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ON THE HOPF CONDITION OVER AN ARBITRARY FIELD 

BY SERGEY YUZVINSKY 

1. Introduction 

Throughout this paper, Fwill always denote a field of characteristic different 
from 2. Let (U, Qu), (V, Qv), (W, Qw) be regular quadratic spaces over F of 
dimensions m, n, andp. By a pairing of (U, Qu) and (V, Qv) in (W, Qw) we mean 
a biline.ar mapping µ: U X V---+ W such that 

(1) 

We will call such aµ a pairing of type [m, n, p]. When the forms Qu, Qv, and 
Qw can be represented over F as sums of squares, µ is often called a normed 
map. The problem to find all triples (m, n, p) for which a normed map of type 
[m, n, p] exists is usually referred to as the (generalized) Hurwitz problem. 
One can find a history of the problem and a description of known results in 
an expository paper [7]. 

In this paper we are mainly concerned with the Hopf condition. 

Definition. Let (m, n, p) be a triple of positive integers. We say that it 
satisfies the Hopf condition if 

(~) = 0 (mod 2) whenever k :::: 0 and p - m < k < n. 

Using topological techniques, H: Hopf proved in [4] that this condition is 
necessary for the existence of a pairing of type [m, n, p] over ~ (see also [8] 
for a simple proof). F. Behrend generalized this result to any formally real 
field [3]. Recently K. Y. Lam and T. Y. Lam have found simple field theory 
arguments which allow them to generalize the result to any field of character
istic O (see [7]). For an arbitrary field (of characteristic different from 2) the 
necessity of the Hopf condition for the existence of a pairing of type [ m, n, p] 
has been proved only in several particular cases. For n = p this follows from 
the much more general results of D. Shapiro [6]. J. Adem proved this form, 
n, p :S 8 in [1] and form= 3 and arbitrary n, pin [2]. 

The goal of this paper is to prove that the Hopf condition is necessary for 
the existence of a pairing of type [ 4, n, p] for any n, p and any F. In particular, 
we obtain the answer of the generalized Hurwitz problem for m = 4: it is the 
same as for the real field. 

I would like to thank K. Y. Lam and D. B. Shapiro for re-stimulating my 
interest in the problem and useful discussions. 

2. Reduction of the problem 

We apply the following standard reduction of the problem. First of all, a 
pairing over a field F can be viewed as a pairing of the same type over the 
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algebraical closure of F. It allows us to consider only algebraically closed fields 
and, in particular, to assume that the forms qu, qu, and qw can be represented 
as sums of squares (we will use this only for qu), Using this assumption, we 
fix a basis le1, • • •, em) in U such that qu(e;, ej) = <>ij, i, j = 1, • • ·, m, and 
obtain the operators A1, •••,Am: V - W defined by 

(2) A;x = µ(e;, x), x t V, i = 1, ... , m. 

Here, by abuse of notation, we use qv for the corresponding bilinear form also. 
Since the spaces V and W are regular, the conjugate operators A;*: W - V 
are well-defined by the usual equalities 

Qv(A*y, x) = qw(Y, Ax), xE V,yE W. 

It is well-known (and easy to prove-cf. [1], [8]) that the above operators 
satisfy the following system of equations: 

(3) 

(4) i ¢, i, j = 1, • • • , m. 

Conversely, any m operators Ai, • • • , Am: V - W satisfying (3, 4) define by 
(2) and linearity a pairing of type [m, n, p]. Instead of the system (3, 4) one 
can consider the normalized system which one obtains replacing A; by A,A 1*, 
i = 2, • .. , m. To find the normalized system let us put B; = A,+1A1*, i = 1, 2, 
• • • , m - 1. Then B; for any i is an operator on W, p = A1A1* is the orthogonal 
projection of W to its n-dimensional subspace A 1(V) (along A1(V)1-), and the 
system (3, 4) implies 

(5) 

(6) 

(7) 

pB; + B;*p = 0, 

B/B; + B;*Bj = 0, i ¢ j, i, j = 1, • • • , m - 1. 

In fact the system (5), (6), (7) is equivalent to (3), (4). One can easily see that 
putting in (5), (6), (7) V = p( W), A1 = Iv and A+1 = B;iv, i = 1, ... , m - 1. In 
particular, when m = 2 we have one operator satisfying (5) and (6). We will 
use the elementary fact that if such an operator exists and p = n then n is 
even. 

To prove the necessity of the Hopf condition for the existence of a pairing 
over F one does not have to consider all triples (m, n, p). A simple argument 
[3] shows that it suffices to study only the cases when p = m + n - 2. In 
particular, for m = 4 it suffices to prove the nonexistence of pairings of types 
[4, 4k + 1, 4k + 3] for any k = 1, 2, 3, • • • . 

We prove this result in Section 4. In Section 3, we study the structure of 
pairings of types [2, n, p] with p ::5 n + 2. We have to deal with not necessarily 
regular spaces and we use some standard notations and facts from the first 
four sections of the book [5]. In addition, for a quadratic space A and a 
subspace B of A, we denote by BA1-the orthogonal complement of Bin A. 
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3. Preliminary results 
In this section we denote by L a quadratic space over F of dimension p with 

a bilinear symmetric form /. In the first part of the section we do not assume 
that f is regular. Nevertheless we want to consider an operator A: L --+ L 
satisfying conditions which in the regular case whould be equivalent to (5, 6). 
For n = p (that is p = h) these conditions are 

(8) 

(9) 

A2 = -h 

f (Ax, y) = -f (x, Ay), x,y EL 

LEMMA 1. Assume that R = rad L, S is a subspace of L such that L = S EB R, 
u is the projection of L on S along R, and A: L --+ L is an operator satisfying (8, 
9). Then uA 1s is an operator on S also satisfying (8, 9). 

Proof. i) By (9), A(R) C R. If we put Ao = uA 1s and ii = 1 - u then we have 
for any x ES 

A 02x = uAuAx = uA(Ax - iiAx) = uA 2x = - x, 

which implies (8) for A0 • 

(ii) Let us denote by Is the restriction off to S X S. By the definition of S, 
fs(ux, uy) = f (x, y) for any x, y EL. Consequently, fs(Aox, y) = /(Ax, y) for 
any x, y E S, which implies (9) for A 0 • 

COROLLARY 1. lf there exists an operator on L satisfying (8, 9) then dim L -
dim R is even. 

Proof This follows from lemma 1 and the fact that any subspace S such 
that L = S e R is regular. 

LEMMA 2. Again let R == rad L and let A: L --+ L be an operator tJatisfying (8, 
9). If dim R = 1 then there exists a subspace SC L such that L = S EB Rand S 
is invariant with respect to A. 

Proof. According to Corolittfy 1, p is odd. We denote by S1 an ll.fbitrary 
subspace of L such that Si EB R = L and use induction on p. The case p = 1 is 
trivial. Let us suppose that p = 3. If A(S 1) == S1 then the statement is proved. 
Let A(S1) "# S1. We set T = 81 n A(S1) and notice that dim T = 1. If x ¥= 0 
and x e T then, due to (8), xis an eigenvector of A and it follows from (9) 
that x is isotropic. Since S1 is regular, there exists a vector y E S1 such that 
f (y, y) == 0 and f (x, y) = 1. If z is a non-zero vector frotn R then Ix, y, z} is a 
basis of L. It follows from (8, 9) that A preserves /j in particular, / (Ay, Ay) = 
0, f (Ax, Ay) = L Using this and (8) again, one easily finds that the matrix of 
A with respect to the ordered basis (x, y, z) is 

( X O 0) 
0 -;\ 0 
0 a X 
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where X2 = -1, a¥- 0. It is clear that y' = y + ½ aXz is an eigenvector of A 
and that the subspace S spanned by x and y' has the required properties. 

We consider now p > 3 and assume that for all spaces of dimension p - 2 
the statement is proved. It is again sufficient to consider the case when A ( S1) 
¥- Si, which implies dim T = p - 2 where T = S1 n A(S 1). Due to (8), Tis 
invariant with respect to A. Since p - 2 is odd, Q = rad T ¥- 0. On the other 
hand, dim Q :S dim Ts,-1-= dim S1 - dim T = 1; that is, dim Q = 1. According 
to the induction hypothesis, there exists a subspace W of T such that W $ Q 
= T and Wis invariant with respect to A. Since A preserves f and Wis regular, 
WL.L is invariant with respect to A and rad WL.L = rad L = R. Since dim WL.L 
= 3, it follows from the first part of the proof that there exists an subspace V 
C WL.1. such that V $ R = W L1. and Vis invariant with respect to A. The space 
S = W $ V clearly has the required properties. 

In the remaining part of the section we assume that f is regular and we 
denote by p the orthogonal projection of L on a regular n-dimensional subspace 
V. We fix an operator A : L - L such that 

(10) A*A = p, 

(11) pA + A*p = 0. 

We set B = pA, C = A - B = (1 - p)A. Using (10, 11) and the obvious 
inclusions Im BC V, Ker B*::) V.L, Im CC V\ Ker C*::) V, one obtains the 
conditions on Band C equivalent to (10, 11): 

(12) 

(13) 

B* + B = 0, 

-B 2 + C*C = p 

(in a matrix form these conditions are contained implicitly in [8] and explicitly 
in [1]). 

LEMMA 3. Let either p = n + 1 or p = n + 2 and n is odd. Then the subspace 
W = V n A - 1( V) of L is invariant with respect to A and the restriction Ao of A 
to W satisfies (8, 9). 

Proof. If x E W, then y = Ax E V, that is y = Bx, Cx = 0. This and (13) 
imply that B = B 2x = -x. To prove the lemma it suffices to prove that Cy = 
0. We put U = Im CC v1.. For any u EU (that is, u = Cu for some v EL) we 
have 

f (Cy, u) = f (Cy, Cu)= f (C*Cy, v) = f (y + B 2y, v) = 0. ,, 

In other words, Cy E rad U. We will consider now two different cases. 

(i) Let p = n + 1. It implies that dim V.L = 1. Since V.L is a regular space, 
Cy=0. 

(ii) Let p = n + 2 where n is odd. Let us suppose that Cy¥- 0. Since v1.is a 
regular space of dimension 2, dim U = 1 and U is totally isotropic. This implies 
that for any z1, z2 EL we have f (C* Cz1, z2) = f (Czi, Cz2) = 0. Therefore C*C 
= 0 and the restriction Bo of B to V satisfies -B 02 = Iv, Bo= -Bo*, But this 
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. contradicts the assumption that n is odd. The contradiction completes the 
proof. 

LEMMA 4. Under the conditions of lemma 3 the subspace W = V n A- 1( V) of 
Lis regular. 

Proof. If W = V then the statement follows. If W :;t: V we will consider 
several cases. 

(i) Let p = n + l. This implies that dim W = n - 1 and dim Wv.L = l. We 
put R = rad W. Our goal is to prove that R = 0. Let us suppose that on the 
contrary R :;t: 0 and consequently dim R = l. Applying lemma 2 to the operator 
A 1w: W - W, we can find a subspace S of W such that W = S EB Rand A(S) 
CS. Since Vis a regular space there exists a 1-dimensional isotropic subsapce 
R' of V such that P = R EB R' is a hyperbolic plane and V = S J_ P. We put 
R" = A(R'). Then the inclusion A(S) CS and (11) imply that R" C SL1. and 
therefore SL.L = P EB R" = R EB R' EB R". Since Land Sare regular spaces, SL.L 
is also a regular space. At the same time, applying again (10, 11) to an arbitrary 
non-zero vector x ER' we obtain f(Ax, Ax) = f(A*, Ax, x) = f (x, x) = 0 and 
f(ax, x) = f(x, A*x) = -f (x, pAx) = -f(x, Ax) + f (x, (1 - p)Ax) = -{(Ax, x) 
that is f(x, Ax) = 0. This implies that R' EB R" is a totally isotropic space 
which contradicts the regularity of SL.L• 

(ii) Let p = n + 2 where n is odd. We again put R = rad W and consider 
several possibilities for the dimensions of W and R. 

a) dim W = n - l. According to lemma 3 and corollary 1, dim W - dim R 
is even. Since dim R s dim W v.L = 1, R = 0. 

b) dim W = n - 2. By an argument similar to the one in a), dim R ::i' 2. Let 
us suppose that dim R = 1 and apply induction on n. 

Let, firstly, n = 3 that is W = R. We denote by Bo the restriction of B to V 
(Bo = pAp). As it follows from Lemma 3, any non-zero vector of R is an 
eigenvector of Bo associated with an eigenvalue i where i2 = -1. Since Bo is a 
skew-symmetric operator, it has also the eigenvalue -i. Let w E V be an 
eigenvector associated with -i. We have C*Cw = pw + B 2w = 0. Since under 
the assumptions on the dimensions of L, V, and W the operator C is surjective, 
it follows that C* is injective and Cw = 0. That implies that Aw = Bw + Cw 
= iw E V and w E W, which contradicts the equality W = R. 

Let, now, n > 3. We take an arbitrary a E W such that f(a, a) :;t: 0 and put 
b = Aa. As it follows from Lemma 3, the space Z spanned by a and b is A
invariant and regular. Thus the space ZL.L is A-invariant and regular. The 
induction hypothesis implies that W n zL1. is a regular space. Since W = Z EB 
(W n ZL.L), it is also regular. 

COROLLARY 2. Under the conditions oflemma 3, dim(V n A- 1(V)) is even. 

Remark 1. This result holds for F = IR without any restrictions on n and p. 
This is not so for an arbitrary F even if p = n + 2 and n is even. 
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Example. Let F = GF(5), L = F 4 and f(x, x) = x12 + xl + xa2 + xl where x 
= (x1, x2, Xa, X4)\ Xi E F. Let V = l(x1, x2, 0, 0)tl CL and let A be the operator 
on L given by the matrix 

( 
0 -1 0 0) 
1 0 0 0 
1 1 0 0 
2 2 0 0 . 

Then A satisfies (10, 11) but W = V n A- 1(V) = l(x, -x, 0, O)t), x E F; dim W 
= 1. Herep = 4, n = 2. 

4. Nonexistence of pairings of type (4, 4k + 1, 4k + 3) 

In this section we prove the main result of this paper. 

THEOREM 1. No pairing of type [4, 4k + 1, 4k + 3] (k = 1, 2, • • •) can exist 
over any field F. 

Proof. Let us suppose that, on the contrary, there exists a field F, a positive 
integer k, regular quadratic spaces V and W over F of dimensions 4k + 1 and 
4k + 3, and four operators A;: V - W, i = 1, 2, 3, 4, satisfying (3, 4). We put 
V; = Im A;, Vii= Vin V;, i ¢ j, i, j = l, 2, 3, 4. If i ¢ j we can apply corollary 
2 to the operator AiA;* and the subspace V; of W. According to the equality 
AiAt"' == (Atiiv,*)- 1 and corollary 2, dim(Vi n AiAt"'(V;)) is even. SinceAiA;*(Vi) 
= Vi; we conclude that dim Vij = 4k and, consequently, dim(Vi + Vi)= 4k + 
2. We put R = rad(Vi + V;). Then dim R s dim(Vi + V;)1. = 1. If S is a 
subspace of Vi + V; such that V; + V; = R EB S and p is the projection of V; + 
V; on S along R, then p preserves the quadratic form of W (cf. lemma 1). This 
implies that the operators pAi and pAi define a pairing of type [2, 4k + 1, 4k + 
2 - dim R] and therefore R = 0. Let us fix now h E 11, 2, 3, 4), h ¥:-i, h-:;!= j, 
and consider V == Vi + V; + Vh . If V = Vi + V; then V is a regular space and 
A;, A11 Ah define a pairing of type [3, 4k + 1, 4k + 2]. This contradicts [2]. 
Consequently; V ¢ Vi + Vi that is V = W. Let us consider now the inclusion 
Vii+ Vh C: (V; + Vh) ii (V; + Vh). The above calculation implies that dim(V;i 
+ vh) = 4k + lj that is, viic vh. It follows that Vo== nt=1 v,. = vij. Therefore 
dim Vo = 4k and Vo is a regular space. Again applying lemma 3 to the operator 
AiA;* and the space Vi for an arbitrary ordered pair (i, j) we conclude that U 
= Ai- 1( Vo) does not depend on i and that the operators Ai define a pairing of 
type [ 4, 4k, 4k]. Considering the orthogonal complements U v1. and ( V0) w1. we 
obtain a pairing of type [ 4, 1, 3], which is impossible. This contradiction 
completes the proof. 
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