Boletin de la Sociedad Matematica Mexicana Vol. 28, No. 2, 1983

A CLASS OF INVALID ASSERTIONS CONCERNING FUNCTION HILBERT SPACES*

BY W. DONOGHUE AND P. MASANI

1. PROPOSITION. Let (i) $\mathscr A$ be an infinite-dimensional Hilbert space over $\mathbb F^*$ *under the inner product* (\cdot, \cdot) , (ii) $0 \neq x_0 \in \mathcal{A}$, and $f_0(\cdot) = (\cdot, x_0)$ on \mathcal{A} . Then **3** *an inner product* $((., .))$ *for* $\mathscr A$ *under which* $\mathscr A$ *remains a Hilbert space, but the functional* f_0 *on* $\mathscr A$ *to* $\mathbb F$ *becomes discontinuous.*

The proof will be given later. First, we apply the proposition to function Hilbert spaces:

2. *Definition*. Let Λ be a non-void set and write

$$
\forall f \in \mathbb{F}^{\Lambda} \& \forall \lambda \in \Lambda, \qquad \mathscr{L}_{\lambda}(f) =_{d} f(\lambda).
$$

We say that $\mathcal F$ is a Λ , $\mathbb F$ *function Hilbert space*, iff (i) $\mathcal F \subseteq \mathbb F^{\Lambda}$, (ii) $\mathcal F$ is a Hilbert space over \mathbb{F} , and (iii) $\forall \lambda \in \Lambda$, \mathcal{L}_λ is a continuous linear functional on $\mathcal F$ to $\mathbb F$.

3. COROLLARY. *Let* (i) A *be an infinite set,* (ii) *ff be an infinite dimensional linear manifold in the vector space* \mathbb{F}^{Λ} , (iii) (\cdot, \cdot) *g be an inner product for* \mathcal{F} , *under which* \mathcal{F} *is* $a \Lambda$, F *function Hilbert space over* F *. Then* \exists *an inner product* $((., .))$ for $\mathscr F$ under which $\mathscr F$ remains a Hilbert space but ceases to be a Λ , $\mathbb F$ *function Hilbert space.*

Proof. By (ii), the Hilbert space \mathcal{F} of (iii) is infinite dimensional. Hence certainly $\exists \phi \in \mathcal{F}$ such that ϕ is not the zero-function, i.e., $\exists \lambda_0 \in \Lambda \ni \phi(\lambda_0)$ \neq 0. By (iii), \mathcal{B}_{λ_0} is a continuous linear functional on \mathcal{F} to F. Hence by the Riesz Theorem, $\exists \psi_0 \in \mathcal{F}$ such that

$$
\mathscr{L}_{\lambda_0}(\cdot)=(\cdot,\psi_0)_{\mathscr{F}}.
$$

Now since $\mathcal{L}_{\lambda_0}(\phi) = \phi(\lambda_0) \neq 0$, therefore $\psi_0 \neq 0$. Hence by Proposition 1, **3** an inner product $((., .))$ for $\mathcal F$ under which $\mathcal F$ remains a Hilbert space, but \mathscr{L}_{λ_0} is no longer continuous on \mathscr{F} . Thus \mathscr{F} , with inner product $((\cdot, \cdot))$, is not a function Hilbert space. \square

This corollary yields an interesting metamathematical theorem, to enunciate which it is convenient to introduce a metamathematical notation:

4. *Metanotation*. For a non-void set Λ and a linear manifold \mathcal{M} of the function vector space \mathbb{F}^{Λ} , let "Prop(\mathcal{M})" abbreviate the mathematical proposition: $\forall \mathcal{F} \subseteq \mathcal{M}, (\mathcal{F} \text{ is a Hilbert space} \Rightarrow \mathcal{F} \text{ is a } \Lambda, \mathbb{F} \text{ function Hilbert}$ space).

^{*} Presented at the "Workshop on the prediction theory on non-stationary processes and related topics", held at Centro de Investigacion en Matematicas (CIMAT), Guanajuato, Mexico, June 20- 26, 1982.

 \mathbf{H} F stands for either \mathbb{R} or \mathbb{C} .

5. METATHEOREM. Let (i) Λ be an infinite set, (ii) $\mathcal M$ be a infinite dimen*sional linear submanifold of* \mathbb{F}^{Λ} , (iii) $\exists \mathcal{F}_0 \subseteq \mathcal{M}$ such that \mathcal{F}_0 is a Hilbert space *over* \mathbb{F} *. Then* $\text{Prop}(\mathcal{M})$ " *is false.*

Note. When (iii) fails, the antecedent of the \Rightarrow in "Prop(\mathcal{M})" is false for any $\mathcal{F}_0 \subseteq \mathcal{M}$. Hence "Prop(\mathcal{M})" becomes true, but only vacuously.

Metaproof. Let (\cdot, \cdot) be the inner product of the Hilbert space $\mathcal{F}_0 \subseteq \mathcal{M}$.

If this \mathcal{F}_0 is not a Λ , \mathbb{F} function-Hilbert space, then for $\mathcal{F} = \mathcal{F}_0$, the premise of "Prop(\mathcal{M})" is true but the conclusion of "Prop(\mathcal{M})" is false. Hence "Prop (\mathcal{M}) " is false.

Next let \mathcal{F}_0 be a Λ , $\mathbb F$ function Hilbert space. Then by Corollary 1, \exists an inner product $((\cdot, \cdot))$ for $\mathcal F$ such that

(1) $({\mathcal{F}}_0, ((\cdot, \cdot)))$ is a Hilbert space,

(2) $({\mathcal{F}}_0, ((\cdot, \cdot))$ is not a Λ , F function Hilbert space.

By (1), the premise of "Prop(\mathcal{M})", with $\mathcal{F} = \mathcal{F}_0$, is true. By (2), the conclusion of "Prop(\mathcal{M})" with $\mathcal{F} = \mathcal{F}_0$ is false. Hence again "Prop(\mathcal{M})" is false. \Box

6. *Example*. Let $C[a, b]$ be the class of all F -valued continuous functions on the closed interval $[a, b]$. The "Prop $(C[a, b])$ " *abbreviates the assertion*:

[Every Hilbert space of $\mathbb F$ -valued continuous functions on [*a*, *b*] is an [*a*, *b*], $\mathbb F$ function Hilbert space.

Now $\exists \mathcal{F}_0 \subseteq C[a, b]$ such that \mathcal{F}_0 is a Hilbert space. For instance,

$$
\mathcal{F}_0 =_d \{f : f \in C_1(a, b], f' \in L_2[a, b] \& f(a) = 0\}
$$

with the inner product

$$
\forall f, g \in \mathscr{F}_0, \qquad (f, g) =_d \int_a^b f'(\lambda) g'(\lambda) d\lambda.
$$

Hence by Metatheorem 5, "Prop $(C[a, b])$ " is false. Thus, the corollary in Higgins [2, p. 54], attributed to Professor J. I. Richards, is invalid.

Likewise "Prop. $\{Hol(D)\}$ " is invalid, where $Hol(D)$ is the set of holomorphic functions on a domain *D* in C. The lesson, in general, is that no degree of smoothness of the members of a Hilbert space $\mathcal F$ of functions can compel the evaluation functionals to become continuous on \mathscr{F} .

To turn to the proof of Proposition 1, we need two lemmas.

LEMMA 1. Let (i) $\mathcal H$ be an infinite dimensional Hilbert space over $\mathbb F$, (ii) g *be a discontinuous linear functional on* $\mathcal X$ to $\mathbb F$, *and* (iii) $\mathcal N_g$ *be the null-space of g. Then*[#] (a) $\exists u_0 \in \mathcal{H} \ni \mathcal{N}_g + \langle u_0 \rangle = \mathcal{H} \& \mathcal{N}_g \cap \langle u_0 \rangle = \{0\},\$ (b) \mathcal{N}_g is *unclosed and everywhere dense in* \mathcal{H} .

 $*$ For $A \subseteq \mathcal{G}, \langle A \rangle$ is the linear manifold spanned by *A* in $\mathcal{G}.$

Proof. (a) Let \mathcal{M} be a linear manifold complementary to \mathcal{N}_g . Then *g* is a one-one linear operator on $\mathcal M$ onto $\mathbb F$. Hence dim $\mathcal M=1$, and therefore $\mathcal M=$ $\langle u_0 \rangle$ for some $u_0 \in \mathcal{H}$. Thus (a).

(b) This follows at once from parts (ii), (iii) of Prop. 5.4 in Kelley et al [3, $p. 37$]. $#$ \Box

LEMMA 2. Let (i) \mathscr{L}, \mathscr{D} be vector spaces over $\mathbb F$ of the same Hamel dimension, (ii) A, B be Hanel bases for \mathscr{A} , \mathscr{A} , respectively, (iii) T_0 be a one-one function on *A* onto *B*. Then T_0 has a one-one linear extension T on $\mathscr X$ onto $\mathscr Y$.

Proof. Since *A* is linearly independent, therefore, cf. Day [1, p. 5, Lma. 1], T_0 has a linear extension on $\langle A \rangle$ onto $\langle B \rangle$, i.e. on $\mathscr X$ onto $\mathscr X$. Also since T_0 is one-one and B is linearly independent, T has to be one-one. \square

Proof of Proposition 1.

By (i),
$$
\alpha = \dim \mathcal{U} \ge \aleph_0
$$
, and by (ii), $\dim \langle x_0 \rangle = 1$; hence

(1)
$$
\dim \langle x_0 \rangle^{\perp} = \dim \mathscr{U} = \alpha.
$$

Let

(2)
$$
A =_d a \text{ Hamel basis for } \{x_0\}^{\perp}.
$$

Then obviously

(3)
$$
A^* =_d A \cup \{x_0\} = \text{a Hamel basis for } \mathscr{A}.
$$

Now let $\mathscr H$ be a Hilbert space over $\mathbb F$ of dimension α and let *g* be a *discontinuous* linear functional on $\mathcal K$ to $\mathbb F$.[†] Then by Lemma 1(b) & (a),

$$
\mathscr{N}_g \subsetneq \text{cls } \mathscr{N}_g = \mathscr{L},
$$

and $\exists u_0 \in \mathcal{H}$ such that

(5) $\mathcal{N}_g + \langle u_0 \rangle = \mathcal{H} \& \mathcal{N}_g \cap \langle u_0 \rangle = 0.$

Now let

(6)
$$
B = \text{a Hamel basis for } \mathcal{N}_g.
$$

Then by (5)

(7)
$$
B^* = B \cup \{u_0\} = \text{a Hamel basis for } \mathcal{H}.
$$

Now since \mathcal{H} and $\{x_0\}^{\perp}$ have the same (ortho-normal) dimension, viz. α , therefore they have the same Hamel dimension, say β . Thus, cf. (7) and (3), card $B^* = \beta = \text{card } A^*$. Also obviously card $B = \text{card } B^* = \text{card } A^* = \text{card } A$. Hence \exists a one-one function T_0 on A^* onto B^* such that

(8)
$$
T_0(A) = B \& T_0(x_0) = u_0.
$$

We thank the Referee for this information, and other suggestions.

t The existence of such *g* is ensured by a well-known argument using Hamel basis.

But by Lemma 2, T_0 has a one-one linear extension T on $\langle A^* \rangle$ onto $\langle B^* \rangle$, i.e. by (3) and (7), on \mathscr onto $\mathscr X$. Also from (2), (8) and (6) we conclude that

(9)
$$
T(\lbrace x_0 \rbrace^{\perp}) = T(\langle A \rangle) = \langle T(A) \rangle = \langle B \rangle = \mathcal{N}_g.
$$

Now we define $((\cdot, \cdot))$ on $\mathscr{U} \times \mathscr{U}$ by

(10)
$$
\forall x, y \in \mathcal{X}, \quad ((x, y)) =_d (T(x), T(y))_{\mathcal{X}}.
$$

This just transplants, linearly and biunivocally, the inner product for $\mathscr X$ to $\mathscr A$ *.* Since $\mathscr A$ is a Hilbert space under $(\cdot, \cdot)_{\mathscr A}$, it follows that $\mathscr A$ is a Hilbert space under $((\cdot, \cdot))$.

It only remains to show that f_0 is discontinuous under the topology induced by the new inner product. For this, it suffices to show that

(I)
$$
\exists (y_n)_1^{\infty}
$$
 in $\mathcal{U} \ni$ as $n \to \infty$, $y_n \to x_0$ but $f_0(y_n) \to f_0(x_0)$.

Proof of (I). Since $u_0 \in \mathcal{H} =_d$ cls \mathcal{N}_g , cf. (4), therefore $\exists (v_n)_1^{\infty}$ in $\mathcal{N}_g \ni v_n$ $\to u_0$. Let $y_n =_d T^{-1}(v_n)$. Then by (10) and (8),

$$
\|y_n - x_0\| = \|T(y_n) - T(x_0)\|_{\mathcal{H}} = \|v_n - u_0\|_{\mathcal{H}} \to 0.
$$

But since $v_n \in \mathcal{N}_g$, therefore by (9), $y_n \in \{x_0\}^{\perp}$, therefore $f_0(y_n) =_d (y_n, x_0) =$ 0, whereas $f_0(x_0) =_d |x_0|^2 \neq 0$. Thus (I) is established. \square

UNIVERSITY OF CALIFORNIA IRVINE, CA 92717 U.S.A.

UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15260 U.S.A.

REFERENCES

- [1] M. M. DAY, Normed Linear Spaces, Springer Verlag, Berlin, 1967.
- [2] J. R. HIGGINS, *Completeness and basis properties of sets of special functions,* Cambridge Tracts in Math. 72, Cambridge University Press, 1977.
- [3) J. L. KELLEY, I. NAMIOKA *et al,* Linear Topological Vector Spaces, Van Nostrand, Princeton, 1963.