 xi goes to infinity as I xi", with a > 0. The results 
announced in [12] cover this case but do not include the case F (x) = x 2 

log(/ x /). 
For the sake of clarity we present our main result in the specific context of 

the problem of finding 2?T-periodic weak solutions of 

u" + VF(u) = p(t), (1.1) 

where p is 277-periodic and p E (L2 (0, 277) )n. 

The results of this paper hold under weaker forms of condition (A). However, 
we have stated condition (A) as above in order to make the computations as 
simple as possible keeping F superlinear. Our main result is: 

THEOREM 1. If F satisfies property (A) then (1.1) has infinitely many 2?T
periodic weak solutions. 

We prove Theorem 1 as follows. Using a well known minimax argument (see 
[4], [5]) we prove that for each N 2::: N0, 

u" + VFN(u) = p(t) (1.2) 

with p 2?T-periodic and p E (L2(0, 2.,,.)r, has a 2?T-periodic weak solution UN, 
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Next, using the minimax characterization we obtain an a priori estimate on the 
functions UN and we show that UN 7" Um for N < m and N sufficiently large. 
Finally, using this a priori estimate we show that infinitely many of the UN are 
actually weak solutions of (1.1). 

For other studies which consider related superlinear problems, see [2], [3], 
[6], [7], [8], [9], [10] and [11]. 

2. Main results 

Throughout this paper f means integral over the interval [O, 2'1T] unless 
otherwise indicated. Let H denote the Sobolev space of 2'1T-periodic functioll$ 
u: R - Rn belonging to (L2(0, 2'1T) t and having a generalized first order 
derivative in (L2(0, 2'1T)t. The inner product in His given by 

(u, v) = f ((u(t), v(t)) + (u'(t), v'(t))) dt (2.1) 

where (,) denotes the usual inner product in Rn. Let II Iii denote the norm in H. 
Since for every u EH with f u(t) dt = 0 we have f (u(t), u(t)) dt :Sf (u'(t), 
u'(t)) dt, we see that on the subspace of functions with mean value zero the 
norm II ll1 is equivalent to the norm given by 

II u ll2 = (f (u'(t), u'(t)) dt) 112• (2.2) 

By the Sobolev embedding theorem (see [l, pp. 97]) it follows that there 
exists a constant C1 such that 

max{!! u(t)II; t ER} :s C1 II u Iii (2.3) 

for all u E H. Moreover, the Sobolev embedding theorem implies that every 
element of His a continuous function. 

We define the functionals J, JN:H - R in the following form: 

J(u) = f (((u'(t), u'(t))/2) - F(u(t)) + (p(t), u(t))) dt; (2.4) 

JN(u) = f (((u'(t), u'(t))/2) - FN(u(t)) + (p(t), u(t))) dt. (2.5) 

A simple computation shows that 

(VJ(u), v) = limt_,o((J(u + tv) - J(u))/t) 
= f ((u'(t), v'(t)) - (VF(u(t)) - p(t), v(t))) dt (2.6) 

Hence an element u E H is a critical point of J iff u is a 2'1T-periodic weak 
solution of (1.1). Similarly, u E His critical point of JN iff u is a 2'1T-periodic 
weak solution of (1.2). 

For each positive integer N we define 

XN = {L~-o (aKsin(Kt) + bKcos(Kt)); aK, bK E Rn} 

and Y N the orthogonal complement of XN in H. It is easily seen that Y N is 
generated by the elements of the form a sin(Kt) + b cos (Kt), with a, b E Rn 
and K ~ N + 1. Clearly for each x E XN we have 

f (x'(t), x'(t)) dt :s N 2 f (x(t), x(t)) dt, (2.7) 
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and for y E YN we have 

I (y'(t), y'(t)) dt === (N + 1)2 J (y(t), y(t)) dt. (2.8) 

By (A - ii) and (2.8) we obtain 

(V JN(X + y) - V JN(X + Yi), y - Yi) :,::,: II y - YillV(N + 1)2 (2.9) 

for all x E XN, y, Yi E YN. Therefore, by Lemma 2.1 of [4], for each x E XN 

there exists a unique <l>N(X) E YN such that 

(2.10) 

Moreover; the function <I>N: XN - Y N is continuous, the functional J N: XN -

R, X - JN(X + <I>N(x)) is of class C1 and 

(2.11) 

for all x, X1 E XN. 

Now, using (A - iii) and (2.10), we have 

2JN(X) = 2JN(X + <l>N(X)) :5 2JN(X) 

:s f((x'(t), x'(t)) - (N 2 + l)(x(t), x(t))) dt (2.12) 

+ 2 llp !1£ 2 1! x 11£2 + 4'1TC + 4'1T exp (N 2 + 1). 

Combining (2.7) and (2.12) we see that JN(x)- -oo as II x Iii - oo. Consequently, 
there exists XN E XN which is a point of maximum of JN. Hence 

JN(XN + <I>N(XN)) = JN(XN) = max{JN(x); XE XN} 
(2.13) 

= maxxEXN(min{JN(X + y); y E YN}). 

Since XN and Y N are complementary subspaces in H, by (2.10) and (2.11) we 
see that UN= XN + <I>N(XN) is a critical point of JN. Hence UN is a 2'1T-periodic 
weak solution of (1.2). 

We summarize the above discussion in: 

LEMMA 2.1. For each integer N =:: No the equation (1.2) has a 2'1T-periodic 
weak solution satisfying the variational characterization (2.13). 

Now, using (2.13), we obtain an a priori estimate for the functions UN. 

LEMMA 2.2. If UN are as above, then there exists a real number C2, inde
pendent of N, such that 

(2.14) 

PROOF: We denote YN = <I>N(XN). From (A-ii) it follows that there exists a 
constant C3, independent of N, such that 

(2.15) 

Indeed, Ca can be taken to be II V F(O) II + I F(O) I. From (2.10) we infer that 
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JN(XN + YN) S JN(XN). Hence 

IIYNII§ s J(2FN(XN(t) + YN(t)) - 2FN(XN(t))) dt + 2 IIPIIL 2 IIYNIIL2 

s J(2C3(l + llxN(t)II + IIYN(t)II) (2.16) 

+ (N 2 + 2N) II XN(t) + YN(t) 112) dt 

+ 477C + 477 exp(N 2 + C) + 2 IIP IIL2 IIYNIIL2 -

In the foregoing set of inequalities we have used (2.15) and (A-iii). Replacing 
(2.8) in (2.16) we have 

IIYNIIL2 - (2IIPIIL2 + 477C3)IIYNIIL2 s 41TC3 + 477C3llxNIIL2 

(2.17) 
+ (N 2 + 2N)llxNlli2 + 477C + 47T exp(N 2 + C). 

From this we see that there exists a constant C4, independent of N, such that 

IIYNIIL2 S C4(l + (N + 1)) II XNi1L2 + 27T exp(N 2 + ( C/2)). (2.18) 

By (2.15) we have 

JN(y) 2: (IIYll§f2) - JFN(y(t)) dt- llPIIL 2 IIYllu 

2: (IIYIIV2) - IIPIIL2 IIYIIL2 - 277C3 

- 27TC3IIYIIL2 - (N 2 + 2N) IIYlliz/2 

2: - ( IIP II L2 + 27TC,)2 - 277C3. 

Hence (A-iii), (2.13) and (2.19) imply 

-21TC3 - (IIPIIL 2 + 27TCa)2 s inf{JN(y); y E YN} 

S JN(XN + <PN(XN)) S JN(XN) 

s (llxNIIV2) - ((N 2 + 1) llxNlli 2/2) + IIPIIL 2 llxNIIL 2 

+ 277exp(2N2 + C) + 27TC. 

(2.19) 

(2.20) 

From (2. 7) and (2.20) it follows that there exists a constant C5, independent of 
N, such that 

(2.21) 

Combining (2.18) and (2.21) we have (2.14) and Lemma 2.2 has been proved. 

Proof of Theorem l. By (A - iv) and (2.14) we have 

II v' FN(UN) IIL2 s exp(N)(47T 11 uNIIL' + 47T) 

s exp(N)(477C2(N + l)(exp(N 2 + ( C/2) + 1) + 477) (2.22) 

s C6(1 + (N + 1) exp (N 2 + N + 1)). 

s C6N exp (N 2 + N + ( C/2)), 

where C6 is a constant independent of N. 
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Since UN is a weak solution of (1.2), we have f(ud(t), ud(t))dt 
f(VFN(UN(t)), UN(t)) dt - J(p(t), UN(t)) dt :S II V FNUN)IIL2 II UNIIL2 + IIPIIL2 

II uNIIL2, Hence, using (2.14) and (2.22), we obtain 

11 uNlli = 11 uNII~ + II uNlli 2 

::::: C2N(exp(N 2 + (C/2)))(C6Nexp(N 2 + N + (C/2))) 

+ (1 + IIP IIL2) C2(N + l)(exp(N 2 + ( C/2))). 

The latter inequality implies that there exists a constant C7, independent of N, 
such that 

(2.23) 

Then by (2.3) and (2.23), we see that there exists a positive integer N1 such 
that 

max{II uN(t) II; t ER}::::: exp(N 2 + 2N) - 1 (2.24) 

for all N ~ N1. Consequently, by (A-i), we see that for N ~ N1, UN is actually 
a 21r-periodic weak solution of (1.1). 

Now we claim that if N, m ~ N1 and N ¥- m then UN¥- Um. Indeed, let N < 
m and suppose UN= Um. If XN ¥- Xm, then by (A-ii), (2.3), (2.9) and (2.24), for 
some E > 0 small enough we have 

Jm(Xm) = Jm(Xm + 1>m(Xm)) = JN(XN + 1>N(XN)) 

< JN(XN + (1 + E)(Xm - XN) + 1>m(XN + (1 + E)(Xm - XN))) 

= Jm(XN + (1 + E)(Xm - XN)). 

But this contradicts that Jm(Xm) is the maximum value of Jm. If on the other 
hand Xm = XN, then 1>N(XN) = 1>m(Xm), and replacing (1 + E)(Xm - XN) by w(t) 
= e(sin((N + l)t), 0, • • •, 0) E Xm n YN in the latter inequality gives Jm(Xm) 
< Jm(XN + w(t)), again a contradiction. Thus we conclude that UN¥- Um, and 
the proof of Theorem 1 is complete. 

CENTRO DE INVESTIGACION DEL IPN, MEXICO 14, D.F. 
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