Boletín de la Sociedad Matemática Mexicana Vol. 28, No. 2, 1983

A CLASS OF INVALID ASSERTIONS CONCERNING FUNCTION HILBERT SPACES*

BY W. DONOGHUE AND P. MASANI

1. PROPOSITION. Let (i) \mathscr{A} be an infinite-dimensional Hilbert space over $\mathbb{F}^{\#}$ under the inner product (\cdot, \cdot) , (ii) $0 \neq x_0 \in \mathscr{A}$, and $f_0(\cdot) = (\cdot, x_0)$ on \mathscr{A} . Then \exists an inner product $((\cdot, \cdot))$ for \mathscr{A} under which \mathscr{A} remains a Hilbert space, but the functional f_0 on \mathscr{A} to \mathbb{F} becomes discontinuous.

The proof will be given later. First, we apply the proposition to function Hilbert spaces:

2. Definition. Let Λ be a non-void set and write

$$\forall f \in \mathbb{F}^{\Lambda} \& \forall \lambda \in \Lambda, \qquad \mathscr{G}_{\lambda}(f) =_{d} f(\lambda).$$

We say that \mathscr{F} is a Λ , \mathbb{F} function Hilbert space, iff (i) $\mathscr{F} \subseteq \mathbb{F}^{\Lambda}$, (ii) \mathscr{F} is a Hilbert space over \mathbb{F} , and (iii) $\forall \lambda \in \Lambda$, \mathscr{C}_{λ} is a continuous linear functional on \mathscr{F} to \mathbb{F} .

3. COROLLARY. Let (i) Λ be an infinite set, (ii) \mathscr{F} be an infinite dimensional linear manifold in the vector space \mathbb{F}^{Λ} , (iii) $(\cdot, \cdot)_{\mathscr{F}}$ be an inner product for \mathscr{F} , under which \mathscr{F} is a Λ , \mathbb{F} function Hilbert space over \mathbb{F} . Then \exists an inner product $((\cdot, \cdot))$ for \mathscr{F} under which \mathscr{F} remains a Hilbert space but ceases to be a Λ , \mathbb{F} function Hilbert space.

Proof. By (ii), the Hilbert space \mathscr{F} of (iii) is infinite dimensional. Hence certainly $\exists \phi \in \mathscr{F}$ such that ϕ is not the zero-function, i.e., $\exists \lambda_0 \in \Lambda \ni \phi(\lambda_0) \neq 0$. By (iii), \mathscr{G}_{λ_0} is a continuous linear functional on \mathscr{F} to \mathbb{F} . Hence by the Riesz Theorem, $\exists \psi_0 \in \mathscr{F}$ such that

$$\mathscr{L}_{\lambda_0}(\cdot) = (\cdot, \psi_0) \mathscr{F}_{\cdot}$$

Now since $\mathscr{G}_{\lambda_0}(\phi) = \phi(\lambda_0) \neq 0$, therefore $\psi_0 \neq 0$. Hence by Proposition 1, \exists an inner product $((\cdot, \cdot))$ for \mathscr{F} under which \mathscr{F} remains a Hilbert space, but \mathscr{G}_{λ_0} is no longer continuous on \mathscr{F} . Thus \mathscr{F} , with inner product $((\cdot, \cdot))$, is not a function Hilbert space. \Box

This corollary yields an interesting metamathematical theorem, to enunciate which it is convenient to introduce a metamathematical notation:

4. Metanotation. For a non-void set Λ and a linear manifold \mathscr{M} of the function vector space \mathbb{F}^{Λ} , let "Prop(\mathscr{M})" abbreviate the mathematical proposition: $\forall \mathscr{F} \subseteq \mathscr{M}$, (\mathscr{F} is a Hilbert space $\Rightarrow \mathscr{F}$ is a Λ , \mathbb{F} function Hilbert space).

^{*} Presented at the "Workshop on the prediction theory on non-stationary processes and related topics", held at Centro de Investigación en Matemáticas (CIMAT), Guanajuato, México, June 20-26, 1982.

[#] \mathbb{F} stands for either \mathbb{R} or \mathbb{C} .

5. METATHEOREM. Let (i) Λ be an infinite set, (ii) \mathscr{M} be a infinite dimensional linear submanifold of \mathbb{F}^{Λ} , (iii) $\exists \mathscr{F}_0 \subseteq \mathscr{M}$ such that \mathscr{F}_0 is a Hilbert space over \mathbb{F} . Then "Prop(\mathscr{M})" is false.

Note. When (iii) fails, the antecedent of the \Rightarrow in "Prop(\mathscr{M})" is false for any $\mathscr{F}_0 \subseteq \mathscr{M}$. Hence "Prop(\mathscr{M})" becomes true, but only vacuously.

Metaproof. Let (\cdot, \cdot) be the inner product of the Hilbert space $\mathscr{F}_0 \subseteq \mathscr{M}$.

If this \mathscr{F}_0 is not a Λ , \mathbb{F} function-Hilbert space, then for $\mathscr{F} = \mathscr{F}_0$, the premise of "Prop(\mathscr{M})" is true but the conclusion of "Prop(\mathscr{M})" is false. Hence "Prop(\mathscr{M})" is false.

Next let \mathscr{F}_0 be a Λ , \mathbb{F} function Hilbert space. Then by Corollary 1, \exists an inner product $((\cdot, \cdot))$ for \mathscr{F} such that

(1) $(\mathcal{F}_0, ((\cdot, \cdot)))$ is a Hilbert space,

(2) $(\mathscr{F}_0, ((\cdot, \cdot)))$ is not a Λ , \mathbb{F} function Hilbert space.

By (1), the premise of "Prop(\mathscr{M})", with $\mathscr{F} = \mathscr{F}_0$, is true. By (2), the conclusion of "Prop(\mathscr{M})" with $\mathscr{F} = \mathscr{F}_0$ is false. Hence again "Prop(\mathscr{M})" is false. \Box

6. Example. Let C[a, b] be the class of all \mathbb{F} -valued continuous functions on the closed interval [a, b]. The "Prop(C[a, b])" abbreviates the assertion:

Every Hilbert space of \mathbb{F} -valued continuous functions on [a, b] is an [a, b], \mathbb{F} function Hilbert space.

Now $\exists \mathscr{F}_0 \subseteq C[a, b]$ such that \mathscr{F}_0 is a Hilbert space. For instance,

$$\mathscr{F}_0 =_d \{ f : f \in C_1(a, b], f' \in L_2[a, b] \& f(a) = 0 \}$$

with the inner product

$$\forall f, g \in \mathscr{F}_0, \qquad (f, g) =_d \int_a^b f'(\lambda) g'(\lambda) \ d\lambda.$$

Hence by Metatheorem 5, "Prop(C[a, b])" is false. Thus, the corollary in Higgins [2, p. 54], attributed to Professor J. I. Richards, is invalid.

Likewise "Prop.{Hol(D)}" is invalid, where Hol(D) is the set of holomorphic functions on a domain D in \mathbb{C} . The lesson, in general, is that no degree of smoothness of the members of a Hilbert space \mathcal{F} of functions can compel the evaluation functionals to become continuous on \mathcal{F} .

To turn to the proof of Proposition 1, we need two lemmas.

LEMMA 1. Let (i) \mathscr{H} be an infinite dimensional Hilbert space over \mathbb{F} , (ii) g be a discontinuous linear functional on \mathscr{H} to \mathbb{F} , and (iii) \mathscr{N}_g be the null-space of g. Then[#] (a) $\exists u_0 \in \mathscr{H} \ni \mathscr{N}_g + \langle u_0 \rangle = \mathscr{H} \& \mathscr{N}_g \cap \langle u_0 \rangle = \{0\}, (b) \mathscr{N}_g$ is unclosed and everywhere dense in \mathscr{H} .

[#] For $A \subseteq \mathcal{H}$, $\langle A \rangle$ is the linear manifold spanned by A in \mathcal{H} .

Proof. (a) Let \mathscr{M} be a linear manifold complementary to \mathscr{N}_g . Then g is a one-one linear operator on \mathscr{M} onto \mathbb{F} . Hence dim $\mathscr{M} = 1$, and therefore $\mathscr{M} = \langle u_0 \rangle$ for some $u_0 \in \mathscr{K}$. Thus (a).

(b) This follows at once from parts (ii), (iii) of Prop. 5.4 in Kelley et al [3, p. 37].^{##} □

LEMMA 2. Let (i) \mathscr{X} , \mathscr{Y} be vector spaces over \mathbb{F} of the same Hamel dimension, (ii) A, B be Hanel bases for \mathscr{X} , \mathscr{Y} , respectively, (iii) T_0 be a one-one function on A onto B. Then T_0 has a one-one linear extension T on \mathscr{X} onto \mathscr{Y} .

Proof. Since A is linearly independent, therefore, cf. Day [1, p. 5, Lma. 1], T_0 has a linear extension on $\langle A \rangle$ onto $\langle B \rangle$, i.e. on \mathscr{X} onto \mathscr{X} Also since T_0 is one-one and B is linearly independent, T has to be one-one. \Box

Proof of Proposition 1.

By (i),
$$\alpha = \dim \mathscr{M} \ge \aleph_0$$
, and by (ii), $\dim \langle x_0 \rangle = 1$; hence

(1)
$$\dim \langle x_0 \rangle^\perp = \dim \mathscr{A} = \alpha$$

Let

(2)
$$A =_d a$$
 Hamel basis for $\{x_0\}^{\perp}$.

Then obviously

(3)
$$A^* =_d A \cup \{x_0\} = a$$
 Hamel basis for \mathscr{A} .

Now let \mathcal{H} be a Hilbert space over \mathbb{F} of dimension α and let g be a discontinuous linear functional on \mathcal{H} to \mathbb{F} .[†] Then by Lemma 1(b) & (a),

(4)
$$\mathcal{N}_g \subsetneq \operatorname{cls} \mathcal{N}_g = \mathcal{K},$$

and $\exists u_0 \in \mathscr{K}$ such that

(5) $\mathcal{N}_g + \langle u_0 \rangle = \mathcal{K} \& \mathcal{N}_g \cap \langle u_0 \rangle = 0.$

Now let

(6)
$$B = a$$
 Hamel basis for \mathcal{N}_{g} .

Then by (5)

(7)
$$B^* = B \cup \{u_0\} = a$$
 Hamel basis for \mathcal{H} .

Now since \mathscr{H} and $\{x_0\}^{\perp}$ have the same (ortho-normal) dimension, viz. α , therefore they have the same Hamel dimension, say β . Thus, cf. (7) and (3), card $B^* = \beta = \operatorname{card} A^*$. Also obviously card $B = \operatorname{card} B^* = \operatorname{card} A^* = \operatorname{card} A$. Hence \exists a one-one function T_0 on A^* onto B^* such that

(8)
$$T_0(A) = B \& T_0(x_0) = u_0.$$

^{##} We thank the Referee for this information, and other suggestions.

 \dagger The existence of such g is ensured by a well-known argument using Hamel basis.

But by Lemma 2, T_0 has a one-one linear extension T on $\langle A^* \rangle$ onto $\langle B^* \rangle$, i.e. by (3) and (7), on \mathcal{A} onto \mathcal{H} . Also from (2), (8) and (6) we conclude that

(9)
$$T(\{x_0\}^{\perp}) = T(\langle A \rangle) = \langle T(A) \rangle = \langle B \rangle = \mathscr{N}_{g}$$

Now we define $((\cdot, \cdot))$ on $\mathscr{A} \times \mathscr{A}$ by

(10)
$$\forall x, y \in \mathscr{A}, \quad ((x, y)) =_d (T(x), T(y))_{\mathscr{H}}.$$

This just transplants, linearly and biunivocally, the inner product for \mathcal{H} to \mathcal{A} . Since \mathcal{H} is a Hilbert space under $(\cdot, \cdot)_{\mathcal{H}}$, it follows that \mathcal{A} is a Hilbert space under $((\cdot, \cdot))$.

It only remains to show that f_0 is discontinuous under the topology induced by the new inner product. For this, it suffices to show that

(I)
$$\exists (y_n)_1^{\infty} \text{ in } \mathscr{M} \ni \text{ as } n \to \infty, y_n \to x_0 \text{ but } f_0(y_n) \leftrightarrow f_0(x_0).$$

Proof of (I). Since $u_0 \in \mathcal{H} =_d \operatorname{cls} \mathcal{N}_g$, cf. (4), therefore $\exists (v_n)_1^{\infty}$ in $\mathcal{N}_g \ni v_n \to u_0$. Let $y_n =_d T^{-1}(v_n)$. Then by (10) and (8),

$$||y_n - x_0|| = |T(y_n) - T(x_0)|_{\mathscr{H}} = |v_n - u_0|_{\mathscr{H}} \to 0.$$

But since $v_n \in \mathcal{N}_g$, therefore by (9), $y_n \in \{x_0\}^{\perp}$, therefore $f_0(y_n) =_d (y_n, x_0) = 0$, whereas $f_0(x_0) =_d |x_0|^2 \neq 0$. Thus (I) is established. \Box

UNIVERSITY OF CALIFORNIA IRVINE, CA 92717 U.S.A.

UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15260 U.S.A.

References

- [1] M. M. DAY, Normed Linear Spaces, Springer Verlag, Berlin, 1967.
- [2] J. R. HIGGINS, Completeness and basis properties of sets of special functions, Cambridge Tracts in Math. 72, Cambridge University Press, 1977.
- [3] J. L. KELLEY, I. NAMIOKA et al, Linear Topological Vector Spaces, Van Nostrand, Princeton, 1963.