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THE ORDER OF APPROXIMATION IN THE RANDOM CEN
TRAL LIMIT THEOREM FOR MAXIMUM SUMS IN NON

IDENTICAL CASE 

BY A. K. BASU 

1. Introduction 

Let IXnl be a sequence of independent but not necessarily identically 
distributed random variables such that EXk = µk, Var Xk = uk2, and (3/+o = 
E I Xk - µk I 2+o < oo for some O < o ::a 1. Let us put 

S _ "n X S 2 _ "n 2 A _ "n B 2+ii _ "n f.l 2+ii 
n - L,k=I k, n - L,k=I Uk , n - L,k=I µk, n - L,k=I /Jk • 

Let INn} be a sequence of positive integer-valued random variables not 
necessarily independent of the Xn's such that Nn/n converges in probability 
to a positive random variables N as n - oo. Throughout this paper we shall 
assume that N is independent of the X's and d/ $ u/ $ d/ for all k;::::: K 0 . 

Define 

Let 

11n = SUPx I P[ Sn : An $ X] - <l>(x) , , (1.1) 

where <I> denotes the distribution function of the standard normal variate. Let 

- I [Sn - An ] I 11n = SUPx p Sn $ X - <f>(x) 

if µk > 0 for at least one k = 1, 2, • • • n, and 

:t = SUPx IP[::$ x]-G(x) I 
if µk = 0 for all k = 1, 2, •••,where 

Define 

G(x) = {2<I>(x) - 1, 
0, 

X;::::: 0 
x< 0. 

A1n = SUPx IP[ SN;[n~ Ln $ X] - <l>(x) I 

A2n = SUPx IP[ SNns:. Ln $ X ]- <l>(x) I 
29 

(1.2) 
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(1.3) 

K2n = SUPx I P[(SNn - Ln)!sNn ::S x] - <l>(x) I 

~In= SUPx IP[::~ ::S X ]- G(x) I } (1.4) 

Let ltnl be a sequence of real numbers such that tn - 0 as n - oo and for 
all n, n- 1 ::s tn < 1. The following conditions will be used in the sequel, for 
some C1 > 0 and C2 > 0, and 0 < o ::s 1, 

(i) 

{ 
P[N < ~] = O(tn°12) 

(a) ntn 

P[I Nnf(nN) - 1] > C1tnl = O(tn°12) 

(b) P[l sNn2/S[nN] 2 - 11 > C1tn] = O(tn° 12) 

(ii) L:=1 €nHl 2P[N < ~] < 00 
ntn 

(b) L:=1 tnHl 2P[l sN//s1nNJ 2 - 11 > C1tn] < 00, 

The following condition will be assumed whenever needed: 

Bn 2+/j/sn 2+ri ::s n- 012, O < o ::s 1 

Note that (1.11) implies the Lindeberg condition. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.11) 

The _purpose of this investigation is to show that given appropriate rates on 
Xn or Xn, w~ obtain, under conditions (i) or (ii) above, analogous exact rates 
for Kin and Xin, i = 1, 2. The method used in this paper was first introduced 
by Landers and Rogge (1976, 1977) and later exploited by Ahmad and Basu 
(1979), and Rychlik (1978). This paper can be regarded as a generalization of 
Ahmad and Basu (1979) and is an extension of the work by Rychlik (1978) to 
maximum sums. 

2. Lemmas and theorems 
The proof of lemma 7 of Landers and Rogge (1976) uses heavily stationarity 

and this fact has not been noticed by Rychlik (1978), and so his proof of 
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lemma 1 is false. This lemma can be avoided by retaining the maximum and 
using some martingale inequality for maximum sums. 

LEMMA 1. Let l < p < oo. If IXn, ff,;, n ==:: 1} is a martingale difference 
sequence, then 

E max1,s/,snl 2,l:~}+1 X;IP :5 C(p) EI I,1!?+1 X;21P12• 

In particular for p = 2, 

E max1,s/,sn I I,{!}+1 XI 2 :5 C 2-f=i+I E X;2. 

Proof. See Heyde and Hall (1980). 
Let Px = [x(l - C1 En)], Q2 = [x(l + C1 En)], X > 0. 

LEMMA 2. Let IXk} be independent random variables with EXk = 0, Var 
2-i=1 Xk = sn2 < oo for n ==:: 1 and assume conditions (1.5) and (1.11) are satisfied. 
Then there exists a constant D such that 

P[minPn#j:SqnN sj < S[nN]X] - P[maxPn#i:SqnN sj < S[nN]X] :5 DEn°12 

for O < o s 1. 

Proof. The difference is bounded above by 

P[nN < [C2/En]] 

+ f IP[minp,:Sj:Sq,Sj < S[x]t] - P[maxp,:Sj:Sq, sj < S[xit11 dP[nN s x]. 
J[C:J,nl 

For p < q we have 

P[ minp,sj,sqSi < r] - P[ maxp:Sj:SqSj < r] 

= P[Sp <rs maxp:Sj:SqSi] + P[minp:Sj:SqSj < r s Sp] 

Since we can replace X;.by -X;, it suffices to show for x ==:: [C2/En], p = p.,,, q = 
Qx that 

P[Sp s r :5 maxp,sj,sqSi] s P[r - H s SP s r] 

where H = maxp:Sj:Sq(Si - Sp). 

P[r - H s Sp s r] 

= J P[r - h s Sp s r] dP[H s r] 

s C B/+o/s/+o + J I ~(r/sp) - ~((r - h))/sp) I dP[H s r] 

:5 Cp-• 12 + EH/sp 

:5 (D/En)-•/2 + (EH2)1f2/sP 

< D L o/2 + ('\'q ~-2/'\'P ~-2) 1/2 - ten £.Ji=p vz .L.ii=l vz 

(by condition 1.11) 

(sincep =:::: D[C2/En] =:::: Ds/En) 

(from lemma 1) 
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THEOREM 2.1. 

(a) If condition (ia) is satisfied and if Xn = O(n- 012), then X 1n = O(En°12) for 
O<osl. 

(b) If condition (ia) is satisfied and if Xn = O(n- 012), then X 1n = O(En"12), for 
O<osl. 

THEOREM 2.2 
., 

(a) If condition (iia) is satisfied, if En= O(n- 1) and if Ln=l n-I+ol 2X1n < oo, 

then L;;'=l Enl-o/ 2X1n < oo, for O < 0 :S 1. 

(b) If condition (iia) is satisfied, if En= O(n- 1) and if L;:'= 1 n-I+of 2Xn < oo, 

then L;;'=l E/-· 12X1n < oo, for O < 0 :S 1. 

Remark. Theorem 2.1 is true for X2n and X2n provided (ib) also holds. 
Similarly, Theorem 2.2 is valid for K2n and X2n provided (iib) also holds. This 
follows from the fact that [lsNJS[nNJ-11 > (C1En) 112] ~ [lsN}/s[nNJ 2 -11~ 

C1En] and P[ I sN/fs[nNJ2 - 11 > C1En] = O(En°12), and lemma 1 of Michel and 
Pfanzagl (1971). 

Proof of Theorem 2.1. Define In= {k:[nN](l - C1En) :S k :S [nN](l + C1En)}. 

Then, Kin :S SUPxl P[(SNn - Ln)/S[nN] :S X, Nn E In] - <l>(x) I + P[Nn E In] :S 

SUPxl P[(SNn - Ln)/S[nN] :S X, Nn E In] - <l>(x) I + O(En°12). 

Following Landers and Rogge (1977) and Theorem 3 of Ahmad and Basu 
(1979), we need to show that I J(x) I = O(En°12) where 

- [Si:nNJ - L L".:i1 µk ] J(x) = P[(SNn - Ln)/S[nN] :S x] - p - :S X 
S[nN] 

Let bn (x) = Ln + X S[nN]• Then 

J(x) :S P[(SNn - Ln)f S[nN] :S X, Nn E In] + P[Nn E In] 

- P[(S[nN] - LlnN] µk)f S[nN] :S X] 

:S O(En°12) + P[SNn :S bn(X), Nn E In] - P[S[nN] :S L~nN] µk + XS[nNi] 

= O(En°12) + P[S[(nN)(I-Ci•n)] :S bn(X)] - P[S[nN] < L~nN] µk + X S[nN]] 

Since N is independent of the X/s, we have 

J(x) :S O(En°12) + IL~{•nl P[[nN] = k] + Lk=[C2/•nl+l P[[nN] = k] 

• {P[S1k(l-C1•n)] :S Ak(l + C1En) + XSk] - P[Sk :S Ak + xsk]} 

:S O(En°12) + p[ N < ~:] + Lk=[C2/•nl+I P[[nN] = k] k~2 = O(En°12), 

where C is a constant independent of k. 
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In a similar fashion we can also show that -J(x) = 0(En 612). 

I= SUPxl P[(SinNJ - LtnNJ µk)/sinNJ S x] - cf>(x) I 

s Ll~•nJ-1 P[[nN] = k] + Lk=[C:if•nl P[[nN] = k] Ak 

= P[N < C2/nEn] + Lk=[C:i/•nl P[[nN] = k] k~ 2 = 0(En 612) 

for some constant C. 

The proof that L;= 1 E/- 612 A1n < 00 follows the same way as before and as 
Ahmad and Basu (1979). The proof that L;= 1 En1- 612A2n < 00 follows from the 
next well known lemma. 

LEMMA A. Let {Xn} and {Yn} be two sequences of random variables and let 
{an} be a sequence of nonnegative real numbers such that On= O(n- 1). Assume 
that for some a > 0, 

L;=l Ona I P[Xn S x] - 4>(x) I < 00 and L;=l anaP[I Yn - 11 2:: an]< 00, 

then 

L;=l ana I P[Xn S X Yn] - 4>(x) I < 00 

(this follows from lemma 1 of Michel and Pfanzagl (1971)). 

First we show that L ;=1 En 1- 612 A1nNJ < 00, but we can easily see that 

A1nNJ S P[N < C2nEn] + Lk=IC:if,,J+l AkP[[nN] = k]. 

Hence 
~00 1-6/2 A 
L.in=l En ~[nN] 

S L;=l E/- 612P[N < C 2 ] + L;=l EnH/ 2 Lk=[C 2/,,J+l P([nN] = k), 
nEn 

where first term is finite by condition (1.8) and the rest follows as in the 
previous case. 

3. Rates of convergence for partial sums 

In this section we exploit the methods of Landers and Rogge (1977), and 
their extensions by Rychlik (1978) and obtain various generalizations of their 
results. 

THEOREM 3.1. (a) If conditions (1.5), (1.6) and (1.11) are satisfied then A1n 

= 0(En 612). If (l. 7) is also satisfied, then A2n = 0(En 612). 

(b) If conditions (1.8) and (1.9) are satisfied and if L;= 1 n- 1H 12An < 00, 0 S 

o < l, then 
~ 00 l- 612A • - 1 2 0 1' 1 L.in=l En in < 00, L - , , S u < . 
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Remark: (1) As we shall see in the proof of Theorem 3.1 (a), it suffices to 
assume that En ~ n- 1 for all =:: 1. The condition En = O(n- 1) is necessary, 
however, to obtain the second part of the theorem. (2) An= O(n- 012) holds by 
Berry-Esseen theorem under the condition (1.11). 

Proof. Without loss of generality we may assume that µk = 0 for k ~ 1. Let 
bn(X) = xS[nN]• 

Following the arguments of Landers and Rogge (1977) first we show that 

A[nNJ = SUpxP[S[nNJ ::5 bn(X)] - 4'(x) I = 0(En°12). 

Since N is independent of the X/s and since An= O(n- 012), 

A[nNJ = SUPx I Lk=l P[Sk ::5 xsk]P[nN = k] - ~(x) I 

::5 L~~{•nl-l P[nN = k] + Lk=[C2/•nl AkP[nN = k] 

= P[N < Ci/nEn] + Lk=[C2/•nl P[nN = k]C/k 012 

= 0(En 612) + O(En612), 

where C is an absolute constant independent of n, and since En~ 1/n. 
Now combining with lemma 2 and the arguments of Landers and Rogge 

(1977) A1n = 0(En° 12). 

To prove A2n = O(En612) it suffices to observe that 

[ I sNJS[nN] - 11 ~ E/ 12] ~ [ I sN/ / S[nNi2 - 11 ~ En], 

condition (1.6) and lemma of Michel and Pfanzagl (1971). The rest of the 
proof follows same as Landers and Rogge (1977). 

CENTRO DE lNVESTIGACION DEL IPN, M:EXICO, D. F. 
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