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SOLVABILITY OF INFINITE SYSTEMS OF INFINITE LINEAR 
EQUATIONS 

BY ALEXANDER ABIAN AND ESFANDIAR ESLAMI 

This paper is in the setting of real numbers and is concerned with the 
solvability of infinite systems such as S given by Li=i akiXi = ck with k = 1, 2, 
• • • of linear equations each with infinitely many unknowns x; with i = 1, 2, 
. • .. In general it is not true that if every subsystem of S has a solution then 
S has a solution (of course, the converse is always true). However, as shown 
in this paper, under certain conditions imposed on S the solvability of every 
finite subsystem of S implies the solvability of S. These conditions were given 
by F. Riesz [3, p. 61] and we use them throughout this paper. Our treatment 
differs from that of Riesz' in that for the case, say k = 2 we consider (see 
Lemma 1) the function F(u, v) motivated by the fact that F(u, v) gives the 
distance (in /q sense) of the origin from the hyperplane whose equation is a 
linear combination (with coefficients u and v) of the two equations of the 
system. This gives further motivation to consider and invoke the existence of 
a local maximum of F(u, v) which is one of the crucial points in this paper. 
Also (unlike Riesz) we prove the existence of a solution of the entire system S 
as the intersection of a family F of closed subsets of a compact topological 
space, where F has the finite intersection property. The final result (as stated 
in Theorem 4) is that if laki Ii= 1, 2, • • • l is an element of /I for every k = 1, 
2, • • • and if M is a preassigned nonnegative real number then S has a solution 
X; = ri for i = 1, 2, • • • with the property Li=i Ir; IP :5; MP if and only if every 
finite subsystem of S has a solution with the same property. In what follows 
we assume that M > 0 since M = 0 implies the trivial solution x; = 0. 

Throughout this paper by "infinity" we always mean "denumerable infinity". 
Also, p and q always stand for real numbers such that 

(1) 1 1 . h - + - = 1 wit p > 1. 
p q 

As usual, ,tP stands for the set of all infinite sequences (a;);=1,2, ... of real 
numbers such that Li=1 la; IP < oo. For the sake of convenience we denote 
(a;);=1,2, ... simply as (a;) and, very often, we denote Li=1 I ai IP simply as~; I a; IP. 
Moreover, if (a;) E /P, then as usual the /P-norm of (a;) is denoted by ll(a;)IIP 
where 

(2) 

For every real number r we define sgn r (read: sign of r) as follows: 

sgn r = 1 if r > 0, 

sgn r = -1 if r < 0, 

sgn r = 0 if r = 0. 
57 
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Let us also recall that if (a;) E i7P and (b;) E t'q then by the Holder's inequality 
I ~1aibi I :5 11 ai IIP · II bi llq which also implies that ~iaibi converges absolutely. 

We first prove the following lemma which is of major significance for our 
purpose. 

LEMMA 1. Let (a;) E /C/ and (b;) E t'q and let c1 and c2 be real numbers not 
both zero and let M be a positive real number such that 

(3) F(u, v) = I c1u + C2V I :5 Mq 
~1 I aiu + biv lq 

for every real number u and v not both zero. Then there exist real numbers u0 

and v0 such that 

(4) 

and such that 

(5) 

Proof. From (3) it follows that by the hypothesis of the Lemma (a;) and (b;) 
are such that except for u = v = 0, the denominator of the fraction appearing 
in (3) is never zero (e.g., in particular b/s are not proportional to a/s). Thus, 
from (3) it follows that F(u, v), except at (0, 0), is an everywhere continuous 
and bounded nonnegative real valued function of the real variables u and v 
(i.e., the domain of definition of F(u, v) is the entire (u, v)-plane minus the 
origin). Also, since c1 and c2 are not both zero, from (3) it follows that on the 
circumference C of the unit circle given by u2 + v2 = 1, the function F(u, v) is 
not identically zero. Hence, there exists (u0 , v0) E C such that F(u, v) attains 
its maximum F(u 0 , v0) > 0. Thus, for every u and v not both zero, we have: 

However, by (3) we see that the second member of the first inequality in (6) 
is equal to F(u, v). Consequently, for every u and v not both zero we have: 

(7) F(Uo, Vo) 2:: F(u, v) with F(Uo, Vo) > 0 and uo2 + vl = 1. 

Obviously, from (7) and (3), we obtain: 

(8) 

Next we show that the partial derivatives aF and aaF of the function F(u, 
au V 

v), as given by (3), exist at the interior point (Uo, v0) of the domain of definition 
of F(u, v). To this end it suffices to show that the partial derivatives of the 
demoniator ~i I aiu + biv lq of the fraction appearing in (3) exist in a bounded 
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neighborhood D of (u0 , v0 ) where D is given, say by (u - u0 )

2 + (v - v0 )

2 = 
(0.5)2. To accomplish this, in view of [2, p. 396] it is enough to show that 
~; I a;u + b;v lq converges on D and that the series 

(9) 

and the series 

(10) 

which are respectively obtained by termwise differentiation of~; I a;u + b;v lq 
with respect to u and v are uniformly convergent on D. 

Since (a;) E t"q and (b;) E t"q we see that (a;u + b;v) E !'q and therefore~; I a;u 

+ b;v lq converges (in fact uniformly) on D. On the other hand, obviously, ((a;u 
+ b;v)q- 1) E /P and therefore by the Holder's inequality for every (u, v) ED 

we have: 

(11) ~;la;lla;u+b;vlq-l:s; ll(a;)llq · ll((a;u+b;v)q-i)llp:SH, 

where His a positive real number which exists since (u, v) ED. 

Clearly, (11) implies that (9) converges uniformly on D. Similarly, we can 
show that (10) also converges uniformly on D. Hence the partial derivatives 
of the denominator of the fraction appearing in (3) exist at (u 0 , v0). Conse­
quently, the partial derivatives of F(u, v), as given by (3), exist at (u0 , v0). 

Indeed, from (9), (10) and (3), for every (u, v) ED we have: 

(12) 

and 

(13) 

aF 
au 

aF 
av 

c1 I c1u + c2v I q-1sgn(c1u + c2v)2:; I a;u + b;v I q 

- I c1u + c2v I q2:;a; I a;u + b;v I q- 1sgn(a;u + b;v) 

c2 I c1u + c2v I q-1sgn(c1u + c2v)2:; I a;u + b;v I q 

I c1u + C2V lq2:;b; I a;u + b;v lq-1sgn(a;u + b;v) 

Finally, from (7) it follows that the maximum value F(u 0 , Vo) > 0 of F(u, v) 
is attained at the interior point ( u0 , v0) of the domain of definition of F ( u, v). 

Hence, at (u0 , v
0

) the partial derivatives aF and aF are equal to zero. But the 
au av 

latter together with (7) and (8) imply (4) and (5). 
Thus, the Lemma is proved. 

Remark l. Let us replace u and v respectively by Uo and v0 in (12) and (13) 
and let us divide both sides by the nonzero real number I c1uo + C2Vo I q- 12:; I a;u0 

+ b;v0 I q. But then, by virtue of (5), (12) and (13), we obtain: 

(14) 
(c1Uo + C2Vo)I a;Uo + b;vo lq-1sgn(a;uo + b;vo) 

C1 = ~-a·----~------------
' ' ~i I a;uo + b;vo I q 
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and 

(15) 

ALEXANDER ABIAN AND ESFANDIAR ESLAMI 

b (c;Uo + c2vo) j a;Uo + b;vo I q-1sgn(a;Uo + b;vo) 
C2 = ~i i -----------------. 

~i j a;Uo + b;vo I q 

To simplify the expressions of c1 and c2 given in (14) and (15), we introduce 
real numbers s1 and s2 defined by: 

(16) s1 = uo/(~; j a;Uo + b;vo I q)Ifq and s2 = vo/(~; j a;Uo + b;v0 I q)Ifq 

But then, based on (3), (14), (15) and (16), we prove: 

COROLLARY 1. Let (a;) E /Q and (b;) E /Q and kt c1 and c2 be real numbers 
and kt M be a positive real number such that 

(17) 

for every real numbers u and v. Then there exist real numbers s1 and s2 such 
that: 

(18) C1 = ~;a;(C1S1 + c2s2) j a;s1 + b;s2 I q-1sgn(a;s1 + b;s2) 

and 

(19) c2 = ~;b;(c1s1 + c2s2) j a;s1 + b;s2 I q-1sgn(a;s1 + b;s2). 

Proof. Let us observe that the hypothesis of Corollary 1 differs from the 
hypothesis of Lemma 1 in that c1 and c2 may both be equal to zero and that 
the denominator of the fraction appearing in (3) may also be equal to zero for 
some u1 and v1. Thus, to prove the Corollary, in view of Lemma 1, it suffices 
to prove the validity of (18) and (19) for the above two cases. However, if c1 
and c2 are both zero then (18) and (19) are valid for any choice of s1 and s2. 
The same is true if (a;) and (b;) are both equal to the zero sequence. Next, let 
there exist u1 and, say, v1 #- 0 such that j a;u1 + b;v1 I = 0 for every i = l, 2, 
•. • . Clearly, this implies that there exists w such that b; = wa; for every i = 
1, 2, • • • . Obviously, (17) also implies that c1u1 + c2 v2 = 0 and c2 = wc1. But 
then, assuming (without loss of generality) that (a;) is not the zero sequence, 
it can be readily verified that (18) and (19) are valid for s1 = (~; j a; I q)-Ifq and 
82 = 0. 

Corollary 1 can be applied to any finite number of /Q sequences instead of 
just two (a;) and (b;). Thus, we prove: 

THEOREM 1. Let n ~ l be an integer. Let (ak;) E /Q and ck be real numbers 
for every k = l, • • • , n and kt M be a positive real number such that 

(20) 

for every n real numbers u1 , • • • , Un. Then there exist real numbers sk such that 

(21) Ck = ~iaki(( I ri=l akiSk I q-lsgn ri=l akisk) ri=l ckak) 

for every k = l, • • • , n. 

Proof. To prove the Theorem for n = l, it is enough to establish (18) for the 
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case where (b;) is the zero sequence and c2 = 82 = 0. But then it can be readily 
verified that (18) is valid for 8 1 = (2:; I ai I q)-l/q. For n > 2, the proof of the 
Theorem is the verbatim version of its proof for n = 2 as given by the proof 
of Corollary 1. 

A most significant application of Theorem 1 is given as follows. 

THEOREM 2. Let n?: 1 be an integer. Let (ah;) E tfq and ck be real numbers 
for every k = 1, • • • , n and let M be a positive real number. Then the system of 
n linear equations in infinitely many unknowns x; 

(22) 

has a solution 

(23) 

if and only if 

(24) 

for every n real numbers Ui, • • • , Un. 

fork=l, • • • ,n 

Proof. First we prove that (24) implies (23). Since (20) implies (21),'we see 
that (24) implies (21). But then comparing (21) with (22), it is obvious that 
the coefficients of aki appearing in (21) give a solution of the system (22). 
Thus, 

(25) x; = ( I Lk=1 aki8k I q- 1sgn Lk=1 aki8k) Lk=l Ck8k with i = 1, 2, • · • 

give a solution of system (22). To prove (23), let us chooser;= x; as given by 
(25). Observing by (1) that p(q - 1) = q, from (25) we obtain 

(26) 2:i Ix; IP= ~;Ir; IP= I Lk=1 cksk IP2:i I Lk=l akiSk I q_ 

On the other hand, (16) for the general case (k = 1, • • • , n) yields 

(27) with k = 1, • • . , n 

Substituting (27) in (26), we obtain 

2:i I X; IP = 2:; I ri IP = I Lk=l ckuk I P(2:; I Lk=1 akiuk I q)-pfq 

which by (24) implies (23), as desired. 

Next, we show that (23) implies (24). From (22) and (23) for any n real 
numbers u1 , • • • , Un we obtain 

(28) 

However, since (ak;) E tfq we see that (Lk=I ak;uk) E tfq. Also, by (23) we have 
(r;) E tfP. Thus, (28) by Holder's inequality and again by (23) yields 

I Lk=1 ckuk I = I L1:1 (Lk=1 akiuk)r; I 
::5 II (Lk=l akiuk)llq II (r;)IIP ::5 MIi (Lk=1 akiuk) llq 
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which, by (2), implies (24). 

As shown below, Theorem 1 is directly applied to the case of a system of 
infinitely (denumerable) many linear equations. 

THEOREM 3. Let (ak;) E l'q and ck be real numbers for every k = l, 2, • • • and 
let M be a positive real number. Then the system of infinitely (denumerable) 
many linear equations in infinitely many unknowns Xi 

(29) for k = l, 2, • • • 

has a solution 

(30) Xi = ri with i = l, 2, • • • such that Li=I I ri IP :5 MP 

if and only if 

(31) 

for every n (finitely many) real numbers u1 , • • • , Un. 

Proof. First we show that if the infinite system (29) has a solution such as 
given by (30) then (31) is satisfied. But if (29) has a solution such as given by 
(30) then (22) and (23) are satisfied and therefore, by Theorem 1 we see that 
(24) as well as (31) is satisfied. 

It remains to show that if (31) is satisfied for every n (finitely many) real 
numbers u1 , • • • , Un then the infinite system (29) has a solution satisfying 
(30). To this end, in view of Theorem 1 it suffices to prove that if for every 
positive integer n the finite subsystem (22) of the first n equations of the 
infinite system (29) has a solution satisfying (23), then the infinite system 
(29) has a solution satisfying (30). We prove this as follows. 

Let us consider the infinite (denumerable) product I"' of the closed interval 
I= [-M, M] as a subset of the infinite (denumerable) product topological 
space Rao where R is the set of all real numbers in its usual (metric) topology. 
It is well known [4, p. 162] that I"' is a compact subset of Rao. Now let X; = ri 
with i = 1, 2, • • • be a solution of a single equation Li=I akiX; = ck such that Xi 
= ri with i = l, 2, • • • satisfy (23). Clearly, (r1, r2, •••)EI"' since Li=1 I ri IP :5 
MP implies that I ri I :5 Mand therefore ri E [-M, M] for every i = l, 2, . • • . 
Next, let 

(32) sk = l(r1, r2, r3, ... ), (s1, Sz, S3, ... ), (tl, t2, t3, ... ), .. · l 
be the set of all solutions of the single equation Li=i ak;X; = ck where each 
solution satisfies (23). We show that Skas given by (32) is a closed subset of 
the compact subset I"' of Rao. To this end we show that if a sequence of elements 
of Sk converges coordinatewise to, say, (h1 , h2 , h3 , • • •) then the latter is an 
element of Sk, i.e., 

(33) 

Let the sequence of elements of Sk which converge coordinatewise to (h1 , h2 , 
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h3, •••)be given by: 

(34) (r1, r2, r3, • • • ), (e1, e2, ea, • • • ), (w1, W2, wa, • • • ), 

Thus, we have: 

(35) lim(r1, e1, w1, · • ·) = h1, lim(r2, e2, W2, • • •) = h2 , 
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lim(ra, ea, Wa, • • ·) = ha, • • • 

Moreover, 

(36) 

where, as always, 

(37) ~; I aki I q < 00 

The inequality in (33) follows readily from (35) and (36) by considering the 
partial sums L~i I hi IP. From this and (37), in view of the Holder's inequality, 
we see that L1=i akihi converges absolutely and, because of (36), it also converges 
uniformly. But then it can be verified that ~iakihi = ~iakiri = ck which 
establishes the equality in (33). Thus, the set Sk, as given by (32), of all the 
solutions of the single equation Li=l akiXi = ck where each solution satisfies 
(23) is a closed subset of the compact subset r of R"'. Now, if for every positive 
integer n the finite subsystem (22) of the first n equations of the infinite 
system (29) has a solution satisfying (23) then the set of all such solutions (of 
that subsystem) is a nonempty closed subset of r since the intersection of 
finitely many closed subsets of r is again a closed subset of r. From this we 
conclude that our assumption that every finite subsystem of (29) has a solution 
satisfying (23), implies that the family F = {Sk I k = 1, 2, • • • }, where Sk is 
given by (32), is a family of the closed subsets Sk of a compact subset r of R"' 
such that F has the finite intersection property [4, p. 117-118]. Thus, n Fis 
nonempty and therefore the system (29) has a solution satisfying (30). This 
completes what was remaining to be proved. 

Finally, from Theorem 2 it follows that Theorem 3 can be rephrased as 
follows: 

THEOREM 4. Let· (a;k) E c'q and ck be real numbers for every k = 1, 2, 
• • • and let M be a positive real number. Then the system L1=i ak;X; = ck fork= 
1, 2, • • • of infinitely (denumerable) many equations in infinitely many un­
knowns x; has a solution x; = r; for i = 1, 2, • • • with the property Li=I Ir; IP ::s 
MP if and only if every finite suhsystem of the system has a solution which has 
the same property. 

Remark 2. Theorem 4 gives another instance of a case where the solvability 
of an infinite system of linear equations is ensured when every finite subsystem 
of it has a solution. However, contrary to the case [1] where each equation of 
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an infinite system has finitely many unknowns, we note that for the general 
case (as Theorem 3 shows) some rather stringent conditions are imposed on 
the system. In particular, we observe that condition (31) states that every 
hyperplane whose equation is given as a linear combination of finitely many 
equations of the system is such that its l'q distance from the origin is < M. 
This condition not only ensures that every finite subsystem (Theorem 2) has 
a solution but also implies that the entire system has a solution. 
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