
Boletin de la Sociedad Matematica Mexicana Vol. 28, No. 2, 1983 

POSITIVE DEFINITE KERNELS* 

BY S. D. CHATTERJI 

§0. Introduction 

We indicate a very general factorization theorem valid for positive definite 
operator valued kernels in §2. This is preceded in §1 by an introductory survey 
of the uses of scalar valued positive definite kernels. In the last section §3, we 
make a few historical remarks and refer to articles where further details, 
mathematical as well as bibliographical, can be obtained. An attempt is made, 
however, to make this paper reasonably self-contained. 

§ 1. Scalar valued kernels: an introductory survey 

Let S be an arbitrary set and let K:S XS - C be such that 

(1) 

for every choice of points t 1 , • • •, tn in S and a 1 , • • •, an in C and n = 
1, 2, • • • . Such a K is called a (C-valued) positive definite (p.d.) kernel on S. 
If in the above C is replaced by IR then an additional requirement of symmetry 
(K(s, t) = K(t, s)) is imposed on K; for C-valued kernels K, (1) implies 
automatically that K(s, t) = K(t, s). In the sequel, we shall discuss only the 
C-valued case; we assume henceforth also that all the vector spaces which 
intervene in the ensuing discussion are over the field C. The IR-valued case is 
perfectly analogous and is not spelled out in detail for the sake of brevity; the 
only change needed is that a certain symmetry hypothesis has to be imposed 
to start with. 

The main structure theorem for a p.d. kernel K is that there is a vector 
subspace .M'of the vector space <l>(S, C) of all C-valued functions on S, which 
is such that (i) .M' is a Hilbert space with respect to a certain inner product 
( • I •) (We assume linearity in the second argument as in the physical litera
ture.); (ii) for alls E S, Ks E .M' where K.(t) = K(s, t); (iii) for all f EM, 
(Kslf> = f(s). It follows that the set {Ks:s E SI is total in Mand the maps 
~ Ks from S to .M'gives the factorization K(s, t) = (Kt I Ks)- The space .M' is 
called the reproducing kernel Hilbert space associated with Kand the theorem 
itself is often called the Moore-Aronszajn (reproducing kernel) theorem. 

The most straight-forward proof of the above theorem is to introduce an 
inner product in the linear manifold M generated by the elements Ks, s ES, 
via the formula (Kt I Ks) = K(s, t) and the sesquilinearity of ( • I • ). The 
relation (1) then gives the positivity of the inner product; it turns out further 
that ( f I f) = II f 112 = 0 for f E M if and only if f = 0. It remains then only to 
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complete M under ( . I . ) to obtain .tff. Of course, it has to be verified that !ff 
consists of elements of <I>(S, C); this is actuaiiy not too hard to do. 

Although the theorem is easy to prove, its consequences can be surprisingly 
far-reaching. Indeed, it may be argued that wherever positive definiteness 
plays any role, the above theorem can be used profitably. For instance, the 
existence of a Gaussian process with K as covariance is a corollary. We need 
only take an orthonormal basis lea, a E II in the associated reproducing kernel 
space !ff and construct a probability space (Q, ~. P) which can support a 
family IT/a, a E JI of independent, real, Gaussian random variables with zero 
mean and unit variance. This is easy via the construction of infinite products 
of probability spaces. If K, = L« a"(s)e,,, we may define ~s = La.a.,(s)r,°' (since 
L" I a"(s) 12 < oo). It is easily verified that l~s, s E Sl is a Gaussian process 
with covariance K. 

It is true that a very general theorem of Kolmogorov gives the existence of 
the Gaussian process also, from whence the reproducing kernel space 1£ can 
be easily constructed. Indeed, if I~., s E S l is a process ( defined on the 
probability space ( n, ~, P)) whose covariance is K, we may define 1£ to be 
the space of all functions/~ in <I> (S, C) of the form/~ (s) = EI~• fs l for ~ in the 
Hilbert space °,II' spanned by the ~s, s ES in L2(n, ~. P). Since~ 1-+ /~ is an 
injection, one obtains the desired Hilbertian structure in 1£ from that in 'ff. 

However, the more interesting applications of the Moore-Aronszajn theorem 
seem to arise from p.d. kernels K: S X S .- C where a semigroup G acts on S 
in a way convenient for the analysis of K. For instance, let us suppose that G 
is a *-semigroup (i.e., there is a map in G, g 1-+ g* (called involution) such that 
(g1g2 )* = g2 * g1 * and (g* )* = g) and let us denote the result of g E G acting on 
s ES by g.s. It is tempting to define a linear operator Tg:M .- M (M = linear 
manifold spanned by Ks, s ES, K,(t) = K(s, t)) via the formula TgKs = Kg.s• 
For this to be successful, it is clear that we need to have that 

(2) 

for all acceptable choices of aj, sj, g and n. A little experimentation shows that 
the simple condition 

(3) K(gs, t) = K(s, g*t) 

for all choices of g, s, twill suffice. Indeed, from (3), we have that 

(Ks I Li=l ll'.jKg.s;) = Li=l ll'.j (Ks I Kg.si) 

= Li=I ajK(g•sj, s) 

= L1=1 ajK(sj, g*s) 

= Li=l ll'.j (Kg•s I Ks1 ) 

= (Kg•s I L}=l ll'.iKs); 

this means that if Li aiK•; = 0 then (K.1 Li ajKg.sj) = 0 for alls ES. Since 
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the set IK :s E S l is total in M we conclude that L aj Kg.sj = 0 i.e. (2) holds. 
Thus, if (3) holds then the linear operators Tg:M - Mare well-defined. 

It is much more subtle to guess a simple condition on K which will guarantee 
the continuity of the operators Tg. It turns out that the following is enough: 

(4) K(gs, gs) :s. 'Y (g)-K(s, s) 

for all g E G and s E S where 'Y (g) is a positive, finite constant depending on 
g. Condition (4) as well as (3) appear in print in Masani's 1978 paper (cf. §3) 
in a much more general setting which we shall consider later. But, even in the 
case of scalar-valued kernels K which we have considered up to now, it is not 
a trivial matter to show that (4) (along with (3)) implies the continuity of Tg. 
However, once this is established, it is quite easy to show that Tg can be 
extended to be a bounded linear operator from M to M(i.e., Tg E ..st' (M )) 
and that g ~ Tg is a *-homomorphism (representation) of Gin ..st' (M ). 

Suppose now that the representations of G in a Hilbert space are known or 
understood; then the structure of K satisfying (3) and (4) can be revealed with 
greater transparency. Let us consider a few important special cases. In each 
of them, the set S coincides with the * -semigroup G and the kernel K is of the 
form K(s, t) = p(t*s) where p:S - C is a p.d. function on the *-semigroup S 
i.e. 

~i,k=l p(sk*Sj)O'.j<Xk ~ 0 

for all choices of Sj ES, aj EC, n = 1, 2, • • • . It is clear in this situation that 
(3) is always satisfied. 

Suppose first that G =Sis a group and g* = g- 1. Then 

K(gs, gs) = p(s- 1g- 1gs) = p(l) = K(s, s) 

and (4) is trivially satisfied. Actually, in this case, the boundedness, indeed 
the isometric character of Tg is immediate and does not require any subtle 
reasoning. Further Tg* = Tg- 1 = Tg * implies that Tg is unitary and we get 

p(s) = K(s, 1) = (K 1 I K.) 

= (K1 I T.K1). 

This last is simply the Gelfand-Raikov theorem (for a discrete group G) stating 
that any p.d. function on G comes from a unitary representation (with a cyclic 
vector). Further, if G is abelian, we can deduce the Bochner theorem from the 
spectral representation of Tg, g E G. We recall that the latter can be deduced 
from the Gelfand-Naimark theorem on commutative C*-algebras. Ifwe assume 
that G = S is a topological group and p is continuous then we obtain easily 
the corresponding topological versions. 

Suppose next that G = S = % is a C*-algebra with a unit; actually, this 
discussion can be extended without any important changes to the case of an 
involutive Banach algebra with unit (or even only a bounded approximate 
unit). Let 'P now be a linear functional on % to C which is positive (i.e., 
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'P(x*x) ;;a, 0 for V x E Jdf ). It is easily seen then that 'Pis p.d. (since ~j,k 
'P(x*kxj)a/xk = 'P(y*y) ;;a, 0 with y = L <XjXj) so that we can again introduce 
ap.d. kernelK:Jdf X Jdf-C withK(x,y) = 'P(y*x). We have already remarked 
that K then satisfies (3); the fact that K fulfills (4) as well follows from a 
known (easy) inequality for positive linear functionals 'P viz. 

l'P(a*xa)I ~'P(a*a)•llxll 

so that 

K(xa, xa) = 'P(a*x*xa) 

~ II x*x 11 ·'P(a*a) 

= II x 112 -K(a, a). 

Hence we deduce the existence of the operators Tx E .Y (.W) with x - Tx a 
*-homomorphism between Jdf and .Y (.W ). This gives a version of the so
called GNS-construction. 

Finally, take G to be an abelian *-semigroup; note, that any abelian semi
group has at least one obvious involution viz. g = g*. If again S = G and K(s, 
t) = p(t*s) with p:S - Ca bounded function as defined above, then again 
the foregoing theory applies and gives rise to a commuting family of normal 
operators (indeed contractions); this, via spectral theory, leads to a solution 
of a general moment problem (cf. the paper of Lindahl and Maserick as well 
as that of Berg, Christiansen and Ressel referred to in section §3; also, cf. 
Masani (1981) cited there). 

§2. Operator valued kernels 

Let S be an abstract set as before and let, for each s E S, E, be a vector 
space and Fs a linear subspace of E, *, the space of all semi-linear functionals 
on E. i.e. 'PEE.* if 'P:E, -c with 'P(x + y) = 'P(x) + 'P(y), 'P(Xx) = X'P(x) 
for XE C We note 'P(x) by (x, 'P ). For each (s, t) ES XS, let us be given an 
operator K(s, t) E Hom(E., F1) with the property that 

(1) 

for all choices of s1 , •••,Sn in Sand of Xj in E •. , 1 ~ j ~ n, n = l, 2, • • • . Let 
J 

us call such an object an operator valued p.d. kernel. We describe in this 
section the structure of such kernels in a way which generalizes exactly the 
main structure theorem for the scalar valued kernels. Roughly speaking, we 
show that there is a Hilbert space (M, ( • I •)) whose elements are sections of 
the "vector bundle" IlsEsE.* and there are linear operators T, E Hom(E., .W ), 
s ES, such that K(s, t) factorizes as K(s, t) = Tt' T, where Tt', the adjoint of 
Tt, is considered as an element of Hom(M, E/). A little thought will show 
that this factorization reduces to the main structure theorem for scalar valued 
p.d. kernels in case Es = F1 = C for alls, t E S. 

Further, if the E." s E S, are locally convex vector spaces then the T. E 
.Y(E., .W ), the set of all continuous linear operators from E, to .W, provided 
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that the E. satisfy some natural conditions (e.g. it suffices that the E. be 
barrelled). We proceed to state these facts more formally. 

Let E., Ft, K be as described above. We define first Ft, a sequential 
enlargement of Ft, as follows: 

Ft= {<PE E/:3'Pn E Ft, n = 1, 2, ···,with limn(X, 'Pn) 

= (x, <P) 'v x E E}. 

Now let K.,x(t) = K(s, t)x with x EE •. For fixed sand fixed x EE., K.,x E 
IIaesFa. Let .&1o be the liner space spanned by the Ks,x, s ES, x EE •. If f = Li 
aiK•i•xi, g = Li biK•i•xi are two elements of .&io, we define 

<fig) = Li,k aibk(xk, K(si, sk)xi>· 

It turns out that this is a well-defined Hermitian, strictly positive definite, 
sequilinear from on .&!o. Let us now define T. E Hom(E., .&io) by T.x = Ks,x• 

With the above notation, we can now state the following theorem: 

THEOREM (1). 
(A) The pre-Hilbert space (.&!o, ( • I •)) can be completed to a Hilbert space (M;" 
( • I • ) ) where ~ is a linear subspace of II.esF •. Further 

(Ks,xlf> = (x,f(s)) 

for all f EM;" s E S, x E E •. 
(B) The operators T. defined above have the following property: T.' maps .&ia 
into F. and Ts' can also be considered as elements of Hom(M;" F.). Further, T.' f 
= f(s) and K(s, t) = Tt' T •. 

Remark. The factorization above is unique upto unitary isomorphism in the 
sense that if f// is any other Hilbert space and 'i'. E Hom(E., f//) with 
K(s, t) = 'I't' 'i'. and if f// is minimal in the sense that f// is generated 
by the el(;lments 'i'.x, s E S, x EE. then there is a unitary isomorphism V: 
f//-~such that VT.= T •. Note also that conversely if 'i'. E Hom(E., f//), 
s E S, are given (where f// is a Hilbert or a pre-Hilbert space) then K(s, t) 
= 'I't' 'i'. defines a p.d. kernel with values in Hom(E., Ft) where Ft is a suit
able linear subspace of Et*. 

Suppose now that the E., s E S, are separated locally convex spaces and F. 
are linear subspaces of E.', the space of continuous semi-linear forms on E •. 
For each pair (s, t) we suppose as before that K(s, t) E Hom(E., Ft). Although 
we are making no continuity assumptions here, it turns out that if we assume 
that K is a p.d. kernel then each K(s, t) is automatically continuous if E. is 
given its <1(E., E.' )-topology and Ft the <1(Ft, Et)-topology. This is an imme
diate consequence of the fact that the p.d. property implies the equality 

(y, K(s, t)x) = (x, K(t, s)y) 

for all s, t in S and x E E., y E E. Standard theorems (e.g. in Boubaki's 
"Espaces vectoriels topologiques") on transposed maps then give us that K(s, 



64 S. D. CHATTERJI 

t) is even continuous in the original topology of E. and the strong topology on 
Ft that the original topology of E. coincides with that of its Mackey topology; 
this happens if, for example, E, is barrelled or homological. We can now state 
the following in case the E., s ES are locally convex and Ft, t ES are linear 
subspaces of Et'. 

THEOREM 2. 
(A) There exists a Hilbert space 1£ and operators T, E Y(E., 1£) so that K(s, 
t) = Tt' T. for alls, tin S if and only if the maps m.:E, - C defined by m.(x) 
= (x, K(s, s)x) are continuous at x = 0 (and hence for all x) for all x ES. 
(B) If Ex, s E S are barrelled then there exists a Hilbert space 1£ and T. E 
Y(E., 1£ ), s E S, such that K(s, t) = Tt' T. for all s, t in S. The same holds if 
E., s ES, are bornological and further F. C Es', s ES. In each case, K(s, t) is 
continuous from E. to Ft where E. has the original topology and F1 the strong 
topology. 

Remark. Conversely, if K(s, t) = Tt' T. with T. E Y(E., 1£) (for some Hil
bert space 1£) then IK(s, t), (s, t) E S X SI, gives a p.d. kernel. Here 
and in Theorem 2, we can choose 1£ to be of the special form described in 
Theorem 1. 

§3. Remarks and references 

P. Masani's paper ("Dilations as propagators of Hilbertian varieties" SIAM, 
(1978), p. 414-456) contains exact references of papers we shall refer to briefly 
in the sequel. My paper ("Factorization of positive definite operator-valued 
kernels" forthcoming in a special volume entitled "Prediction theory and 
harmonic analysis" ed. V. Mandrekar and H. Salehi, North-Holland, Amster
dam (1982-83)) contains detailed proofs of the factorization theorems in §2 in 
case E., = E and F. CE* for all s E S. The fact that the work can be generalized 
as here, was pointed out to me by Dr. G. Vincent-Smith; indeed the proofs of 
my cited paper need no changes whatsoever. Further historical remarks can 
be found in my paper and in that of Masani. In particular, in my paper, the 
related studies of G6rniak (Lecture Notes in Mathematics, Springer Verlag, 
Vol. 656, 1978), G6rniak and Weron (Bull. Acad. Pol. Sci., 1976; Studia 
Mathematica, Warsaw, 1980), Weron (Lecture Notes in Mathematics, Sprin
ger Verlag, Vol. 472, 1975) are referred to. Also, an unpublished report of 
Pedrick (exact reference in Masani's SIAM paper) treats factorization theo
rems in the case of E, = E, a locally convex space. Masani refers also to the 
classical papers of Aronszajn and Kolmogorov and also to works of Allen, 
Narcowich and Williams. More importantly, Masani sets up a programme of 
obtaining various dilation theorems via factorization theorems of the type in 
§2. In this connexion, the pioneering work of Nagy (cf. Masani (1978) for 
reference) must be mentioned. Nagy's remark that the kernel K(m, n) = 
T<m-n) if (m - n) ~ 0 and K(m, n) = (T*)<m-n) if (m - n) < 0 withT E Y(.W, 
1£ ), _<'$ a Hilbert space, is a p.d. kernel on the abelian group 7L if and only if 
II T 11 ::;;; 1 is the starting point of one of his theories of dilation. To him is also 
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due the fruitful idea of working with * -semigroups. Masani reworks all of this 
in a wider context of K(s, t) E .st'( ;;if,' ~' ), ~ a Banach space and derives a 
large variety of theorems as consequences of his general work. In this connex
ion, we mention his recent survey paper (Masani: "An outline of the spectral 
theory of propagators" in Functional analysis and approximation, Birkhiiuser, 
1981) where the work of Lindahl and Maserick (Duke Math. J. 38 (1971), p. 
771-782) and that of Berg, Christiansen and Ressel (Math. Ann. 223 (1976), 
p. 253-272) on general moment problems are fitted into the general framework 
of what Masani calls the theory of propagators. We do not enter into the latter 
here; perhaps, an application of the very general factorization theorem of the 
present paper in the propagator framework of Masani would lead to interesting 
new results. 
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