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ON AN EXPLICIT REPRESENTATION OF THE LINEAR 
PREDICTOR OF A WEAKLY STATIONARY STOCHASTIC 

SEQUENCE* 

BY A.G. MIAMEE AND H. SALEHI 1 

Introduction 

Let Z be the set of all integers. Xk, k E Z, will denote a univariate weakly 
stationary stochastic process (WSSP) conidered as a sequence of elements in 
a Hilbert space M. The main purpose of this note is to establish a spectral 
necessary and sufficient condition for a series representation of the linear 
predictor of Xk, k E Z, in the form: 

P-1Xo = Lk=l akX-k with Lk=1 I ak 12 < 00 , 

where P_ 1 denotes the orthogonal projection onto the subspace spanned by 
the past of the process (see Theorem 3.2). Such a series representation was 
obtained by P. Masani [4, 1960] for a multivariate weakly stationary stochastic 
process under the additional boundedness assumption on the spectral density 
of the process. Masani's result for the univariate case is an improvement of 
that of Akutowicz [I, 1957] who, in addition to the boundedness of spectral 
density, assumed that the Fourier series of the optimal factor of the spectral 
density converges absolutely. Although Masani removed this unduly restricted 
condition on the optimal factor, nevertheless his success in obtaining an 
autoregressive series for the linear predictor depends heavily on the bound
edness of the spectral density. The last assumption is still strong, as was 
pointed out by Masani himself [ 4, 1960]. It is in this direction that our note 
extends the work of Masani, and provides a contribution to the area of 
predictor theory. 

1. Preliminaries 

Let Xk, k E Z, be a univariate WSSP. F will denote the spectral distribution 
of Xk, k E Z. 'Y will stand for the correlation function of Xk, k E Z. It is 
assumed that F is absolutely continuous with density /, so that 'Y and / are 

related by y(k) = L f6" e-ikfl/(0) d0. L 2,1 will denote the usual Hilbert space 

of square integrable functions on [0, 21r] with respect to (w.r.t.) the density f. 

* Presented at the "Workshop on the prediction theory on non-stationary processes and related 
topics", held at Centro de Investigacion en Matematicas (CIMAT), Guanajuato, Mexico, June 20-
26, 1982. 
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We recall that the space L2,1 is isometric to cr(X), the subspace generated by 
Xk, k E Z, under the isomorphism map Xk - e-ik0_ As usual this map between 
the time and spectral domains will play an important role in this paper. L1 , L2 

and Loo will denote the usual equivalence classes of functions w.r.t. the Lebesgue 
measure on [0, 21r ]. Let L2°+ = lg:g E L2 such that J5" e-ikeg(0) d0 = 0, k :s 
-1 l. For each n, .,,l{n will denote the subspace of M" spanned by the elements 
Xk, k :s n. Pn will denote the orthogonal projection onto the subspace .,,l{n· We 
assume that log f E L1 . Let Yk, k E Z, denote the normalized innovation 
process of Xk, k E Z. Yk, k E Z is a WSSP whose spectral density is the 
constant 1 on [0, 21r]. By the Wold decomposition 

(1.1) 

and 

(1.2) 

where 

(1.3) 

cr2 = exp[L J5" log /(0) d0] 

The function cp is called the optimal factor of f. cp has an analytic extension 
cp + to the unit disc given by 

'P+(z) = exp[~o + L::'=1 anzn] 

(1.4) 

The coefficients cn in (1.3) may be obtained in terms of the coefficients an 
from 

(1.5) ~oo n _ [ao ~oo n] .;.n=O CnZ - exp 2 + .:..n=l anz . 

The function 'P+(z) in (1.4) has no zero inside the unit disc and <,C'+(0) = 
Co ~ ?· These are _equivalent to saying that the factor cp occurring in (1.3) 
satisfies the followmg conditions 

(1.6) 

f = I cp 12, cp = L;:'=0 Cneine E L2, Co> 0, 

and if Vi = L;:'=o dneinO E L2°+ such that 
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Condition {1.6) expresses a sort of "maximality" for 'P. In some special cases, 
say when f is a rational function in ei0 it is easy to compute the optimal factor 
cp by examining the zeros and poles of/, and there is no need for determining 
cp through formula (1.5). In this paper we will assume that the optimal factor 
cp is known to us possibly through {1.5). For a function 1/; = Lk=o bkeike, Lk=o 
I bk 12 < 00 , 1/;N denotes Lk'=o bkeiko_ 

2. An autoregressive series for the innovation 

In this section we obtain a spectral necessary and sufficient condition in 
order that the innovation process Yk, k E Z, may be expressed as an autore
gressive series in terms of the process Xk, k E Z. This is an extension of 
Theorem 1 in [l, 1957]. We start with the following observations: Let/be the 
spectral density and cp its optimal factor {/ and log fare in L1). From f = cpcp 
it follows that 1-1 E L1 whenever cp-l is in L2. Conversely suppose r 1 E L1. 

Then cp-i = Lk=o dkeik0 with Lk=o I dk 12 < oo. This is because cp-i E L2 and cp 
is optimal whose extension cp +Cz) has no zeros inside the unit disc. An extension 
of this result for the matrix-valued case is proved by Masani [4, Lemma 2.7 
and Theorem 2.8]. Hence, the two conditions r 1 E L1 and cp-l = Lk=O dkeik0, 
Lk=o I dk 12 < oo are equivalent. This observation will be used in the proof of 
Theorem 2.1 and in Section 3. 

THEOREM {2.1.) Let Xk, k E Z, be a WSSP with spectral density f such that 
log f E L1 . Let cp be the optimal factor off. Let Yk, k E Z be the normalized 
innovation process of Xk, k E Z. Then there exists a sequence dk, k 2: 0 such 
that 

{2.1) 

if and only if r 1 E L1 {or equivalently by observation above cp-I E L2 °+) and the 
Fourier series of cp-1 converges to cp-i in L2,1. Under these conditions dk is the 
kth Fourier coefficient of cp-1, i.e., 

dk = 2~ H.,,. e-kecp-1(8) dO. 

Proof. Let Yn = Lk=o dkXn-k, Lk=o I dk 12 < 00 • For n = 0 we have 

Yo = Lk=o dkX-k, Lk=O I dk 12 < oo. 

But by (1.1) 

Hence, 

(2.2) 

where the convergence involved is in No From (2.2) and the isomorphism 
between u( Y) and L2.ty = L2 (because the spectral density of Y k, k E Z, is 1) 
we conclude that 

(2.3) 1 - I" .._,N [d I" .._,M i(k+n)6] - lmN__.oo ~k=O k ImM__.oo ~n=O Cne , 
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where lim means limit in the space L2, or equivalently 

1 = limN__.oo Lf=o [dkeikBlimM__.oo L~o CneinO] 

(2.4) 
= limN__.oo Lf=o dkeik 8<P(8). 

But L k=o I dk I 2 < oo implies that 

(2.5) 

We note that cp = Lk=o ckeiko E L2°+. Therefore the nth Fourier coefficient of 
xNcp = 2-f=o dkeik/J'P is Lk=O dkCn-k if O :<::: n :<::: N and 2-f=o dkCn-k if n ~ N + 1. 
Hence by (2.4) and Parseval's identity we have I c0d0 - 112 + 2,;;=o I Lk=O 
dkcn-k 12 - 0, as N - oo. This implies that 

Co do= 1 
(2.6) 

Since both cp and x are in L2°+, relation (2.6) implies that 'Px and the constant 
function 1 have the same Fourier coefficients. Hence 

(2.7) 'Px = 1 a.e. 

By (2. 7) x = cp-1. This and (2.5) imply that cp-i E L2°+, 

I cp-l 12 = r 1 E L1 and dk = L 15 ... cp- 1(8)eik8 d0. 

(2.4) means 

limN__.oo J6" l[<P-1)N(8)'P(8) - 112 d8 = 0, or equivalently 
limN_.,., f6" l[<P-1]N(O) - cp-1(8) 12 I <P(8) 12 d8 = 0, that is 
limN__.oo J6 ... l[<P-1]N(8) - cp-1(8) 12 /(8) d0 = 0, 

so that the Fourier series of cp-i converges to 'P- 1 in L2.r. 
Conversely let us assume that r 1 E L1 or equivalently cp-l = Lk=O dkeikB E 

L2°+ by the observation in the opening paragraph of Section 2, and 

f5" I ['P-1)N(0) - cp-1(8) 12/(8) d8 - 0, as N - oo. 

Then by reversing the order of the chain of equalities just proved we have 

limN__.oo Lf=o [dkeik 0limM__.oo 2,;;'=o Cnein8] = 1. 

From isomorphism between <1 ( Y) and L2 we conclude that 

Lk=O [dk L~=O CnY-k-n] = Yo. 

But L~=O CnY-k-n = X-k· Hence Lk=o dkX-k = Yo, and therefore Yn = Lk=O 
dkXn-k· Obviously Lk=O I dk 12 < oo, because I cp-l 12 = r 1 E L1. 
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3. An autoregressive series for the linear predictor 

Using the result of last section we will give a spectral necessary and sufficient 
condition for autoregressive series representation for the linear predictor. Our 
result extends the work of Akutowicz (1, 1957] and those of Masani in the 
univariate case (4, 1960]. Akutowicz assumes that the Fourier series of cp 
converges absolutely and Masani assumes that the spectral density f is 
bounded. Both Akutowicz and Masani give only sufficient conditions under 
which they obtain an explicit formula for the linear predictor. Our result will 
improve their set of sufficient conditions as well as will provide a necessary 
set of conditions for the representation of the linear predictor as an autore
gressive series. 

In view of Theorem 2.1 we explicitly write down the following Assumption. 

ASSUMPTIPN (3.1). 
00 

(i) f- 1 E L1 or equivalently cp-l = Lk=o dkeiko with Lk=o I dk 12 < oo, and 

(ii) limN-00 n,r I [cp-l]N(B) - cp-1(8) 12 /(8) dB= 0. 

We note that when f is bounded if r 1 E L1, then limN-00 n,r I [cp-l]N -
cp-1 12/ (0) dB= 0. Also when Lk=o I dk I < oo the conditions, 3.l(i)-(ii) follow. 
We state this result as a proposition below. However we mention that under 
1-1 E L1 or even Lk=o I dk I < oo the condition fin Loo is not necessary for the 
validity of 3.l(ii) as seen from example 5.1. 

PROPOSITION (3.2). Let Lk=O I dk I < oo. Then 1-1 E L1 and limN~ n,r 

I [cp-l]N - cp-1121 (0) d0 = 0. 

Proof. 

Next 

I [cp-l]N (0) - cp-1(0) 121 (8) 

= I [cp-l]N(B) 12 - 'P(B)['P-l]N(B) - <P(B)['P-l]N(B) + 1. 

Because cp and cp-1 are in L2 , both the integrals J5.,.. 'P(0)['P-1]N(8) d0 and 
f5.,.. 'P(B)['P-1r(0) dB converge to 21r, as N - oo. 

__!_ f 2,.. '°N d d- -i(n-k)0'/(0) dB _ '°N '°N d d-21r O £..k,n=O k ne - £..,k=O £..,n=O k nak,n, 

l 2 • 'M where an,k = 21r f 0,.. e-inoe, 'f (0) dB. 
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M N -Let SM,N = Lk=O Ln=o dkdnak,n• SM,N converges as Mand N - oo, because 

Lk=O L~=O I dkanan,k I $ Lk=O L~=O I dk I I dn I L H" I eikOf (0) I d0 

1 . 
$ 271" J5" If (0) I d0 (Lk=O I dk I HL~=O I dn I) < 00. 

Hence the sum Lh'.n=o dkclnan,k has a limit, as N -oo, and its limit is Lk=O 
dk(L~=o clnan,k). The inside sum 

L~=O anan,k = L H" ['Pt 1(8)eikOf (0) d0 = L H" eik0'P(0) d0 = Ck. 

Therefore, 

Hence 

limN-"' f6" I [<P-1]N(8) - <P-1(0) l2f(0) d0 = 21r - 21r - 21r + 21r = 0, 

which completes the proof. 

THEOREM (3.3). With the notation of Theorem 2.1 we have that P-1Xo = 
Lk=l akX-k with Lk=l I ak 12 < oo if and only if Assumption 3.1 is satisfied. When 
the above is the case, ak = -codk. 

Proof. Since a-Yo = X 0 - P - 1X0 , we have 

(A) 

with Lk=o I ak 12 < oo, if and only if Assumption 3.1 is satisfied; and then ak = 
dk (cf. Theorem 2.1). But d0 = l/c 0 = 1/o-, so in this case (A) is equivalent to 
do(Xo - P_1Xo) = Lk=O dkX-k, Thus 

P _1Xo = -co Lk=l dkX-k 

if and only if Assumption 3.1 is satisfied; proving the theorem. 
We are ready to show that the algorithm given by Masani for Xn = P0Xn, 

n ~ l, is valid under our Assumption 3.1. Masani was able to establish his 
result under the boundedness of the spectral density f. 

THEOREM (3.4). With the notation of Theorem 2.1 under the Assumption 3.1 
with Xn = PoXn, n ~ l, we have 

Xn = Lk=O dn,kX-k, dn,k = -(codn+k + · · · + Cn-ldk+l) 

= Lk=O en,kX-k, en,k = (cndk + ... + Cn+kdo), 

Proof. For the sake of the proof we will put dk = 0 if k =s - l. For N ~ n - l 
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we note that 

Therefore 

Hence 

I m::z::J ckeik-)<P-1]N - u::z::J ckeik-)<P-112 

= I }::Z:J ckeik.(cp-r)N-k - (}::Z::J ckeik.)cp-1 12 

= I }::Z::J ckeik·[('P-r)N-k - cp-11I2 

::5 }::Z::J I Ck 12 }::Z::J I ('P-I)N-k 12• 

2~ H .. I [(}::Z::J ckeik.)cp-I]N - (}::i::J ckeik·)cp-r 121 d0 

::5 }::Z::J I Ck 12 }::Z::J L H .. I ('P-I)N-k - cp-I 121 d0. 

But by Assumption 3.1, for each k, 0 :5 k :5 n - 1, the term 

1 . 
211" H .. I (cp-I)N-k - cp-I 121 d0 - O; as N-oo. 

It follows that [ (}::Z::J ckeik-)cp-I]N converges to (}::Z::J ckeik")cp-r in L2,t• But the 
kth Fourier coefficient of (}::Z::J ckeik-)cp-r is }::;.::J c;d,k-1'• Therefore by isomorph
ism map between u(X) and L2,t we conclude that Lk=o (}::~J c.,dk_.,)X-k 
converges in M'" and corresponds to (}::Z::J ckeik.)'P- 1. Now since O = H''(}::Z::J 
ckeik-)ipe-v. d0 for I'?:. n, we have 

0 = H .. [ }::Z:J'Pckeik]'P~e-i/.' d0 = H .. [ }::Z:J/keik}e-i.r. d0. 

Hence (}:: k=o }::~J-) c,dk-rX-k .L X-i in M'" for i ?:. n. (.L stands for orthogonality). 
That is 

This implies 

Xo + Lk=n (}::;,;;;J c.,dk_,)X-k .l X-i, 

because if 1 ::5 k :5 n - 1 then in 

i ?:. n. 

i ?:. n, 

L~6 c,,,dk-r= [codk + Cr dk-I + · · · + ckdo] + [ck+1d-1 + · · · + Cn-1dk-(n-1J] 

the second bracket is zero since O = d- 1 = • • • = dk-(n-I> and the first bracket 
is zero since it is the kth Fourier coefficient of 'P -1/'P = 1 which is zero. Hence 

Xo - [- Lk=n (}::~J c,dk_,,,)X-k] .l X-ii?:. n. 
oo n-1 
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That is to say Xn = -Lk=n (L=o c1dk-1)Xn-k which after a change of variables 
becomes Xn = -Lk=o (I;,:-J C1 dn+k-1)X_k• Since 'P-1/'P = 1 we have 0 = IJ=o 
C; dk-1 (except for k = 0, Codo = 1). Hence if n + k ':;I:-0 then r;;;l c,dn+k-1= 0 
implying that - r;;J C; dn+k-1 = r;:!~ c,dn+k-1• 

This completes the proof. 

4. Recursive expression for the linear predictor of lag n. 

In this section we will obtain two additional expressions for computing the 
linear predictor Xn. These expressions are partly recursive and may shed some 
additional light on the problem. For any pair of integers m and n, let us write 
X(n/m) for the best linear predictor of Xn based on Xk, k ::: m, and let 
X(n/m) = Xn - X(n/m). We will assume that Assumption 3.1 is satisfied, and 
we will write ak+i for e1,k = d1,k occurring in Theorem 3.4. 

THEOREM (4.1) 
(a) X(n + m + l/n) = LZ'=:""o1 ak+1X(n + m - k/n) + Lk=m ak+1Xn-k+m for 
m 2: 1. 

(b) Let Qo = 0, Q1 = 1, ... , Qn = a1Qn-1 + a2Qn-2 + · · · + an-1Q1. Then for 
m 2: 1, X(n + m/n) = Lk=O (Qmak+1 + · · · + Q1ak+m)Xn-k· 

A A 1 
(c) With Q0 , Q1, ... , Qn, ... as above we have X(n/m) = X(n/0) + IZ'~ 
Qm-kX(k + l/k), 0 $ m $ n. 

The last relation in (c) tells us how to update our linear predictor Xn in 
terms of the new innovations as more observations become available. 

Proof. 

(a) Since by Theorem 3.3, X(n + m + l/n + m) = Lk=O ak+1Xn+m-k we therefore 
have 

Xn+m+l - rr~ 1 ak+1X(n + m - k/n) - Lk=m ak+1Xn+m-k 

= [Xn+m+l - X(n + m + l/n + m)] + rra:""o1 ak+i[Xn+m-k 

- X(n + m - k/n)]. 

Since for each -1 ::: k $ m - l, Xn+m-k - X(n + m - k/n) is orthogonal to 
X,, ,!$ n and IZ'~ 1 ak+1X(n + m - k/n) - Lk=m ak+1Xn+m-k is in u(XI', tf $ n) 
we conclude that 

X(n + m + l/n) = rr==-l ak+1X(n + m - k/n) + Lk=m ak+1Xn+m-k 

proving (a). 

(b) The proof is given by induction. For m = 1, (b) reduces to Theorem 3.4. 
Assume that for each j, 1 ::: j ::: m we have 

X(n + j/n) = L;=o (Qjam + · · · + Q1a?+j)Xn-l'• 

Then for each k, 0 ::: k ::: m - 1, 

X(n + m - k/n) = L;=O (Qm-ka,m + · · · + Qiam-k+/)Xn-/ 
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Since by (a) 

X(n + m + l/n) = LZ',:a1 ak+1X(n + m - k/n) + Lk=m ak+1Xn+m-k 

it follows that 

X(n + m + l/n) = LZ'~1 ak+1 L/=O (Qm-kal'+I + · · · + Q1am-k+r)Xn-l' 

= a1[L/=O (Qmal'+l + · · · + Q1am+l')Xn-l'] 

+ a2[L/=O (Qm-Ial'+I + · · · + Q1am+l'-1)Xn-l'] 

+ am-1[L/=O (Q2al'+1 + Q1a1"+2)Xn-l'] 

+ am[L/=O (Q1a1'+1)Xn-/'] + L/=m al'+lXn+m-1' 

= L/=0 (Qm+lal'+l + • · · + Q2am+l')Xn-l' + L/=m al'+lXn+m-1' 

But 

so that 

X(n + m + l/n) = L/=O (Qm+1a1'+1 + · · · + Q1al'+m+1)Xn-/'• 

Therefore by induction we can complete the proof. 

( c) We have seen that 

X(n + m/n) = Lk=O (Qmak+1 + · · · + Q1ak+m)Xn-k 

Therefore 

X(n + m/n + l) = X((n + 1) + (m - l)/n + 1) 

= Lk=O (Qm-Iak+l + · · · + Q1ak+m-1)Xn+l-k 

= (Qm-1a1 + •. · + Q1am-1)Xn+l + Lk=l (Qm-lak+l + · · · + Q1ak+m-1)Xn+l-k• 

It follows that 

+ Q1am-1)Xn+l 

= X(n + m/n) - Lk=O Qmak+1Xn-k• 

This means that 

X(n + m/n + 1) = X(n + m/n) - Qm Lk=O ak+1Xn-k + QmXn+l 

= X(n + m/n) + Qm(Xn+1 - X(n + l/n)) 

= X(n + m/n) + QmX(n + 1/n). 
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Continuing in this manner we get 

X(n + m/n + 2) = X(n + m/n + 1) + Qm-iX(n + 2/n + 1) 

= X(n + m/n) + QmX(n + 1/n) + Qm-1X(n + 2/n + 1). 

Hence for O :::; m :::; n we get 

X(n + m/n + I') = X(n + m/n) + L~:.i Qm-kX(n + k + 1/n + k). 

That is 

X(n/m) = X(n/0) + Lk==a1 Qm-kX(k + 1/k), 0 $ m $ n. 

This completes the proof. 

5. An example and further discussion 

Example (5.1). In the following we give a class of unbounded spectral 
densities where our Assumption 3.1 is satisfied. Because of unboundedness of 
these densities Masani's result [4, 1960] cannot be invoked to obtain an 
autoregressive series representation for the linear predictor. For ¼ :::; X < ½ 
these densities are not even in L2 • However by alluding to our Theorem 3.4 
we can give an explicit representation for Xn, The class of spectral densities 
is as follows: Let O < X < ½, and f (8) = 11 - ei 0 1-2;,._ Obviously f is not bounded. 
The optimal factor off is 'P (8) = (1 - e-io)-X. Let (ah stand for a(a + 1) 
(a + k - 1) and (a)0 = 1. Then 

cp(8) = 'v"' (Xh ikO • L2 
,:., k=o k! e m 

cp-1(8) - "'"' (-Xh ikO • L 
- ,:,,,k=o k! e m 2• 

It is known that Lk=o I (-:ih I < oo (c.f. [2] p. 1), hence by Proposition 3.2 

our Assumption 3.1 is satisfied. However to obtain a rate at which ('P- 1)N -

cp-i converges to zero in L2 ,1, as N - oo, we proceed as follows. Let N be any 
nonnegative integer. Simple calculations show that 

= N (-Xh (X)N+j-k . . {
o, I'$ n 

Lk=O ~ (N + j - k)! 'I'= J + N, J 2:: 1. 

Note that for j 2:: 1, 

(X) - (-·-l)k(X)N+j 
N+j-k - (1 - A - N - jh 

d . k (N + j)! 
an (-N-1h=(-l) (N+j-k)! 



EXPLICIT REPRESENTATION OF THE LINEAR PREDICTOR 91 

Therefore for j ::: 1 we have 

LN (-Ah (A)N+j-k = LN (-Ah(A)N+j(- N - jh(- Nh 
k=O k! (N + j - k)! k=O k!(N + j)!(l - A - N - jh(- Nh. 

By applying Saalschiitz's theorem [2, p. 9] to 

N (A)N+j(-Ah(- N....: j)i- Nh 
Lk=O (N + j)!k!(l - A - N - jh(- Nh 

we have that for 

. N (-Ah (A)N+j-K (A)N+j (A)N(j)N 
; ::: l, Lk=O ~ (N + j - k)! = (N + j)! (- N)N(j + A)N 

(A - N)N (A)j 
=------~--

(- N)N r(j)(N + j) • 

Therefore 

_!_ J.2,r I ('P-l)N'P - 112 dB=~""- I ~N_ (-Ah (A)N+j-k 1
2 

= 
2" 0 L.,J-0 L.,k-1 kl (N + j - k)! 

l
(A-N)Nl2 00 I (A)j 12 
(- N)N Li=l r(j)(N + j) 

= I A ( 1 - A) N 12 L "."_ I ( A + 1 )j 12 1 
N! J-o j! (N + j + 1)2 • 

Using Stirling's formula we can show that 

00 l(A+nj
2 

1 ( 1) 
Li=O j! (N + j + 1)2 = 0 Nl-21\ 

1 
Hence we conclude that 2,,. J6" I ('P- 1)N'P- 1 12 d0 = o(N- 1). This shows that 

our Assumption 3.1 is satisfied, and in addition it provides us with a rate of 
convergence. 

In this case by Theorem 3.4 we have 

= LI, (- A}j (A)n+k-j 
en,k J=O j! (n + k _ j)! 

Again by applying Saalschiitz's theorem as above we have 

~I; (-A)j (A)n+k-j 
.:..1=0 ., ( + k _ ')' J. n J . 

which by a simple calculation is equal to 

(A - kh (A)n 

(- k) r(n)(k + n) 

(1 - Ah (A)n f(l - A+ k) I'(A + n) 
= -------- ----

k! (k + n)(n - 1)! f(A)f(l - A)f(l + k) (k + n)r(n). 
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( . . . t..(1 - 11.h t.. f(l - 11. + k)) 
For n = 1 this 1s Just (k + l)! = (k + l)! f(t..)f(l _ 11.) • Hence 

, (t..)n co (1 - Ah 
Xn = PoXn = (n _ l)! Lk=O (k + n)k! X+ 

In this case 

A 2 -1 (t..h f(l - 211.) ( )
2 

II Xn - Xn II = Lk=O k! - [f(l _ t..)]2' 

as n - oo, as one expects. 

Remark (5.2). In the discussion of linear predictor we have restricted 
ourselves to the case where X1 = P0 X 1 may have a representation in the form 
P0X1 = Lk=o akX-k with Lk=o I ak 12 < oo. The general question when PoX1 has 
such a representation without the condition Lk=o I ak 12 < oo remains open. In 
case 1-1 is not in L1 there may not exist any sequence ak, k === 0, such that 
Lk=o akX-k = P0 X 1. This, for example, is the case for a process with spectral 
density f (0) = 11 - ei 0 I 2, as shown by Tops0e in [7, 1977). Other conditions 
such as r 112 being in L1 may be relevant here. As a specific example let f (0) 
= 11 - ei" 11+\ 0 :S A < 1. Could the linear predictor for a process with this 
spectral density have the representation P0X 1 = Lk=o akX-k for a sequence ak, 
k === O? Another question worthy of study is the following: Let 'P the optimal 
factor off and cp-1 be in L2 . Then, does ('P- 1)N converge to cp-i in L2,1? A 
positive answer to this question will reduce our Assumption 3.1 to n;ierely 1-1 

E L1 . In case the answer is negative, we may ask whether conditions such as 
r 1 E L1 and/ E L2 would imply that ('P- 1)N converges to cp-1 in L2,1. Recently 
M. Pourahmadi [6] has studied the representation P0X 1 = Lk=o akX-k in 
connection with the angle between the past and future of the process Xk, KE 
Z. His main contribution seems to be that if the past and future subspaces of 
Xk, K E Z, are at positive angle, then Theorem 3.4 holds. Analytic condition 
on funder which the angle between the past and future is positive is charac
terized in [3]. The relationship between the analytic condition for the positivity 
of the angle and conditions r 1 E L & f E Leo, etc. deserves further investigation. 
Recursive algorithm for the determination of ck, k === 0 and dk, k === 0, the 
Taylor coefficients of'P and cp-i respectively are derived in terms of the Fourier 
coefficients of log f in [5]. However the question of representing P0X 1 as a 
convergent series Lk=O akX-k is not exploited in [5]. 
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