Boletín de la Sociedad Matemática Mexicana Vol. 27, No. 2, 1982

KLEIN SURFACES AS ORBIT SPACES OF NEC GROUPS

BY E. BUJALANCE

1. Introduction

Let Γ be an NEC group, then $X = D/\Gamma$ is a Klein surface (*D* is the complex upper half plane) and *X* can be represented as D/Γ' , where Γ' is a surface group. Moreover, if Γ_1 is an NEC group such that $\Gamma \triangleleft \Gamma_1$ (\triangleleft denotes normal subgroup), the group $G = \Gamma_1/\Gamma$ is a group of automorphisms of *X*, and so there exists an NEC group Γ_1' such that $\Gamma' \triangleleft \Gamma_1'$ and $G' = \Gamma_1'/\Gamma'$ is a group of automorphisms of *X* isomorphic to *G*.

In this paper we investigate the relationship between Γ and Γ' , and when the order of G is odd, we also study the relationship between Γ_1 and Γ_1' .

The corresponding problem for Reimann surfaces has been studied by Moore in [4].

2. NEC groups and Klein surfaces

By a non-Euclidean crystallographic (NEC) group [8], we shall mean a discrete subgroup Γ of the group of isometries of the non-Euclidean plane with compact quotient space, including those reversing orientation, reflections and glide reflections.

NEC groups are classified according to their *signatures*. The signature of an NEC group Γ is either of the form:

(*)
$$(g;+;[m_1 \cdots m_r]; \{(n_{i1} \cdots n_{is}) | i = 1 \cdots k\})$$

or

$$(**) (g;-;[m_1 \cdots m_{\tau}]; \{(n_{i1} \cdots n_{is_i})i=1 \cdots k\})$$

A group Γ with signature (*) has the presentation given by generators:

i)
$$x_i$$
, $i = 1 \cdots \tau$
ii) c_{ij} , $i = 1 \cdots k$, $j = 0 \cdots s_1$
iii) e_i , $i = 1 \cdots k$
iv) a_j , b_j , $j = 1 \cdots g$

and relations:

1) $x_i^{m_i} = 1$ $i = 1 \cdots \tau$ 2) $c_{is_i} = e_i^{-1} c_{i0} e_i$ $i = 1 \cdots k$ 3) $1 = c_{i(j-1)}^2 = c_{ij}^2 = (c_{i(j-1)} \cdot c_{ij})^{n_{ij}}$ $i = 1 \cdots k$ $j = 0 \cdots s_i$ 4) $x_1 \cdots x_r e_1 \cdots e_k a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} = 1$

A group Γ with signature (**) has a similar presentation to that of a group with signature (*), changing the generators iv) for $d_j \ j = 1 \cdots g$ and the relations 4) by $x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_g^2 = 1$.

E. BUJALANCE

From now on we will denote by x_i , e_i , c_{ij} , a_i , b_i , d_j the above generators associated with an NEC group Γ .

We will say that an NEC group Γ is the group of a surface with k boundary components if it has the following signature

$$(g;\pm;[-];\{(-), \cdots, (-)\})$$

+ for the orientable case and – for the non orientable, and where (—) indicates the empty symbol; i.e., $\tau = 0$, $s_i = 0$ for $i = 1, \dots, k$.

By a *Klein surface* we shall mean a surface X with or without boundary together with an open covering by a family of sets $U = \{U_i\}$ with the properties:

1) For each $U_i \in U$ there exists a homeomorphism ϕ_i of U_i onto an open set in either \mathbb{C} or \mathbb{C}^+ .

2) If $U_i, U_j \in U$ and $U_i \cap U_j \neq \emptyset$ then $\phi_i \circ \phi_j^{-1}$ is an analytic or antianalytic mapping defined on $\phi_j(U_i \cap U_j)$. (See [1] and [6]).

A homeomorphism $f: X \to X$ is called an *automorphism* if $\phi_i \cdot f \cdot \phi_j^{-1}$ is either an analytic or antianalytic mapping in its domain of definition.

If X is orientable and without boundary we will say that it is a *Riemann* surface.

If Γ is an NEC group, then the quotient space D/Γ has a unique dianalytic structure such that the quotient map $p:D \to D/\Gamma$ is a morphism of Klein surfaces [Alling, Greenleaf 1].

Let X be a compact Klein surface of algebraic genus $g \ge 2$. Then X can be represented in the form D/Γ , where Γ is a surface group [Singerman 7] and [Preston 5]. Moreover, G is a group of automorphisms of the Klein surface D/Γ if and only if $G = \Gamma'/\Gamma$ where Γ' is an NEC group such that $\Gamma \subset \Gamma' \subset$ $N(\Gamma)$ [Singerman 7] and [May 3].

3. Klein surfaces as orbit spaces

Let Γ be an NEC group, then $X = D/\Gamma$ is a Klein surface and X can be represented in the form D/Γ' , where Γ' is a surface group. The following theorem studies the relationship between Γ and Γ' .

THEOREM (3.1). Let Γ be an NEC group and let $X = D/\Gamma$ be the Klein surface associated with Γ . Let M be the subgroup of Γ generated by the elliptic transformations of Γ . Then:

1) The orbit space $D_1 = D/M$ is conformally equivalent to D and $D_1/(\Gamma/M)$ is isomorphic to X.

2) The surface group for X is the factor group Γ/M , with $X = D_1/(\Gamma/M)$

Proof. As Γ is an NEC group, it has an associated signature

 $(g; \pm; [m_1 \cdots m_{\tau}]; \{(n_{i1} \cdots n_{is_i})i = 1 \cdots k\}).$

We will prove the theorem in the + case; the - case being similar.

Let Γ' be an NEC group with signature

$$(g;+;[-]; \{(-), \cdots, (-)\})$$

and let $\theta: \Gamma \to \Gamma'$ be the epimorphism defined by

$$\theta(a_j) = a_j' \qquad j = 1 \cdots g$$

$$\theta(b_j) = b_j' \qquad j = 1 \cdots g$$

$$\theta(x_i) = 1 \qquad i = 1 \cdots \tau$$

$$\theta(e_i) = e_i'$$

$$\theta(c_{ij}) = c_i' \qquad i = 1 \cdots k \qquad j = 0 \cdots s_i$$

Let *M* be the kernel of θ , *M* is a normal subgroup of Γ generated by the elliptic transformations of Γ , and $\Gamma/M \simeq \Gamma'$.

Let Γ^+ be the canonical Fuchsian group [7] associated with Γ and let $D_1 = D/M$. By [1] the canonical map $p_1: D \to D_1$ gives to D_1 a structure of Klein surface, and Γ/M is a group of automorphisms of D_1 acting discontinuously on D_1 , then by [1] $D_2 = D_1/(\Gamma/M)$ is a Klein surface, and the double cover of D_2 is the Riemann surface $D_2^+ = D_1/(\Gamma^+/M)$.

Let the following diagram be commutative

where q and p_2 are the canonical maps and r is the map of the double cover. As the map $q:D_1 \to D_2^+$ fulfill the conditions of the main theorem of [4], D_1 is the universal covering space of D_2^+ and D_1 is conformally equivalent to the upper half plane.

To prove the first part of the theorem, we only need to prove that D_2 is isomorphic to $X = D/\Gamma$.

As the double cover of X is D/Γ^+ , and by [4], D/Γ^+ is isomorphic to D_2^+ . Then it is easy to verify that this isomorphism fulfills the conditions of (1.9.3) of [1], and so D_2 is isomorphic to X.

Let us prove the second part. Identifying D_1 with the upper half plane, Γ/M is a discrete group of automorphisms of the upper half plane with compact quotient space. Hence, Γ/M is an NEC group. As Γ/M is isomorphic to Γ' , Γ/M is a surface group and $X = D_1/(\Gamma/M) \square$.

In the hypothesis of the beginning of the section, if Γ_1 is an NEC group such that $\Gamma \triangleleft \Gamma_1$, $G = \Gamma_1/\Gamma$ is a group of automorphisms of the Klein surface D/Γ , then by (§2) there exists an NEC group Γ_1' such that $\Gamma' \triangleleft \Gamma_1'$ and G'

E. BUJALANCE

= Γ_1'/Γ' is an automorphism group of D/Γ' , isomorphic to G. Now we study the relationship between Γ_1 and Γ_1' in the case that the order of G is odd.

THEOREM (3.2). Let Γ be an NEC group and $X = D/\Gamma$ the Klein surface associated to Γ . If $\Gamma \triangleleft \Gamma_1$, $[\Gamma_1:\Gamma] = N$, N odd and M is the subgroup of Γ generated by the elliptic transformations of Γ , then Γ_1/M becomes an NEC group when D_1 is identified with D (where $D_1 = D/M$). Moreover $\Gamma/M \triangleleft$ Γ_1/M and $(\Gamma_1/M)/(\Gamma/M)$ is the group of automorphisms of $X = D_1/(\Gamma/M)$ isomorphic to Γ_1/Γ .

Proof. Let us suppose that the NEC group Γ has in its signature the sign +, the other case is similar.

By [2] Γ_1 and Γ have the same sign in their signatures, therefore the signature of Γ_1 is of the form

$$(g'; +; [\mu_1 \cdots \mu_t]; \{(p_{i1} \cdots p_{ir_i}) i = 1 \cdots s\})$$

Suppose that n_i is the least n, such that x_i^n is in Γ , and k_i is the least k, such that e_i^k is in Γ .

Let Γ_1' be an NEC group with signature

$$(g';+;[n_1 \cdots n_t]; \{(-) \cdots (-)\})$$

and let $\theta: \Gamma_1 \to {\Gamma_1}'$ be the epimorphism defined by

$$\theta(a_i) = a_i'$$

$$\theta(b_i) = b_i' \qquad i = 1 \cdots g'$$

$$\theta(x_i) = x_i' \qquad i = 1 \cdots t$$

$$\theta(e_i) = e_i' \qquad i = 1 \cdots s$$

$$\theta(c_{ij}) = c_i' \qquad i = 1 \cdots s \qquad j = 0 \cdots r_i$$

As $\Gamma \triangleleft \Gamma_1$, $\theta(\Gamma) \triangleleft \Gamma_1'$ and $M = \ker \theta$ is generated by the elliptic transformations of Γ , then ker $\theta \triangleleft \Gamma$, so

$$\frac{\Gamma}{M} \simeq \theta(\Gamma)$$
 and $\frac{\Gamma_1}{M} \simeq {\Gamma_1}'$

By the second isomorphism theorem,

$$\frac{\Gamma_1}{\Gamma} \simeq \frac{\Gamma_1}{\theta(\Gamma)}$$

so $[\Gamma_1':\theta(\Gamma)] = N$. If the signature of Γ is

$$(g;+; [m_1 \cdots m_{\tau}]; \{(n_{11} \cdots n_{1s_1}) \cdots (n_{k1} \cdots n_{ks_k})\})$$

as x_i has exponent n_i modulo $\theta(\Gamma)$ and e_i has exponent k_i modulo $\theta(\Gamma)$ then

48

by [2] the signature of $\theta(\Gamma)$ is

$$(g;+;[-]; \{(-), \cdots, (-)\})$$

If we consider θ restricted to Γ , then $\theta: \Gamma \to \Gamma' = \theta(\Gamma)$ is a homeomorphism in the conditions of the previous theorem, hence $X = D_1/(\Gamma/M)$. As $\Gamma/M \triangleleft \Gamma_1/M$ and Γ/M is an NEC group, and the normalizer of an NEC group is an NEC group, then Γ_1/M is an NEC group, since Γ_1/M is a group of automorphisms of D_1 . Moreover $(\Gamma_1/M)/(\Gamma/M) \simeq \Gamma_1/\Gamma \square$.

The author wishes to thank the referee for several helpful comments and suggestions.

DEPARTAMENTO DE MATEMÁTICA FUNDAMENTAL Facultad de Ciencias Matemáticas U.N.E.D. Madrid, 3, España

References

- N. L. ALLING AND N. GREENLEAF, Foundations of the theory of Klein surfaces, Lect. Notes in Math. 219, Springer-Verlag, Berlin, 1971.
- [2] E. BUJALANCE, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331-341.
- [3] C. L. MAY, Large automorphism groups of compact Klein surfaces with boundary-I, Glasgow Math. J. 18 (1977), 1–10.
- [4] M. J. MOORE, Riemann surfaces as orbit spaces of Fuchsian groups, Canad. J. Math. 24 (1972), 612–616.
- [5] R. PRESTON, Projective structures and fundamental domains on compact Klein surfaces, Ph.D. Thesis, The University of Texas, 1975.
- [6] M. SEPPÄLÄ, Teichmüller spaces of Klein surfaces, Ann. Acad. Sci. Fenn. Ser. A I 15 (1978), 1–37.
- [7] D. SINGERMAN, Automorphisms of compact non-orientable Riemann surface, Glasgow Math. J. 12 (1971), 50–59.
- [8] H. C. WILKIE, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87-102.