Boletín de la Sociedad Matemática Mexicana Vol. 27 No. 1, 1982

A NOTE ON THE CORRESPONDENCE BETWEEN FUCHSIAN GROUPS AND ALGEBRAIC CURVES

By D. M. GALLO¹

Let Γ be a torsion free Fuchsian group acting on the unit disc $D = \{z \in \mathbf{C}; |z| < 1\}$ such that D/Γ is a compact surface of genus n. It is known that D/Γ is conformally equivalent to an algebraic curve given by a polynomial p(z, w). In general there is no known method of determining the polynomial p(z, w) from a given Fuchsian group Γ . For certain cases, however, it is possible to obtain information about this correspondence (see for example Burnside [2]). In this note we determine the Fuchsian groups corresponding to polynomial equations of the form $w^2 = z(z^{2n} - 1)$, n > 1. We remark that Burnside [2] considers the case when n = 2. Our method is to study a certain class of Fuchsian groups Γ such that D/Γ is hyperelliptic (see also Whittaker [6]). Then, by analyzing a subgroup of the group of conformal automorphisms of D/Γ , we are able to determine the associated polynomial.

The unit disc D carries a hyperbolic metric

$$\left(ds^2 = \frac{|dz|}{1 - |z|^2}\right)$$

in which geodesics are arcs of circles orthogonal to the unit circle (including straight lines through the origin). The Fuchsian groups we will consider are obtained, for each n > 1, from the regular, 4n sided, hyperbolic polygon P with interior angles that add up to 2π (see [1]).

We label the sides of P by A_m , $m = 1, \dots, 4n$, in counterclockwise order. Since the A_m have equal hyperbolic lengths, there exist non-elliptic Möbius transformations T_m , $m = 1, \dots, 2n$, which fix D and identify opposite sides of P (i.e. $T_m(A_m) = A_{m+2n}$, $m = 1, \dots, 2n$). It now follows from Poincaré's theorem (see Maskit [4]) that the group Γ generated by the T_m is Fuchsian and that P is a fundamental polygon for Γ .

At this point we need to state some elementary facts about hyperelliptic surfaces. A compact Riemann surface S of genus n is hyperelliptic if there exists a conformal map $J: S \mapsto S$ (called the hyperelliptic involution) such that $J^2 = \text{id.} \text{ and } J \text{ has } 2n + 2$ fixed points (called the Weierstrass points). Let $\langle J \rangle$ be the group generated by J and let $S/\langle J \rangle$ be the surface obtained by identifying points in S via the action of J. Since the natural projection $\tilde{J}: S \to S/\langle J \rangle$ is branched to order two at the Weierstrass points, it follows from the Riemann-Hurwitz relation that $S/\langle J \rangle$ is conformally the Riemann sphere \hat{C} . For a thorough exposition the reader is referred to a standard text such as [5].

Given $z \in D$, we denote by $\{z\}$ the orbit of z under the group Γ . We note

¹The results of this paper are included in the author's doctoral dissertation at the State University of New York, under the direction of Professor Irwin Kra.

D. M. GALLO

that P is invariant under the transformation j(z) = -z. Define map $J: D/\Gamma \rightarrow D/\Gamma$ by $J(\{z\}) = \{j(z)\}$. W give a brief sketch of the proof that J is well defined. Clearly we need only show that $j \circ \Gamma \circ j = \Gamma$. Since each generator T_m , m = 1, \cdots , 2n, fixes D, it is of the form

$$T_m(z) = \frac{\alpha_m z + \beta_m}{\overline{\beta}_m z + \overline{\alpha}_m}, \, \alpha_m, \, \beta_m \in \mathbb{C}.$$

Let a_m^{-1} and a_m^{-2} be the vertices of the side A_m . Then $T_m(a_m^{-1}) = -a_m^{-2}$ and $T_m(a_m^{-2}) = -a_m^{-1}$. A short computation now yields that $\alpha_m = \bar{\alpha}_m$ and $\alpha_m \in \mathbf{R}$. It follows easily that j conjugates each generator to its inverse. An induction argument then gives that $j \circ \Gamma \circ j = \Gamma$ (see [3]).

Since the Euler-Poincaré characteristic of P is 2 - 2n it follows that D/Γ is a compact Riemann surface of genus n. It is trivial to verify that all the vertices of P are equivalent under Γ . Hence $J(\{v\}) = \{v\}$ where v is any vertex of P. Let c_m , $m = 1, \dots, 2n$ be the hyperbolic midpoint of the side A_m . Since T_m is a hyperbolic isometry it follows that $T_m(c_m) = -c_m$. Hence $J(\{c_m\}) =$ $\{c_m\}$. Clearly $J(\{0\}) = \{0\}$. Since P is a fundamental polygon and identifications occur in pairs, it is obvious that $\{0\}, \{v\}$ and $\{c_m\}$ are distinct fixed points of J. It is well known that a non-trivial conformal automorphism of a compact surface has at most 2n + 2 fixed points. Hence J is a hyperelliptic involution. For full details see [3].

We extend the group Γ by the map j(z) to obtain the group $\langle j, \Gamma \rangle$. Since D/Γ is hyperelliptic, it follows that $D/\langle j, \Gamma \rangle$ is conformally a sphere with 2n + 2 distinguished points which are the fixed points of elliptic elements of order two in $\langle j, \Gamma \rangle$ (see [3]).

We now look more closely at a group of conformal automorphisms of D/Γ determined by symmetries of P.

Let $\gamma: D \to D$ be the map defined by

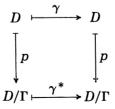
$$\gamma(z) = \left(\exp\frac{i2\pi}{4n}\right)z.$$

Clearly the sides of P satisfy the following relations:

$$A_{2} = \gamma(A_{1}), A_{3} = \gamma^{2}(A_{1}), \dots, A_{m} = \gamma^{m-1}(A_{1})$$

$$m \leq 4n. \text{ Thus } T_{m} = \gamma^{m-1} \circ T_{1} \circ \gamma^{-(m-1)}, m = 2, \dots, 2n.$$

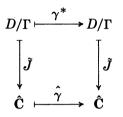
It now follows that $\gamma^{-1} \circ \Gamma \circ \gamma = \Gamma$. Therefore γ induces an automorphism γ^* of D/Γ (where $\gamma^*(\{z\}) = \{\gamma(z)\}$) such that the following diagram commutes



(here p is the natural projection).

Each map $(\gamma^*)^k$, $1 \le k < 4n$, $k \ne 2n$, fixes the points $\{0\}$ and $\{v\}$, and no other points. When k = 2n, $(\gamma^*)^k$ is the hyperelliptic involution J and its fixed points are $\{0\}$, $\{v\}$ and $\{c_m\}$, $m = 1, \dots, 2n$.

Finally, we look at the projection of γ^* as a map on the Rieman sphere $\hat{\mathbf{C}}$. It is clear that $\gamma^{-1} \circ \langle j, \Gamma \rangle \circ \gamma = \langle j, \Gamma \rangle$. Hence γ^* induces an automorphism $\hat{\gamma}$ of $\hat{\mathbf{C}}$ such that the following diagram commutes



(where $\hat{\gamma}(\{\{z\}\}) = \{\gamma^*(\{z\})\}).$

Since $(\gamma^*)^{2n} = J$, it follows that $\hat{\gamma}^{2n} = id$. Hence $\hat{\gamma}$ is elliptic of order 2n and its fixed points are $\tilde{J}(\{0\})$ and $\tilde{J}(\{v\})$. Moreover,

(1)
$$\tilde{J}(\{c_{m+1}\}) = \tilde{J}(\gamma\{c_m\}) = \hat{\gamma}(\tilde{J}(\{c_m\}), m = 1, \dots, 2n-1)$$

and

(2)
$$\tilde{J}(\{c_1\}) = \tilde{J}(\gamma^*(\{c_{2n}\}) = \hat{\gamma}(\tilde{J}(\{c_{2n}\})).$$

By normalizing, we may assume that $\tilde{J}(\{0\}) = 0$, $\tilde{J}(\{v\}) = \infty$, $\tilde{J}(\{c_1\}) = 1$ and $\hat{\gamma}$ is a rotation about the origin by the angle $\frac{\pi}{n}$. From (1) and (2) we obtain that $\tilde{J}(\{c_{m+1}\}) = \exp \frac{\mathrm{im}\pi}{n}$, $m = 0, \dots, 2n - 1$.

The surface corresponding to the polynomial $w^2 - z \prod_{m=0}^{2n-1} \left(z - \exp \frac{\mathrm{i}m\pi}{n}\right)$

is branched over $0, \infty$ and the 2n points $\exp \frac{im\pi}{n}, m = 0, \dots, 2n-1$. These are, up to a Möbius transformation precisely the points over which the twofold cover $\tilde{J}:D/\Gamma \rightarrow \hat{C}$ is branched. It is known classically that the conformal structure of a hyperelliptic surface is determined by the branch points of the associated twofold cover of the sphere. Thus we have that the polynomial corresponding to

$$D/\Gamma \text{ is } w^2 - z \prod_{m=0}^{2n-1} \left(z - \exp \frac{\mathrm{i} m \pi}{\mathrm{n}}\right).$$

CENTRO DE INVESTIGACIÓN DEL IPN, MÉXICO, D.F.

References

 A. F. BEARDON, Hyperbolic polygons and Fuchsian groups, J. London Math. Soc., 20 (1979), 247-254.

D. M. GALLO

- [2] W. BURNSIDE, Note on the equation $y^2 = x(x^4 1)$, Proc. London Math. Soc., **24** (1893), 17–20.
- [3] D. M. GALLO, Uniformization of hyperelliptic surfaces, Ph.D. Thesis, State University of New York at Stony Brook, 1979.
- [4] B. MASKIT, On Poincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219–230.
- [5] G. SPRINGER, Introduction to Rieman Surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957.
- [6] E. WHITTAKER, On the connexion of algebraic functions with automorphic functions, Philos. Trans. Roy. Soc. London Ser. A., 192 (1899), 1–32.