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ASYMPTOTIC STATIONARITY OF NONSTATIONARY L2 -

PROCESSES WITH APPLICATIONS TO LINEAR PREDICTION* 

BY HANNU NIEMI 

Introduction 

An £2-process xk EH, k E Z (H = a Hilbert space) is called asymptotically 
stationary, if the limits 

(*) r(h) = limr ... 00 2T ~ 1 "f.f=-r (xk+h, Xk)H 

exist for all h E Z. In this case r: Z _.... C is positive definite and, a fortiori, 

h EZ. 

In the present paper we are mainly concerned with the analysis of the 
asymptotic stationarity of weakly harmonizable £2-processes xk, k E Z, i.e. 
when xk, k E Z, admits a spectral representation 

xk = H .. eik>-- dµ('X), k E Z. 

It appears that not all weakly harmonizable £2-processes are asymptotically 
stationary. This gives a motivation to consider stationarization procedures 
that are weaker than the one defined by (*). In the present paper two such 
methods are proposed, based on the use of invariant means on time domain 
and, respectively, on spectral domain. 

The proposed stationarization methods are analyzed in more detail in the 
special case of uniformly bounded linearly stationary (UBLS) L2-processes, 
introduced by D. Tjf/Jstheim and J. B. Thomas (cf. [15] and the references 
given therein). A uniqueness result concerning a minimal "asymptotic station­
arization" of a given UBLS £2-process, xk, k E Z, is presented. This result is 
analogous to the uniqueness of the minimal p-majorant of a p-majorizable 
vector measure, obtained by A. Pietsch [10]. 

Applications to linear prediction, especially to the stationary prediction of 
nonstationary £2-processes proposed by J. L. Abreu [1], are presented. 

Acknowledgement. The present paper is essentially based on the author's 
talk given at the "Workshop on the prediction theory of non-stationary 
processes and related topics", organized by Professor J. L. Abreu at Guana­
juato, Mexico, in June 20-26, 1982. 
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26, 1982. 
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1. Asymptotically stationary sequences 

Let H be a complex Hilbert space (one can choose e.g. H = L2(rl, A, P) or 
H = I~ E L 2(0-A-P) IE~= 01). Recall that a sequence xk EH, k E Z, is a 
(weakly) stationary L2-process, if 

(I.I) j, k E Z. 

For any stationary L2-process xk EH, k E Z, the corresponding covariance 
kernel r: Z - C satisfying (I.I) is positive definite, i.e. 

L1=1 Lk=1 a/ikr(hi - hk) ~ 0 

for all ai E C, hi E Z, j = I, · · · , n; n E N. Thus, 

(1.2) h E Z, 

for a uniquely determined bounded nonnegative measure v on [O, 21r[. 

The following definition is essentially the same as in [12; p. 337] (cf. [11; p. 
175]). 

Definition. An L2-process Xk EH, k E Z, is called asymptotically stationary, 
if the limit 

(1.3) r(h) = limr-oo 2T 1+ l Lk=-T (Xk+h, Xk)H 

exists for all h E Z. 

An extensive survey on asymptotically stationary L2-processes on R1 has 
been presented by M. M. Rao [12] (cf. [11]). For a different approach and 
applications cf. E. Parzen [9]. 

Suppose Xk EH, k E Z, is an asymptotically stationary L2-process. Then the 
function r: Z - C, defined by (1.3) is positive definite. Thus, it admits a 
representation in the form (1.2). The corresponding uniquely determined 
bounded nonnegative measure v, appearing on the R.H.S. of (1.2), is called the 
associated spectral distribution of the L2-process xk, k E Z. 

In this paper we are mainly concerned with the asymptotic stationarity of 
non-stationary L2-processes admitting a spectral representation. 

Recall that an L2-process xk EH, k E Z, is 
(i) weakly harmonizable, if there exists a (uniquely determined) bounded H­
valued vector measure µ on the Borel u-algebra B of [O, 21r [ such that 

(1.4) k E Z; 

(ii) strongly harmonizable, if 

(1.5) j, k E Z, 

where Fis a bounded (possibly complex valued) measure on [O, 21r [ x [O, 21r [, 
which is of positive definite type, i.e. 

L1=1 Lk=1 a/ikF(Eh Ek) ~ 0 
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for all aj EC and disjoint Ej EB, j = 1, • • • , n; n EN; 

(iii) uniformly bounded linearly stationary (UBLS), if there exists a constant 
K ~ 1 such that 

(1.6) 

for all h, ki E Z, ai EC, j = 1, ... , n; n EN. 
An extensive account on the h:i-storical development and characteristic 

properties of the classes (i)-(ii) has been presented by M. M. Rao [12] (cf. 
[6], [5]). The class of UBLS L2-processes was introduced by D. Tj0stheim and 
J.B. Thomas [16], (cf. [7], [15] and the references therein). 

One of the basic results concerning the asymptotic stationarity of non­
stationary L2-processes is the following one; essentially due to Rozanov [13; p. 
283] (cf. [1; Theorem 3.1], [7; Theorem 14]). For a proof cf. [1; pp. 6-7]. 

THEOREM (1.1). Suppose Xk EH, k ~ Z, is a strongly harmonizable L2-process 
and suppose 

(xi, Xk)H = f5" f6" eiUi,.-ke> dF(\, 0), 

is a representation in the form (1.5). Then: 
(i) xk, k E Z, is asymptotically stationary; 
(ii) furthermore 

r(h) = limr_.oo 2T 1+ l Lk=-T (Xk+h, Xk)H 

j, k E Z, 

k E Z, 

where 

~=I(\, 0) E [O, 21r[ x [O, 21r[I \ = 0}. 

Example 1.4 below shows that there exist weakly harmonizable, in fact, even 
UBLS L2-processes xk EH, k E Z, which are not asymptotically stationary. 
The same example indicates that Theorem 8.1 in [12] cannot be true without 
additional assumptions. 

Example 1.4 combined with Theorem 1.1 and the well-known fact that all 
UBLS L2-processes are weakly harmonizable (cf. [7; Theorem 4.3]) gives the 
following result. 

THEOREM (1.2) (i) There exists weakly harmonizable, in fact, UBLS L2-
processes Xk E H, k E Z, which are not asymptotically stationary; 

(ii) th~re exists UBLS processes xk E H, k E Z, which are not strongly 
harmonizable. 

Example 1.4 is based on the following characterization due to D. Tj0stheim 
and J.B. Thomas [15]. 
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THEOREM (1.3). Let Xk E H, k E Z, be an L2-process. The following three 
statements are equivalent: 
(i) xk, k E Z, is UBLS; 
(ii) there exist a stationary £2-process Yk E H, k E Z, and a bounded linear 
mapping A : H - H with a bounded inverse such that 

kEZ 

(iii) there exist a constant K 2: 1 and a stationary £2-process Yk E H, k E Z, 
such that 

(1.7) 1/K II L.i=I aiYk1 II H 2 :5 II L.i=I aixk1 II H2 

:;;; K II L.i=I aiYk1 II H 2 

for all aJ EC, ki E Z, j = 1, · · · , n; n EN. 

Remark. It follows from Theorem 1.3 (i)-(ii) that a weakly harmonizable 
L2-process 

Xk = f6" eihx dµ(A), k E Z, 

is UBLS, if and only if there exist a bounded orthogonally scattered H-valued 
vector measure µ 0 on [O, 2'll' [, i.e. 

for all disjoint E, E' E B, 

and a bounded linear mapping A: H - H with a bounded inverse such that 

(1.8) for all EE B. 

Example (1.4). Let H be a separable complex Hilbert space and let eh, k E 
Z, be a complete orthogonal basis in H. Define a weakly stationary £2-process 
Xk E H, k E z, by 

kE Z. 

Define a sequence of real numbers ah, k E Z, by 

f 1, 
·1 1, 
l 2, 

k=O 
2 2n :5 I k I < 2 2n+l' 

22n+l :::5 I k I < 22n+2, 

and another L2-process Yk EH, k E Z, by 

kE Z. 

k E Z, n 2: 0 
k E Z, n 2: 0 

It is obvious that there exists a bounded linear mapping A: H - H (with a 
bounded inverse) such that Aeh = akek, k E Z, and, a fortiori, Yh = Axk, k E Z, 
showing that Yh, k E Z, is a UBLS L2-process (cf. Theorem 1.3 (i)-(ii)). 

However, in this case the supposed-to-be limit 

fails to exist. 
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Example 1.4 gives a motivation to consider stationarization procedures, 
which are weaker than the one defined by (1.3). One possibility is to apply 
invariant means on Z. Another approach, based on the use of invariant means 
on the spectral domain is presented in Section 2. 

Recall that for any commutative semigroup G there exists at least one 
invariant mean Mon G, i.e. Mis a linear mapping defined on C(G) = lh: a­
C I h bounded! having the properties: 

(i) infgeah(g) :S M(h) :S supgEah(g) 

for all real valued h E C ( G) and 

(ii) M(h) = M(h), 

(iii) M(tg,h) = M(h) 

for all h E C(G) and g' E G; here tg,h(g) = h(g'g), g, g' E G (cf. [2; pp. 108-
109), [4; p. 5]). 

Remark. Let Xk E H, k E Z, be any bounded L2-process, i.e. II xk II H < C, 
k E Z, for some constant C > 0. Then 

(1.9) h E Z, 

is a positive definite function for any invariant mean Mon Z. The relationship 
between xk, k E Z, and the spectral representation (cf. (1.2)) of r, defined by 
(1.9), or equivalently, between Xk, k E Z, and any stationary L2-process Yk E 
H, k E Z, with 

h E Z, 

has not yet been fully analyzed. A partial solution can be obtained in the case 
of UBLS L2-processes, as indicated in Theorem 1.5 below. 

The statement (i) of Theorem 1.5 can be proved by following the proof of 
Theorem 11 in [7]. The proofs of (ii)-(iii) are presented at the end of this 
paper. 

THEOREM (1.5). Let Xk EH, k E Z, be a UBLS L2-process and 

Ko= inf K, 

where the infimum is formed over all K ===: I satisfying (1.6). Then: (i) for any 
invariant mean M:C(Z) - C there exists a stationary L2-process Yk EH, k E 
Z, satisfying (l. 7) with K = Ko and 

for all j, h E Z. 

(ii) Define 

rinr(O) = inf II Yo II H2, 

where the infimum is formed over all stationary L2-processes Yk E H, k E Z, 
satisfying (1.7) with K = Ko. Then, there exists a stationary L2-process Yk EH, 
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k E Z, uniquely determined up to unitary equivalence, satisfying (1.7) with K = 
K 0 and 

2. Diagonal measure of a positive definite bimeasure 

Suppose xk, k E Z, is a strongly harmonizable sequence and suppose 

(2.1) (xh xk)H = f5" f5" eiUx-ko> dF(X, 0), j, k E Z, 

is the representation in the form (1.5). Theorem 1.1 (ii) shows that the part 
of F concentrated on the main diagonal Li of [O, 21r[ X [O, 21r[ gives the 
associated spectral distribution of Xk, k E Z. 

In this section we are concerned with the problem of how to find an analogue 
of Theorem 1.1 (ii) for weakly harmonizable L2-processes xk, k E Z. In this 
case the representation (1.5) must be interpreted as an integral with respect 
to the bimeasure defined by the spectral measure of xk, k E Z (cf. [6; Theorem 
3.2.6], [5], [12]). 

We are thus led to the notion of a diagonal measure of a positive definite 
bimeasure. We follow here the same approach as in [8]. 

Definition. Let S be a <T-algebra on a space S. A mapping B: S X S---+ C is a 
bounded bimeasure, if it is separately countably additive and if its semivariation 
is bounded, i.e. 

sup I LJ=I L~=1 ajbkB(Ej, Ek') I < 00 , 

where the supremum is formed over all finite S-measurable partitions S = E 1 

+ · · · + Em, S = Ei' + · · · + En' and aj, bk E C; I aj I :S 1, I bk I :S 1; j = 1, 
• • • , m, k = 1, • • • , n; m, n E N. 

A bounded bimeasure B : S X S ---+ C is positive definite, if 

LJ=1 LZ'=1 aiikB(Ej, Ek) ~ 0 

for all aj E C, Ej E S, j = 1, • • • , m; m E N. 

Remark. A mapping B: S X S---+ C is a bounded positive definite bimeasure, 
if and only if there exists a Hilbert space Ho and a bounded vector measure 
µ:S---+ Ho such that 

B(E, E') = (µ(E), µ(E'))H 0 , E,E'ES. 

Definition. Suppose Sis generated by a finite partition d = IE1, • • · , Enl of 
S (i.e., S = E 1 + • • • + En). The diagonal measure of a positive definite 
bimeasure B: S x S ---+ C is the nonnegative measure LiB: S ---+ R+ defined by 
setting 

k = 1, ... , n. 

Let S be an arbitrary field of subsets in S. In what follows by D(S) we 
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denote the set of all finite S-measurable partitions of S. The set D(S) can be 
considered as a commutative semigroup (with identity), if the semigroup 
operation associates to d, d' E D(S) the refinement partition, denoted by dd ', 
induced by d and d '. 

Remark. Let B : S X S - C be a bounded positive definite bimeasure and let 
S(p) be the field generated by d E D(S). In what follows, by B(d): S(d) x 
S(d) - C we denote the restriction of B:S X s- C to S(d) X S(d); and by 
fl.B(d) we denote the diagonal measure of B(d). 

Suppose B : S X S - C is a bounded positive definite bimeasure. It was 
shown in [8; Theorem 2] that for any invariant mean M: C(D(S)) - C the 
mapping fl.BM: S - C defined by 

(2.2) D,.BM(E) = M(AB(d)(E)), EE s, 
is a bounded nonnegative measure on S. 

Definition. Let B: S X S - C be a bounded positive definite bimeasure. The 
bounded nonnegative measure ABM: S - R+ defined by (2.2) is called a diagonal 
measure of B for any invariant mean M: C(D(S)) - C. 

Example 2.1. (i) Let xk E H, k E Z, be a stationary L2-process. Thus, its 
spectral measure µ is orthgonally scattered, i.e. 

(µ(E), µ(E'))H = 0 for all disjoint E, E' E B. 

In this case the diagonal measure fl.BM of the corresponding bimeasure B 
satisfies 

ABM(E) = II µ(E) II H 2, 

for all invariant means M: C(D(B)) - C. 

EEB, 

(ii) Let xk E H, k E Z, be a strongly harmonizable L2-process. In this case, 
with notation as in Theorem 1.1, 

ABM<E) = n .. n .. XME<A, 0) dF(A, 0>, 

for all invariant means M:C(D(B)) - C. 

EEB, 

The properties of diagonal measures of an arbitrary bounded positive definite 
bimeasure or the bimeasure defined by the spectral measure of an arbitrary 
weakly harmonizable L 2-process xk EH, k E Z, have not been fully analyzed. 
The case of UBLS processes is much clearer as indicated in Theorems 2.2 and 
2.3 below (cf. the remark following Theorem 1.4). 

Theorem 2.2 was first presented in [8; Theorem 3]. Theorem 2.3 gives a 
uniqueness property similar to the uniqueness of the minimal p-majorant of 
p-majorizable vector measures obtained by A. Pietsch [10; Satz 2]. The proof 
of Theorem 2.3 is presented at the end of this paper. 

THEOREM (2.2). Let µ:S-H be a bounded vector measure with values in a 
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Hilbert space H. The following four conditions are equivalent: 

(i) there exists a bounded orthogonally scattered vector measure µ0 :S -Hand 
a bounded linear mapping A:H - H with a bounded inverse such that 

(2.3) µ(E) = Aµ 0 (E), EES; 

(ii) there exists a constant K ~ 1 such that for any finite S-measurable partition 
IE1, ... , Enl of S one has 

~ L1=1 I ai I 211 µ (Ei) II H 2 :S II L.1=1 aiµ (Ei) II H 2 

(2.4) 

for all ai E C, j = 1, ... , n; 
(iii) there exists a constant K ' ~ 1 and a bounded nonnegative measure v on S 
such that 

(2.5) ;, f s I¢ I 2 dv :S II f s P dµ IIH2 :S K' f s I¢ I 2 dv 

for all S-measurable simple functions ¢:S - C; 
(iv) there exist a constant K" ~ 1 and a bounded orthogonally scattered vector 
measure µo:S- H such that for any finite S-measurable partition IE1, ... , Enl 
of S 

(2.6) 

for all ai E C, j = 1, ... , n. 

Remark. Let µ:S- Hand v:S- R+ be a bounded H-valued vector measure 
and, respectively, a bounded nonnegative measure on S satisfying (2.5). Then 
there exist a bounded orthogonally scattered vector measure µ0:S - H with 
II µ0 (E) IIH2 = v(E), EE S, and a bounded hermitean linear mapping A:H -
H with a bounded inverse satisfying (2.3) and 

1 
K 1 1/2 IdH :5 A :5 K 1 112 IdH 

(cf. [8; Theorem 3)). 

THEOREM (2.3). Suppose µ:S - His a bounded vector measure with values 
in a Hilbert space H satisfying (2.4), B:S XS - C is the bimeasure defined by 
µand 

Ko= inf K, 
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where the infimum is formed over all K ~ 1 satisfying (2.4). Then: 
(i) the inequalities (2.5) are satisfied with 

K'=K 0 and11=!::..BM 

for any invariant mean M:C(D(S)) - C. 

(ii) Define 

llinf = inf 11(8), 

where the infimum is formed over all bounded nonnegative measures v on S 
satisfying (2.5) with K = K0 . Then there exists a uniquely determined bounded 
nonnegative measure 110 on S satisfying the inequalities (2.5) with K = Ko and 
Po(S) = //inf• 

(iii) There exists a bounded orthogonally scattered vector measure µ 0 :S - H, 
uniquely determined up to unitary equivalence, satisfying (2.6) with K" = Ka 
and 

II µo(E) lln2 = vo(E), EES. 

3. Prediction theoretical applications 

In certain special cases the prediction theoretical properties of an asymp­
totically stationary L 2-process xk EH, k E Z, are reflected in the properties of 
the associated spectral distribution of Xk, k E Z (cf. [7; Theorem 13]). In this 
section we present an interpretation of the "stationary prediction" -approach 
introduced by J. L. Abreu [1] in terms of the associated spectral distribution 
of a UBLS L 2-process xk EH, k E Z. 

The associated spectral distribution of an arbitrary, say, strongly harmoniz­
able L 2-process xk E H, k E Z, seems not to be very informative from the 
prediction theoretical point of view as is indicated in Example 3.2, due to J. 
Veilahti [16]. However, the use of the p-spectrum, introduced by J. L. Abreu 
[1], might prove to be a fruitful approach. 

Let xk EH, k E Z, be an, say, asymptotically stationary L 2-process and let 
11 be the associated spectral distribution. Furthermore, suppose Yk E H, k E Z, 
is a stationary L 2-process with the property 

(Yk+h, Yk)H = n--eih>-. dvC>-.), h E z. 
It is well-known. that for e.g. the optimal linear one-step predictions 

Yk(l) = Projsply;k-11Yk, k E Z 

(i.e. Yk(l) is the orthogonal projection of Yk onto the closed linear subspace 
spanned by Yh j :S k - 1) there exist approixmating sequences 

(3.1) n = 1, 2, ... , 

such that 

limn ...... oo Yk,n = Yk(l) for all k E Z. 
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Furthermore, for every n E Z 

= II Yn - .Yn(l) IIH2 

= exp J5" log f(X) dX, 

where f (X) dX is the absolutely continuous part of v and the infimum is formed 
over all a1, ... , aN EC; NE N (cf. [14; pp. 111-116]). 

The stationary prediction problem of xk, k E Z, consists of finding criteria 
(i) for the convergence of the corresponding sequences 

n = 1, 2, ... , 

for all k E Z (cf. (3.1) ); and 

(ii) for the goodness of the approximation of Xk with limn---,oo Xn,k, k E Z. 

The stationary prediction problem can be solved e.g. in the case of UBLS 
processes (cf. [7; Remark 10]) by using e.g. (1.9) or (2.2) instead of (1.3) as the 
method to define the associated spectral distribution. 

THEOREM (3.1). Suppose Xk EH, k E Z, is a UBLS process and suppose Yk 
EH, k E Z, is a stationary L 2-process such that there exists a bounded linear 
mapping A:H-+ H with a bounded inverse satisfying 

for all k E Z. 

Then: 

(i) for any sequences 

n = 1, 2, ... , 

with limnYk,n = .Yk(l) for all k E Zone has 

limn---,oo Li~"! an,jXk-j = Ayk(l), k E Z; 

(ii) for all k E Z 

1/ II A-l II 2 II Yk - .Yk(l) IIH2 :S II Xk - Xk(l) IIH2 

:S II Xk - Ayk(l) IIH2 

:S II A II 2 II Yk - .Yk (1) IIH2, 

Proof. The statement (i) follows immediately from the properties of the 
bounded linear mapping A :H-+ H. 

To prove (ii), consider for a fixed k E Z a sequence 

n = 1,2, ... , 
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satisfying limn_.oo Yk,n = .Yk(l). It clearly follows from the optimality properties 
of .ik(l) and .Yk(l) that e.g. 

II Xk - X1i(l) I/H2 :S limn_.oo II Xk - ~~1 bn,jXk-j IIH2 

= II Xk - Ayk(l) ll1l 

:S II A 112 IIYk - Yk(l) IIH2-

In a similar way one obtains 

IIYk - .Yk(l)IIH 2 $ IIYk - A- 1Xk(l)IIH 2 

:S II A- 1 112 II Xk - Xk(l) IIH2-

w e close this section by presenting an example showing that, in general, 
the associated spectral distribution of an asymptotically stationary, in factt 
even strongly harmonizable L2-process xk EH, k E Z, is hardly informative 
from the prediction theoretical point of view. The example is dtie to J. Veilahti 
[16]. 

Example (3.2). Consider stationary L 2-processes xk <1) E H, k E Z, anti. Xk <2l 

E H, k E Z, having the properties sp {x<1l l ..L sp {x<2l I and 

with 

h1 = Indro,.-[, 

Furthermore, define 

{
Y2k = Xk(l) 

- (2) 
Y2k+1 - Xk , 

h E Z; s = 1, 2, ... , 

k e Z. 

Then, Yk EH, k E Z, is a periodically correlated L2-process and, a fortiori, it 
is strongly harmonizable (cf. E. G. Gladyshev [3)). 

It is obvious that both of the stationary L2-processes x/1l, k E Z, and x/2>, 
k E Z, are deterministic and, a fortiori, also Y1i E H, k E Z, is deterministic ( or 
linearly singular, cf. [14; pp. 115-116]). 

However, a simple calculation shows that the associated spectral distribution 
ofyk, k E Z, is 

v(d)..) ""'½·dA, 

i.e. in this case the covariance kernel 

h E Z, 
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is defined by a purely non-deterministic, or linearly regular, stationary 
L 2-process (cf. [14; pp. 115-116)). 

4. Proofs of Theorems 2.3 and 1.5. 

The proof of Theorem 2.3 is analogous to the proof of the uniqueness of the 
minimal p-majorant of a p-majorizable vector measure presented by Pietsch 
[10]. The proof is based on the following Lemma by Pietsch [10; p. 244]: For 
p ;::: 1 and x, y ;::: 0 define 

{
2Pxy(xlfp + ylfp)-p 

F(x, y) = O ' 
' 

X > 0, y > 0, 
if x = 0 or y = 0. 

Then 

and especially 

(4.1) 

R(x, y) = (x + y)/2 - F(x, y) ;::: 0, 

R(x, y) = 0, if and only if X = y. 

Proof of Theorem 2.3. (i) The statement (i) follows immediately from 
Theorem 3 (ii) in [8]. 

(ii) It follows from the first part of this theorem, that there exists at least 
one bounded nonnegative measure v on S satisfying (2.5) with K' = K0 • Choose 
a sequence vn of bounded nonnegative measures on S satisfying (2.5) with K 
= K 0 and 

n = l, 2, .... 

Since the set vn, n = l, 2, ... , is bounded, i.e. vn(S) :S Vinf + 1 for all n, it 
follows that the set vn, n = l, 2, ... , is weakly sequentially complete as a 
subset in the space of all bounded measures on S. Thus, there exists a 
subsequence of vn, n = l, 2, ... , converging weakly to a bounded nonnegative 
measure v0 on S. Clearly, v0 (S) = Vinf• 

To show the uniqueness, consider two bounded nonnegative measures v1 

and v2 on S satisfying (2.5) with K' = Ko and 

Vi (S) = V2(S) = Vinf• 

Define v = v1 + v2 and choose the functions Is = dv./dv, s = 1, 2, to be 
nonnegative and bounded. Then for the uniformly bounded S-measurable 
functions 

0 < t < 1, 

one has 



ASYMPTOTIC STATIONARITY OF NONSTATIONARY L2-PROCESSES 27 

(cf. [10; p. 244)). Thus for any bounded S-measurable function ¢:S - C 

211 J s ¢ dµ IIH :s II J s ¢ I, 112 (/1 + E)-112 dµ IIH 

+ II J s ¢ t.112 (/2 + E)- 112 dµ IIH 

:S K/ 12 {J S I </JI 2 /,(/1 + Er 1 dvd 112 

+ K/ 12 {Js I¢ 12 l,(/2 + E)- 1 dv2}112 

:S 2K/f2 {J s I¢ I 2 /, dv}1;2_ 

Then, by letting E - 0 we get 

(4.2) 

with lo= F(/1, /2). 

On the other hand, for all x, y > 0 and p 2::: 1 

2Pxy X + Y 
----<--
(xlfp + ylfP)P - 2 

(cf. [10; p. 244]). Thus for all E > 0 

J s I</> 12 I, dv S ½ J s I¢ I 2 (/1 + 12 + 2t) dv 

:S Ko II J s </> dµ IIH2 + Ct 

proving that 

(C = const.); 

(4.3) f s I</> I 2 lo dv S Ko II J s ¢ dµ IIH2 • 

The inequalities (4.2) and (4.3) show that the bounded measure 

vo(E) = J E lo dv, 

satisfies (2.5) with K' = K0 • Thus, 

Vo(S) 2::: Vinf• 

On the other hand, 

EES, 

vo(S) = [v1(S) + v2 (S)]/2 - JsR(/ 1,/z) dv 

= V;nf - J s R(/1, fz) dv. 

Thus, 

and, a fortiori, 

R(/1, fz) = 0 v - a.e.; 

proving that / 1 = /2 v - a.e. (cf. (4.1) ), that is v1 = v2 • 
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(iii). The final part of the theorem follows immediately from the obvious 
fact that any two bounded orthogonally scattered vector measures µ1:S - H 
and µ2:S-+ H with 

for all EE S, 

are unitarily equivalent. 

Proof of Theorem 1.5. (i) As noted above, the first part of the theorem can 
be proved by following the proof of Theorem 11 in [7]. 

(ii) Let Yk E H, k E Z, be a stationary sequence satisfying 

1/Ko II L.1=1 aiYk; II n 2 ""= II L.1=1 aixk1 II n2 

E; Ko II L.1=1 ajyk1 II n2 

for all a, E C, k, E Z, j ""' 1, • • • , n; n E N, and let µx and µy be the spectral 
measures of Xk, k, E Z, and Yk, k E Z, respectively. It then follows that 

1/Ko II L.1=1 aiµy(Ei) lln2 S II ~.1=1 aiµx(Ei) lln2 

S Ko II L.i=l ajµy(E,) lln2 

for all finite Borel measurable partitions !Ei. • • •, En) of [O, 271" [ and ai E C, j 
= 1, ... , n (cf. the remark following Theorem 1.3). 

Since µy is the spectral measure of a stationary L 2-process Yk, k E Z, it is 
orthogonally scattered and, a fortiori, 

EEB, 

is a bounded nonnegative measure on [O, 211" [. Moreover, since 

II Yo lln2 = v[O, 271"[, 

it is obvious that the proof of Theorem 2.3 can be applied with Ko' = Ko to 
show the uniqueness of the nonnegative measure v0 on [O, 271" [ satisfying 

1/Ko H" I cf> I 2 dvo S II H" cf> dµx lln2 

S Ko H,.. I cf> I 2 dvo 

for all bounded Borel measurable functions ¢:[O, 27r[ - C and, in addition, 

nnr(O) = vo[O, 211"[. 

(Notice that, in the present case, it follows from the first part of this theorem 
that there exists at least one v on [O, 271" [ satisfying (2.5) with K' = Ko and µ 

= µ:,;.) 
Let µ 0 be a bounded H-valued orthogonally scattered vector measure on 

[O, 211"[ such that 

(4.4) EEB. 

The £ 2-process 
k E Z, 
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is then stationary and -

(Yk+h, Yk)H = H .. eih~ dvo(\), 

and, a fortiori, II Yo IIH2 = r;nt(O). 

hEZ 

As in the proof of Theorem 2.3 all the bounded orthogonally scattered vector 
measures µ,0 on [O, 21r [ satisfying (4.4) are unitarily equivalent, showing that 
all the stationary L 2-processes Yk EH, k E Z, satisfying (1.7) with II Yo IIH2 = 
r;nt(O) are unitarily equivalent. 
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