Boletin de la Sociedad Matematica Mexicana Vol. 27 No. 1, 1982

A NOTE ON THE CORRESPONDENCE BETWEEN FUCHSIAN GROUPS AND ALGEBRAIC CURVES

BY D. M. GALLO¹

Let Γ be a torsion free Fuchsian group acting on the unit disc $D = \{z \in \mathbb{C};$ $|z| < 1$ such that D/Γ is a compact surface of genus n. It is known that D/Γ is conformally equivalent to an algebraic curve given by a polynomial $p(z, \theta)$ w). In general there is no known method of determining the polynomial $p(z, z)$ w) from a given Fuchsian group Γ . For certain cases, however, it is possible to obtain information about this correspondence (see for example Burnside [2]). In this note we determine the Fuchsian groups corresponding to polynomial equations of the form $w^2 = z(z^{2n} - 1)$, $n > 1$. We remark that Burnside [2] considers the case when $n = 2$. Our method is to study a certain class of Fuchsian groups Γ such that D/Γ is hyperelliptic (see also Whittaker [6]). Then, by analyzing a subgroup of the group of conformal automorphisms of D/Γ , we are able to determine the associated polynomial.

The unit disc *D* carries a hyperbolic metric

$$
\left(ds^2 = \frac{|dz|}{1 - |z|^2}\right)
$$

in which geodesics are arcs of circles orthogonal to the unit circle (including straight lines through the origin). The Fuchsian groups we will consider are obtained, for each $n > 1$, from the regular, 4n sided, hyperbolic polygon P with interior angles that add up to 2π (see [1]).

We label the sides of *P* by A_m , $m = 1, \dots, 4n$, in counterclockwise order. Since the A_m have equal hyperbolic lengths, there exist non-elliptic Möbius transformations T_m , $m = 1, \dots, 2n$, which fix *D* and identify opposite sides of P (i.e. $T_m(A_m) = A_{m+2n}$, $m = 1, \dots, 2n$). It now follows from Poincaré's theorem (see Maskit [4]) that the group Γ generated by the T_m is Fuchsian and that P is a fundamental polygon for Γ .

At this point we need to state some elementary facts about hyperelliptic surfaces. A compact Riemann surface *S* of genus *n* is *hyperelliptic* if there exists a conformal map $J: S \rightarrow S$ (called the *hyperelliptic involution*) such that J^2 = id. and *J* has $2n + 2$ fixed points (called the *Weierstrass points*). Let $\langle J \rangle$ be the group generated by *J* and let $S/(J)$ be the surface obtained by identifying points in *S* via the action of *J.* Since the natural projection $J: S \to S/\langle J \rangle$ is branched to order two at the Weierstrass points, it follows from the Riemann-Hurwitz relation that $S/(J)$ is conformally the Riemann sphere \tilde{C} . For a thorough exposition the reader is refered to a standard text such as [5].

Given $z \in D$, we denote by $\{z\}$ the orbit of z under the group Γ . We note

¹ The results of this paper are included in the author's doctoral dissertation at the State University of New York, under the direction of Professor Irwin Kra.

26 D. **M.** GALLO

that P is invariant under the transformation $i(z) = -z$. Define map $J: D/\Gamma \rightarrow$ D/Γ by $J({z}) = {j(z)}$. W give a brief sketch of the proof that *J* is well defined. Clearly we need only show that $i \circ \Gamma \circ i = \Gamma$. Since each generator T_m , $m = 1$, \cdots , 2*n*, fixes *D*, it is of the form

$$
T_m(z) = \frac{\alpha_m z + \beta_m}{\overline{\beta}_m z + \overline{\alpha}_m}, \ \alpha_m, \ \beta_m \in \mathbf{C}.
$$

Let a_m^1 and a_m^2 be the vertices of the side A_m . Then $T_m(a_m^1) = -a_m^2$ and $T_m(a_m^2) = -a_m^1$. A short computation now yields that $\alpha_m = \bar{\alpha}_m$ and $\alpha_m \in \mathbb{R}$. It follows easily that *j* conjugates each generator to its inverse. An induction argument then gives that $i \circ \Gamma \circ j = \Gamma$ (see [3]).

Since the Euler-Poincaré characteristic of *P* is $2 - 2n$ it follows that D/Γ is a compact Riemann surface of genus *n.* It is trivial to verify that all the vertices of P are equivalent under Γ . Hence $J(\{v\}) = \{v\}$ where v is any vertex of *P*. Let c_m , $m = 1, \dots, 2n$ be the hyperbolic midpoint of the side A_m . Since T_m is a hyperbolic isometry it follows that $T_m(c_m) = -c_m$. Hence $J(\{c_m\}) =$ ${c_m}$. Clearly $J({0}) = {0}$. Since *P* is a fundamental polygon and identifications occur in pairs, it is obvious that $\{0\}$, $\{v\}$ and $\{c_m\}$ are distinct fixed points of *J*. It is well known that a non-trivial conformal automorphism of a compact surface has at most $2n + 2$ fixed points. Hence *J* is a hyperelliptic involution. For full details see [3].

We extend the group Γ by the map $j(z)$ to obtain the group $\langle j, \Gamma \rangle$. Since D/Γ is hyperelliptic, it follows that $D/(j, \Gamma)$ is conformally a sphere with 2n + 2 distinguished points which are the fixed points of elliptic elements of order two in (i, Γ) (see [3]).

We now look more closely at a group of conformal automorphisms of D/Γ determined by symmetries of P.

Let $\gamma: D \to D$ be the map defined by

$$
\gamma(z) = \left(\exp \frac{i2\pi}{4n}\right)z.
$$

Clearly the sides of *P* satisfy the foliowing relations:

$$
A_2 = \gamma(A_1), A_3 = \gamma^2(A_1), \cdots, A_m = \gamma^{m-1}(A_1)
$$

$$
m \le 4n. \text{ Thus } T_m = \gamma^{m-1} \circ T_1 \circ \gamma^{-(m-1)}, m = 2, \cdots, 2n.
$$

It now follows that $\gamma^{-1} \circ \Gamma \circ \gamma = \Gamma$. Therefore γ induces an automorphism γ^* of D/T (where $\gamma^*(z) = {\gamma(z)}$) such that the following diagram commutes

(here *p* is the natural projection).

Each map $(\gamma^*)^k$, $1 \leq k < 4n$, $k \neq 2n$, fixes the points $\{0\}$ and $\{v\}$, and no other points. When $k = 2n$, $(\gamma^*)^k$ is the hyperelliptic involution *J* and its fixed points are $\{0\}$, $\{v\}$ and $\{c_m\}$, $m = 1, \dots, 2n$.

Finally, we look at the projection of γ^* as a map on the Rieman sphere \hat{C} . It is clear that $\gamma^{-1} \circ \langle j, \Gamma \rangle \circ \gamma = \langle j, \Gamma \rangle$. Hence γ^* induces an automorphism $\hat{\gamma}$ of $\hat{\mathbf{C}}$ such that the following diagram commutes

(where $\hat{\gamma}({\{z\}}) = {\gamma^*({z})}.$

Since $(\gamma^*)^{2n} = J$, it follows that $\hat{\gamma}^{2n} = id$. Hence $\hat{\gamma}$ is elliptic of order 2n and its fixed points are $\tilde{J}(\{0\})$ and $\tilde{J}(\{v\})$. Moreover,

(1)
$$
\tilde{J}(\{c_{m+1}\}) = \tilde{J}(\gamma\{c_m\}) = \hat{\gamma}(\tilde{J}(\{c_m\}), m = 1, \dots, 2n - 1)
$$

and

(2)
$$
\tilde{J}(\{c_1\}) = \tilde{J}(\gamma^*(\{c_{2n}\}) = \hat{\gamma}(\tilde{J}(\{c_{2n}\})).
$$

By normalizing, we may assume that $\tilde{J}(\{0\}) = 0$, $\tilde{J}(\{v\}) = \infty$, $\tilde{J}(\{c_1\}) = 1$ and $\hat{\gamma}$ is a rotation about the origin by the angle $\frac{\pi}{n}$. From (1) and (2) we obtain that $\tilde{J}(\{c_{m+1}\}) = \exp \frac{\text{im}\pi}{n}, m = 0, \dots, 2n - 1.$

The surface corresponding to the polynomial $w^2 - z \prod_{m=0}^{2n-1} \left(z - \exp \frac{\text{im} \pi}{n} \right)$

is branched over 0, ∞ and the 2*n* points $\exp \frac{m n}{n}$, $m = 0, \dots, 2n - 1$. These are, up to a Mobius transformation precisely the points over which the twofold cover $\tilde{J}:D/\Gamma \to \tilde{C}$ is branched. It is known classically that the conformal structure of a hyperelliptic surface is determined by the branch points of the associated twofold cover of the sphere. Thus we have that the polynomial corresponding to

$$
D/\Gamma \text{ is } w^2-z \prod_{m=0}^{2n-1} \bigg(z-\exp\frac{\mathrm{im}\pi}{n}\bigg).
$$

CENTRO DE INVESTIGACION DEL IPN, MEXICO, D.F.

REFERENCES

[1] A. F. BEARDON, *Hyperbolic polygons and Fuchsian groups,* J. London Math. Soc., **20** (1979), 247-254.

28 **D. M.** GALLO

- [2] W. BURNSIDE, *Note on the equation* $y^2 = x(x^4 1)$, Proc. London Math. Soc., **24** (1893), 17-20.
- [3] D. **M.** GALLO, Uniformization of hyperelliptic surfaces, Ph.D. Thesis, State University of New York at Stony Brook, 1979.
- [4] B. MASKIT, *On Poincare's theorem for fundamental polygons,* Advances in Math., **7** (1971), 219-230.
- [5] G. SPRINGER, Introduction to Rieman Surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957.
- [6] E. WHITTAKER, *On the connexion of algebraic functions with automorphic functions,* Philos. Trans. Roy. Soc. London Ser. A., **192** (1899), 1-32.