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ON THE HOPF CONDITION OVER AN ARBITRARY FIELD

BY SERGEY YUZVINSKY

1. Introduction

Throughout this paper, F will always denote a field of characteristic different
from 2. Let (U, q.), (V, q,), (W, q,) be regular quadratic spaces over F of
dimensions m, n, and p. By a pairing of (U, q.) and (V, q,) in (W, q,,) we mean
a bilinear mapping u: U X V — W such that

(1) Qul(u(x, y)) = qu(x)-q.(y), x€U,yE V.

We will call such a u a pairing of type [m, n, p]. When the forms g, g,, and
gw» can be represented over F as sums of squares, u is often called a normed
map. The problem to find all triples (m, n, p) for which a normed map of type
[m, n, p] exists is usually referred to as the (generalized) Hurwitz problem.
One can find a history of the problem and a description of known results in
an expository paper [7].

In this paper we are mainly concerned with the Hopf condition.

Definition. Let (m, n, p) be a triple of positive integers. We say that it
satisfies the Hopf condition if

k

Using topological techniques, H. Hopf proved in [4] that this condition is
necessary for the existence of a pairing of type [m, n, p] over R (see also [8]
for a simple proof). F. Behrend generalized this result to any formally real
field [3]. Recently K. Y. Lam and T. Y. Lam have found simple field theory
arguments which allow them to generalize the result to any field of character-
istic O (see [7]). For an arbitrary field (of characteristic different from 2) the
necessity of the Hopf condition for the existence of a pairing of type [m, n, p]
has been proved only in several particular cases. For n = p this follows from
the much more general results of D. Shapiro [6]. J. Adem proved this for m,
n,p < 8 in [1] and for m = 3 and arbitrary n, p in [2].

The goal of this paper is to prove that the Hopf condition is necessary for
the existence of a pairing of type [4, n, p] for any n, p and any F. In particular,
we obtain the answer of the generalized Hurwitz problem for m = 4: it is the
same as for the real field.

I would like to thank K. Y. Lam and D. B. Shapiro for re-stimulating my
interest in the problem and useful discussions.

(p>E0(mod2)wheneverk20andp—m<k<n.

2. Reduction of the problem

We apply the following standard reduction of the problem. First of all, a
pairing over a field F can be viewed as a pairing of the same type over the
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algebraical closure of F. It allows us to consider only algebraically closed fields
and, in particular, to assume that the forms q,, q,, and ¢, can be represented
as sums of squares (we will use this only for g,). Using this assumption, we

fix a basis {e;, ---, e,} in U such that ¢,(e;, e;) = 65,1, j=1, ---, m, and
obtain the operators A,, - - -, An: V— W defined by
(2) Aix = ple;, x), xeV,i=1,..., m.

Here, by abuse of notation, we use g, for the corresponding bilinear form also.
Since the spaces V and W are regular, the conjugate operators A*: W — V
are well-defined by the usual equalities

g»(A*y, x) = qu(y, Ax), tEV,yE W.

It is well-known (and easy to prove—cf. [1], [8]) that the above operators
satisfy the following system of equations:

(3) ArA; =1,
(4) Aj*A,; + Ai*Aj = O, ) ?‘—', 1,,] = 1, cee,m.
Conversely, any m operators A,, ---, A,: V — W satisfying (3, 4) define by

(2) and linearity a pairing of type [m, n, p]. Instead of the system (3, 4) one
can consider the normalized system which one obtains replacing A; by A;A.*,
i=2, ..., m. To find the normalized system let us put B; = 4;1A:*, i =1, 2,

., m — 1. Then B; for any i is an operator on W, p = A;A;* is the orthogonal
projection of W to its n-dimensional subspace A;(V) (along A;(V)"), and the
system (3, 4) implies

(5) Ba*Bi =p
(6) pB; + B*p = 0,
(7) Bj*B,’+Bi*B]’=0, i#j,i,]‘=1,~°-,m—1.

In fact the system (5), (6), (7) is equivalent to (3), (4). One can easily see that
putting in (5), (6), (7) V= p(W), A1 =L, and A;y; = Byy,i=1,...,m—=1.1In
particular, when m = 2 we have one operator satisfying (5) and (6). We will
use the elementary fact that if such an operator exists and p = n then n is
even.

To prove the necessity of the Hopf condition for the existence of a pairing
over F one does not have to consider all triples (m, n, p). A simple argument
[3] shows that it suffices to study only the cases when p = m + n — 2. In
particular, for m = 4 it suffices to prove the nonexistence of pairings of types
[4,4k+ 1,4k + 3] forany k=1,2,3, --..

We prove this result in Section 4. In Section 3, we study the structure of
pairings of types [2, n, p] with p < n + 2. We have to deal with not necessarily
regular spaces and we use some standard notations and facts from the first
four sections of the book [5]. In addition, for a quadratic space A and a
subspace B of A, we denote by B4* the orthogonal complement of B in A.
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3. Preliminary results

In this section we denote by L a quadratic space over F of dimension p with
a bilinear symmetric form f. In the first part of the section we do not assume
that f is regular. Nevertheless we want to consider an operator A:L — L
satisfying conditions which in the regular case whould be equivalent to (5, 6).
For n = p (that is p = I;) these conditions are

(8) At =],

9) f(Ax, y) = —f(x, Ay), %y€EL

LEMMA 1. Assume that R =rad L, S is a subspace of L such that L=S ® R,
o is the projection of L on S along R, and A : L — L is an operator satisfying (8,
9). Then ¢A,sis an operator on S also satisfying (8, 9).

Proof. i) By (9), A(R) C R. If we put A, = 6A sand & = 1 — o then we have
foranyx € S

Al2x = dAcAx = dA(Ax — GAx) = cA% = — 3,

which implies (8) for Ao.

(ii) Let us denote by fs the restriction of f to S X S. By the definition of S,
fs{ox, oy) = f(x, y) for any x, y € L. Consequently, fs(Aox, ¥) = f(Ax, y) for
any x, y € S, which implies (9) for A.

COROLLARY 1. If there exists an operator on L satisfying (8, 9) then dim L —
dim R is even.

Proof. This follows from lemma 1 and the fact that any subspace S such
that L = S ® R is regular.

LEMMA 2. Again let R = rad L and let A: L — L be an operator satisfying (8,
9). If dim R = 1 then there exists a subspace S C L such that L=S® R and S
is invariant with respect to A.

Proof. According to Corollaty 1, p is odd. We denote by S, an arbitrary
subspace of L guch that S; ® R = L and use induction on p. The case p = 1 is
trivial. Let us suppose that p = 3. If A(S,) = S; then the statement is proved.
Let A(S,) # Si. We set T'= S; N A(S;) and notice that dim T=1. If x # 0
and x € T then, due to (8), x is an eigenvector o6f A and it follows from (9)
that x is isotropic. Since S, is regular, there exists a vector y € S; such that
f(y,y) = 0and f(x, y) = 1. If z is a non-zero vector from R then {x, y, 2} is a
basis of L. It follows from (8, 9) that A preserves f; in particular, f(4y, Ay) =
0, f(Ax, Ay) = 1. Using this and (8) again, one easily finds that the matrix of
A with respect to the ordered basis (x, y, 2) is

A 0O
0 -2 0
0 o A
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where \2 = —1, « # 0. It is clear that ¥y’ = y + } a)\z is an eigenvector of A
and that the subspace S spanned by x and y’ has the required properties.

We consider now p > 3 and assume that for all spaces of dimension p — 2
the statement is proved. It is again sufficient to consider the case when A(S,)
# 81, which implies dim T' = p — 2 where T' = S; N A(S;). Due to (8), T is
invariant with respect to A. Since p — 2 is odd, @ = rad T # 0. On the other
hand, dim @ =< dim Ts,;* = dim S; — dim T = 1; that is, dim @ = 1. According
to the induction hypothesis, there exists a subspace W of T such that W& @
= T and W is invariant with respect to A. Since A preserves f and W is regular,
Wt is invariant with respect to A and rad W,* = rad L = R. Since dim W*
= 3, it follows from the first part of the proof that there exists an subspace V
C Witsuch that V@® R = W tand V is invariant with respect to A. The space
S = W@ V clearly has the required properties.

In the remaining part of the section we assume that f is regular and we
denote by p the orthogonal projection of L on a regular n-dimensional subspace
V. We fix an operator A :L — L such that

(10) A*A = p,
(11) pA + A*p = 0.
We set B=pA, C =A — B = (1 — p)A. Using (10, 11) and the obvious

inclusions Im B C V, Ker B* D V+, Im C C V*, Ker C* O V, one obtains the
conditions on B and C equivalent to (10, 11):

(12) B* + B=0,

(13) —B? + C*C = P

(in a matrix form these conditions are contained implicitly in [8] and explicitly
in [1]).

LEMMA 3. Let either p=n + 1 or p=n + 2 and n is odd. Then the subspace
W=V N AV) of L is invariant with respect to A and the restriction A, of A
to W satisfies (8, 9).

Proof. If x € W, then y = Ax € V, that is y = Bx, Cx = 0. This and (13)
imply that B = B%x = —x. To prove the lemma it suffices to prove that Cy =
0. We put U =Im C C V+. For any u € U (that is, u = Cv for some v € L) we
have

f(Cy, u) = {(Cy, Cv) = f(C*Cy, v) = f(y + B%,v) = 0.
In other words, Cy € rad U. We will consider now two different cases.

(i) Let p = n + 1. It implies that dim V* = 1. Since V' is a regular space,
Cy=0.

(ii) Let p = n + 2 where n is odd. Let us suppose that Cy # 0. Since. V*is a
regular space of dimension 2, dim U =1 and U is totally isotropic. This implies
that for any z,, z, € L we have f(C* Cz,, z5) = f(Cz,, Cz;) = 0. Therefore C*C
= 0 and the restriction B, of B to V satisfies —B,> = Iy, B, = —B,*. But this
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. contradicts the assumption that n is odd. The contradiction completes the
proof.

LEMMA 4. Under the conditions of lemma 3 the subspace W=V N A™Y(V) of
L is regular.

Proof. If W = V then the statement follows. If W # V we will consider
several cases.

(i) Let p = n + 1. This implies that dim W = n — 1 and dim Wyt = 1. We
put R = rad W. Our goal is to prove that B = 0. Let us suppose that on the
contrary R # 0 and consequently dim R = 1. Applying lemma 2 to the operator
Aw: W — W, we can find a subspace S of W such that W= S ® R and A(S)
C S. Since Vis a regular space there exists a 1-dimensional isotropic subsapce
R’ of V such that P = R @ R’ is a hyperbolic plane and V=S L P. We put
R” = A(R’). Then the inclusion A(S) C S and (11) imply that R” C S;tand
therefore S;*=P® R” =R® R’ ® R”. Since L and S are regular spaces, S;*
is also a regular space. At the same time, applying again (10, 11) to an arbitrary
non-zero vector x € R’ we obtain f(Ax, Ax) = f(A*, Ax, x) = f(x, x) = 0 and
flax, x) = f(x, A*x) = —f(x, pAx) = —f(x, Ax) + f(x, (1 — p)Ax) = —f(Ax, x)
that is f(x, Ax) = 0. This implies that R’ @ R” is a totally isotropic space
which contradicts the regularity of S;*.

(ii) Let p = n + 2 where n is odd. We again put R = rad W and consider
several possibilities for the dimensions of W and R.

a) dim W = n — 1. According to lemma 3 and corollary 1, dim W — dim R
is even. Since dim R < dim Wy*=1,R = 0.

b) dim W = n — 2. By an argument similar to the one in a), dim R # 2. Let
us suppose that dim R = 1 and apply induction on n.

Let, firstly, n = 3 that is W = R. We denote by B, the restriction of B to V
(Bo = pAp). As it follows from Lemma 3, any non-zero vector of R is an
eigenvector of B, associated with an eigenvalue i where i2 = —1. Since B, is a
skew-symmetric operator, it has also the eigenvalue —i. Let w € V be an
eigenvector associated with —i. We have C*Cw = pw + B%w = 0. Since under
the assumptions on the dimensions of L, V, and W the operator C is surjective,
it follows that C* is injective and Cw = 0. That implies that Aw = Bw + Cw
= iw € Vand w € W, which contradicts the equality W = R.

Let, now, n > 3. We take an arbitrary ¢ € W such that f(a, @) # 0 and put
b = Aa. As it follows from Lemma 3, the space Z spanned by a and b is A-
invariant and regular. Thus the space Z;' is A-invariant and regular. The
induction hypothesis implies that W N Z,* is a regular space. Since W = Z ®
(WnN Zh, it is also regular.

COROLLARY 2. Under the conditions of lemma 3, dim(V N A™X(V)) is even.

Remark 1. This result holds for F = R without any restrictions on n and p.
This is not so for an arbitrary F even if p = n + 2 and n is even.
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Example. Let F = GF(5), L = F* and f(x, x) = x,® + x5 + x5 + x,*> where x
= (x1, Xg, X3, X4)%, x; €E F. Let V = {(x;, x2, 0, 0)Y} C L and let A be the operator
on L given by the matrix

DN O
N = O -
SO OO
SO OO

Then A satisfies (10, 11) but W=V NA(V) = {(x, —%, 0, 0)%}, x € F; dim W
=1.Herep=4,n=2

4. Nonexistence of pairings of type [4, 4k + 1, 4k + 3]
In this section we prove the main result of this paper.

THEOREM 1. No pairing of type [4, 4k + 1,4k + 3] (k =1, 2, - - -) can exist
over any field F.

Proof. Let us suppose that, on the contrary, there exists a field F, a positive
integer k, regular quadratic spaces V and W over F of dimensions 4k + 1 and
4k + 3, and four operators A;: V— W, i =1, 2, 3, 4, satisfying (3, 4). We put
Vi=Im A, Vy=V.NV,i#j,i,j=1,2,38,4. If i # j we can apply corollary
2 to the operator A;A;* and the subspace V; of W. According to the equality
A;A# = (AA;v¥) ™" and corollary 2, dim(V; N A;A;*(V))) is even. Since A;A*(V))
= Vj, we conclude that dim V;; = 4k and, consequently, dim(V; + V;) = 4k +
2. We put R = rad(V; + V;). Then dim R = dim(V; + V}))*=1.If Sis a
subspace of V; + V; such that V;+ V; = R ® S and p is the projection of V; +
V;on S along R, then p preserves the quadratic form of W (cf. lemma 1). This
implies that the operators pA; and pA; define a pairing of type [2, 4k + 1, 4k +
2 — dim R] and therefore R = 0. Let us fix now h € {1, 2, 3, 4}, h # i, h # J,
and consider V= V;+ V;+ V,,. If V= V; + V, then V is a regular space and
A;, A;, Aj define a pairing of type [3, 4k + 1, 4k + 2]. This contradicts [2].
Consequently, V # V; 4+ V, that is V = W. Let us consider now the inclusion
Vi+ Vo€ (Vi + V) N (V; + V,). The above calculation implies that dim(V};
+ V) =4k + 1; that is, Vijc V. . It follows that V, = Npey Vi = VU Therefore
dim V, = 4k and V, is a regular space. Again applying lemma 3 to the operator
A;A/* and the space V; for an arbitrary ordered pair (i, j) we conclude that U
= A;1(V,) does not depend on i and that the operators A; define a pairing of
type [4, 4k, 4k]. Considering the orthogonal complements Uy* and (Vo)w* we
obtain a pairing of type [4, 1, 3], which is impossible. This contradiction
completes the proof.
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