Boletín de la Sociedad Matemática Mexicana Vol. 28, No. 1, 1983

ON THE HOPF CONDITION OVER AN ARBITRARY FIELD

By Sergey Yuzvinsky

1. Introduction

Throughout this paper, F will always denote a field of characteristic different from 2. Let (U, q_u) , (V, q_v) , (W, q_w) be regular quadratic spaces over F of dimensions m, n, and p. By a pairing of (U, q_u) and (V, q_v) in (W, q_w) we mean a bilinear mapping $\mu: U \times V \to W$ such that

(1)
$$q_w(\mu(x, y)) = q_u(x) \cdot q_v(y), \quad x \in U, y \in V.$$

We will call such a μ a pairing of type [m, n, p]. When the forms q_u, q_v , and q_w can be represented over F as sums of squares, μ is often called a normed map. The problem to find all triples (m, n, p) for which a normed map of type [m, n, p] exists is usually referred to as the (generalized) Hurwitz problem. One can find a history of the problem and a description of known results in an expository paper [7].

In this paper we are mainly concerned with the Hopf condition.

Definition. Let (m, n, p) be a triple of positive integers. We say that it satisfies the Hopf condition if

$$\binom{p}{k} \equiv 0 \pmod{2}$$
 whenever $k \ge 0$ and $p - m < k < n$.

Using topological techniques, H. Hopf proved in [4] that this condition is necessary for the existence of a pairing of type [m, n, p] over \mathbb{R} (see also [8] for a simple proof). F. Behrend generalized this result to any formally real field [3]. Recently K. Y. Lam and T. Y. Lam have found simple field theory arguments which allow them to generalize the result to any field of characteristic 0 (see [7]). For an arbitrary field (of characteristic different from 2) the necessity of the Hopf condition for the existence of a pairing of type [m, n, p]has been proved only in several particular cases. For n = p this follows from the much more general results of D. Shapiro [6]. J. Adem proved this for m, $n, p \leq 8$ in [1] and for m = 3 and arbitrary n, p in [2].

The goal of this paper is to prove that the Hopf condition is necessary for the existence of a pairing of type [4, n, p] for any n, p and any F. In particular, we obtain the answer of the generalized Hurwitz problem for m = 4: it is the same as for the real field.

I would like to thank K. Y. Lam and D. B. Shapiro for re-stimulating my interest in the problem and useful discussions.

2. Reduction of the problem

We apply the following standard reduction of the problem. First of all, a pairing over a field F can be viewed as a pairing of the same type over the

SERGEY YUZVINSKY

algebraical closure of F. It allows us to consider only algebraically closed fields and, in particular, to assume that the forms q_u , q_v , and q_w can be represented as sums of squares (we will use this only for q_u). Using this assumption, we fix a basis $\{e_1, \dots, e_m\}$ in U such that $q_u(e_i, e_j) = \delta_{ij}$, $i, j = 1, \dots, m$, and obtain the operators A_1, \dots, A_m : $V \to W$ defined by

(2)
$$A_i x = \mu(e_i, x), \qquad x \in V, \ i = 1, \ldots, m.$$

Here, by abuse of notation, we use q_v for the corresponding bilinear form also. Since the spaces V and W are regular, the conjugate operators $A_i^* \colon W \to V$ are well-defined by the usual equalities

$$q_v(A^*y, x) = q_w(y, Ax), \qquad x \in V, y \in W.$$

It is well-known (and easy to prove—cf. [1], [8]) that the above operators satisfy the following system of equations:

(4)
$$A_j^*A_i + A_i^*A_j = 0, \qquad i \neq i, j = 1, \dots, m.$$

Conversely, any *m* operators $A_1, \dots, A_m: V \to W$ satisfying (3, 4) define by (2) and linearity a pairing of type [m, n, p]. Instead of the system (3, 4) one can consider the normalized system which one obtains replacing A_i by $A_iA_1^*$, $i = 2, \dots, m$. To find the normalized system let us put $B_i = A_{i+1}A_1^*$, i = 1, 2, $\dots, m-1$. Then B_i for any *i* is an operator on W, $\rho = A_1A_1^*$ is the orthogonal projection of *W* to its *n*-dimensional subspace $A_1(V)$ (along $A_1(V)^{\perp}$), and the system (3, 4) implies

$$(5) B_o^* B_i = \rho_i$$

$$(6) \qquad \rho B_i + B_i^* \rho = 0,$$

(7)
$$B_i^* B_i + B_i^* B_j = 0, \qquad i \neq j, \, i, \, j = 1, \, \cdots, \, m-1$$

In fact the system (5), (6), (7) is equivalent to (3), (4). One can easily see that putting in (5), (6), (7) $V = \rho(W)$, $A_1 = I_v$ and $A_{i+1} = B_{i|V}$, $i = 1, \ldots, m-1$. In particular, when m = 2 we have one operator satisfying (5) and (6). We will use the elementary fact that if such an operator exists and p = n then n is even.

To prove the necessity of the Hopf condition for the existence of a pairing over F one does not have to consider all triples (m, n, p). A simple argument [3] shows that it suffices to study only the cases when p = m + n - 2. In particular, for m = 4 it suffices to prove the nonexistence of pairings of types [4, 4k + 1, 4k + 3] for any $k = 1, 2, 3, \cdots$.

We prove this result in Section 4. In Section 3, we study the structure of pairings of types [2, n, p] with $p \le n + 2$. We have to deal with not necessarily regular spaces and we use some standard notations and facts from the first four sections of the book [5]. In addition, for a quadratic space A and a subspace B of A, we denote by B_A^{\perp} the orthogonal complement of B in A.

ON THE HOPF CONDITION OVER AN ARBITRARY FIELD

3. Preliminary results

In this section we denote by L a quadratic space over F of dimension p with a bilinear symmetric form f. In the first part of the section we do not assume that f is regular. Nevertheless we want to consider an operator $A: L \to L$ satisfying conditions which in the regular case whould be equivalent to (5, 6). For n = p (that is $\rho = I_L$) these conditions are

$$A^2 = -I_L$$

(9)
$$f(Ax, y) = -f(x, Ay), \qquad x, y \in L$$

LEMMA 1. Assume that $R = \operatorname{rad} L$, S is a subspace of L such that $L = S \oplus R$, σ is the projection of L on S along R, and $A: L \to L$ is an operator satisfying (8, 9). Then σA_{1S} is an operator on S also satisfying (8, 9).

Proof. i) By (9), $A(R) \subset R$. If we put $A_0 = \sigma A_{|S|}$ and $\overline{\sigma} = 1 - \sigma$ then we have for any $x \in S$

$$A_0^2 x = \sigma A \sigma A x = \sigma A (A x - \bar{\sigma} A x) = \sigma A^2 x = -x,$$

which implies (8) for A_0 .

(ii) Let us denote by f_S the restriction of f to $S \times S$. By the definition of S, $f_S(\sigma x, \sigma y) = f(x, y)$ for any $x, y \in L$. Consequently, $f_S(A_0x, y) = f(Ax, y)$ for any $x, y \in S$, which implies (9) for A_0 .

COROLLARY 1. If there exists an operator on L satisfying (8, 9) then dim $L - \dim R$ is even.

Proof. This follows from lemma 1 and the fact that any subspace S such that $L = S \oplus R$ is regular.

LEMMA 2. Again let $R = \operatorname{rad} L$ and let $A: L \to L$ be an operator satisfying (8, 9). If dim R = 1 then there exists a subspace $S \subset L$ such that $L = S \oplus R$ and S is invariant with respect to A.

Proof. According to Corollary 1, p is odd. We denote by S_1 an arbitrary subspace of L such that $S_1 \oplus R = L$ and use induction on p. The case p = 1 is trivial. Let us suppose that p = 3. If $A(S_1) = S_1$ then the statement is proved. Let $A(S_1) \neq S_1$. We set $T = S_1 \cap A(S_1)$ and notice that dim T = 1. If $x \neq 0$ and $x \in T$ then, due to (8), x is an eigenvector of A and it follows from (9) that x is isotropic. Since S_1 is regular, there exists a vector $y \in S_1$ such that f(y, y) = 0 and f(x, y) = 1. If z is a non-zero vector from R then $\{x, y, z\}$ is a basis of L. It follows from (8, 9) that A preserves f; in particular, f(Ay, Ay) = 0, f(Ax, Ay) = 1. Using this and (8) again, one easily finds that the matrix of A with respect to the ordered basis (x, y, z) is

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & \alpha & \lambda \end{pmatrix}$$

SERGEY YUZVINSKY

where $\lambda^2 = -1$, $\alpha \neq 0$. It is clear that $y' = y + \frac{1}{2} \alpha \lambda z$ is an eigenvector of A and that the subspace S spanned by x and y' has the required properties.

We consider now p > 3 and assume that for all spaces of dimension p - 2the statement is proved. It is again sufficient to consider the case when $A(S_1) \neq S_1$, which implies dim T = p - 2 where $T = S_1 \cap A(S_1)$. Due to (8), T is invariant with respect to A. Since p - 2 is odd, $Q = \operatorname{rad} T \neq 0$. On the other hand, dim $Q \leq \dim T_{S_1}^{\perp} = \dim S_1 - \dim T = 1$; that is, dim Q = 1. According to the induction hypothesis, there exists a subspace W of T such that $W \oplus Q$ = T and W is invariant with respect to A. Since A preserves f and W is regular, W_L^{\perp} is invariant with respect to A and rad $W_L^{\perp} = \operatorname{rad} L = R$. Since dim W_L^{\perp} = 3, it follows from the first part of the proof that there exists an subspace V $\subset W_L^{\perp}$ such that $V \oplus R = W_L^{\perp}$ and V is invariant with respect to A. The space $S = W \oplus V$ clearly has the required properties.

In the remaining part of the section we assume that f is regular and we denote by ρ the orthogonal projection of L on a regular *n*-dimensional subspace V. We fix an operator $A: L \to L$ such that

$$A^*A = \rho,$$

(11)
$$\rho A + A^* \rho = 0.$$

We set $B = \rho A$, $C = A - B = (1 - \rho)A$. Using (10, 11) and the obvious inclusions Im $B \subset V$, Ker $B^* \supset V^{\perp}$, Im $C \subset V^{\perp}$, Ker $C^* \supset V$, one obtains the conditions on B and C equivalent to (10, 11):

(12)
$$B^* + B = 0,$$

(13)
$$-B^2 + C^*C = \rho$$

(in a matrix form these conditions are contained implicitly in [8] and explicitly in [1]).

LEMMA 3. Let either p = n + 1 or p = n + 2 and n is odd. Then the subspace $W = V \cap A^{-1}(V)$ of L is invariant with respect to A and the restriction A_0 of A to W satisfies (8, 9).

Proof. If $x \in W$, then $y = Ax \in V$, that is y = Bx, Cx = 0. This and (13) imply that $B = B^2x = -x$. To prove the lemma it suffices to prove that Cy = 0. We put $U = \text{Im } C \subset V^{\perp}$. For any $u \in U$ (that is, u = Cv for some $v \in L$) we have

$$f(Cy, u) = f(Cy, Cv) = f(C^*Cy, v) = f(y + B^2y, v) = 0.$$

In other words, $Cy \in rad U$. We will consider now two different cases.

(i) Let p = n + 1. It implies that dim $V^{\perp} = 1$. Since V^{\perp} is a regular space, Cy = 0.

(ii) Let p = n + 2 where n is odd. Let us suppose that $Cy \neq 0$. Since V^{\perp} is a regular space of dimension 2, dim U = 1 and U is totally isotropic. This implies that for any $z_1, z_2 \in L$ we have $f(C^* Cz_1, z_2) = f(Cz_1, Cz_2) = 0$. Therefore $C^*C = 0$ and the restriction B_0 of B to V satisfies $-B_0^2 = I_V$, $B_0 = -B_0^*$. But this

contradicts the assumption that n is odd. The contradiction completes the proof.

LEMMA 4. Under the conditions of lemma 3 the subspace $W = V \cap A^{-1}(V)$ of L is regular.

Proof. If W = V then the statement follows. If $W \neq V$ we will consider several cases.

(i) Let p = n + 1. This implies that dim W = n - 1 and dim $W_V^{\perp} = 1$. We put R = rad W. Our goal is to prove that R = 0. Let us suppose that on the contrary $R \neq 0$ and consequently dim R = 1. Applying lemma 2 to the operator $A_{|W}: W \to W$, we can find a subspace S of W such that $W = S \oplus R$ and $A(S) \subset S$. Since V is a regular space there exists a 1-dimensional isotropic subspace R' of V such that $P = R \oplus R'$ is a hyperbolic plane and $V = S \perp P$. We put R'' = A(R'). Then the inclusion $A(S) \subset S$ and (11) imply that $R'' \subset S_L^{\perp}$ and therefore $S_L^{\perp} = P \oplus R'' = R \oplus R' \oplus R''$. Since L and S are regular spaces, S_L^{\perp} is also a regular space. At the same time, applying again (10, 11) to an arbitrary non-zero vector $x \in R'$ we obtain $f(Ax, Ax) = f(A^*, Ax, x) = f(x, x) = 0$ and $f(ax, x) = f(x, A^*x) = -f(x, \rho Ax) = -f(x, Ax) + f(x, (1 - \rho)Ax) = -f(Ax, x)$ that is f(x, Ax) = 0. This implies that $R' \oplus R''$ is a totally isotropic space which contradicts the regularity of S_L^{\perp} .

(ii) Let p = n + 2 where n is odd. We again put R = rad W and consider several possibilities for the dimensions of W and R.

a) dim W = n - 1. According to lemma 3 and corollary 1, dim $W - \dim R$ is even. Since dim $R \le \dim W_V^{\perp} = 1$, R = 0.

b) dim W = n - 2. By an argument similar to the one in a), dim $R \neq 2$. Let us suppose that dim R = 1 and apply induction on n.

Let, firstly, n = 3 that is W = R. We denote by B_0 the restriction of B to V $(B_0 = \rho A \rho)$. As it follows from Lemma 3, any non-zero vector of R is an eigenvector of B_0 associated with an eigenvalue i where $i^2 = -1$. Since B_0 is a skew-symmetric operator, it has also the eigenvalue -i. Let $w \in V$ be an eigenvector associated with -i. We have $C^*Cw = \rho w + B^2w = 0$. Since under the assumptions on the dimensions of L, V, and W the operator C is surjective, it follows that C^* is injective and Cw = 0. That implies that Aw = Bw + Cw $= iw \in V$ and $w \in W$, which contradicts the equality W = R.

Let, now, n > 3. We take an arbitrary $a \in W$ such that $f(a, a) \neq 0$ and put b = Aa. As it follows from Lemma 3, the space Z spanned by a and b is A-invariant and regular. Thus the space Z_L^{\perp} is A-invariant and regular. The induction hypothesis implies that $W \cap Z_L^{\perp}$ is a regular space. Since $W = Z \oplus (W \cap Z_L^{\perp})$, it is also regular.

COROLLARY 2. Under the conditions of lemma 3, dim $(V \cap A^{-1}(V))$ is even.

Remark 1. This result holds for $F = \mathbb{R}$ without any restrictions on n and p. This is not so for an arbitrary F even if p = n + 2 and n is even.

SERGEY YUZVINSKY

Example. Let F = GF(5), $L = F^4$ and $f(x, x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$ where $x = (x_1, x_2, x_3, x_4)^t$, $x_i \in F$. Let $V = \{(x_1, x_2, 0, 0)^t\} \subset L$ and let A be the operator on L given by the matrix

$$egin{pmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 2 & 2 & 0 & 0 \end{pmatrix}$$

Then A satisfies (10, 11) but $W = V \cap A^{-1}(V) = \{(x, -x, 0, 0)^t\}, x \in F; \dim W = 1$. Here p = 4, n = 2.

4. Nonexistence of pairings of type [4, 4k + 1, 4k + 3]

In this section we prove the main result of this paper.

THEOREM 1. No pairing of type [4, 4k + 1, 4k + 3] $(k = 1, 2, \dots)$ can exist over any field F.

Proof. Let us suppose that, on the contrary, there exists a field F, a positive integer k, regular quadratic spaces V and W over F of dimensions 4k + 1 and 4k + 3, and four operators $A_i: V \rightarrow W$, i = 1, 2, 3, 4, satisfying (3, 4). We put $V_i = \text{Im } A_i, V_{ij} = V_i \cap V_j, i \neq j, i, j = 1, 2, 3, 4$. If $i \neq j$ we can apply corollary 2 to the operator $A_iA_i^*$ and the subspace V_i of W. According to the equality $A_j A_i^* = (A_i A_j | V_i^*)^{-1}$ and corollary 2, dim $(V_i \cap A_j A_i^* (V_i))$ is even. Since $A_j A_i^* (V_i)$ = V_j , we conclude that dim $V_{ij} = 4k$ and, consequently, dim $(V_i + V_j) = 4k + V_j$ 2. We put $R = \operatorname{rad}(V_i + V_j)$. Then dim $R \leq \dim(V_i + V_j)^{\perp} = 1$. If S is a subspace of $V_i + V_j$ such that $V_i + V_j = R \oplus S$ and ρ is the projection of $V_i + V_j$ V_i on S along R, then ρ preserves the quadratic form of W (cf. lemma 1). This implies that the operators ρA_i and ρA_j define a pairing of type [2, 4k + 1, 4k + 12 - dim R] and therefore R = 0. Let us fix now $h \in \{1, 2, 3, 4\}, h \neq i, h \neq j$, and consider $\overline{V} = V_i + V_j + V_h$. If $\overline{V} = V_i + V_j$ then \overline{V} is a regular space and A_i , A_j , A_h define a pairing of type [3, 4k + 1, 4k + 2]. This contradicts [2]. Consequently, $\overline{V} \neq V_i + V_j$ that is $\overline{V} = W$. Let us consider now the inclusion $V_{ii} + V_h \subset (V_i + V_h) \cap (V_i + V_h)$. The above calculation implies that dim (V_{ii}) $(+V_h) = 4k + 1$; that is, $V_{ij} \subset V_h$. It follows that $V_0 = \bigcap_{k=1}^4 V_k = V_{ij}$. Therefore dim $V_0 = 4k$ and V_0 is a regular space. Again applying lemma 3 to the operator $A_i A_i^*$ and the space V_i for an arbitrary ordered pair (i, j) we conclude that U $= A_i^{-1}(V_0)$ does not depend on i and that the operators A_i define a pairing of type [4, 4k, 4k]. Considering the orthogonal complements U_V^{\perp} and $(V_0)_W^{\perp}$ we obtain a pairing of type [4, 1, 3], which is impossible. This contradiction completes the proof.

UNIVERSITY OF OREGON

References

[1] J. ADEM, On the Hurwitz problem over an arbitrary field I, Bol. Soc. Mat. Mexicana 25 (1980), 29-51.

6

- [2] —, On the Hurwitz problem over an arbitrary field II, Bol. Soc. Mat. Mexicana, 26 (1981), 29–41.
- [3] F. BEHREND, Über Systeme reeler algebraischer Gleichungen, Compositio Math. 7 (1939), 1– 19.
- [4] H. HOPF, Ein topologischer Beitrag zur reelen Algebra, Comment. Math. Helv. 13 (1940/41), 219–239.
- [5] T. Y. LAM, The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Inc., Reading, Massachusetts, 1973.
- [6] D. B. SHAPIRO, Spaces of Similarities IV, Pacific J. Math. 69 (1977), 223-244.
- [7] ——, Products of sums of squares, preprint 1982.
- [8] S. YUZVINSKY, Orthogonal pairings of Euclidean spaces, Michigan Math. J. 28 (1981), 131– 145.