Boletín de la Sociedad Matemática Mexicana Vol. 28, No. 2, 1983

KAC FUNCTIONALS OF DIFFUSION PROCESSES APPROXIMATING CRITICAL BRANCHING PROCESSES

By Bernhard Mellein*

Abstract. A critical Galton-Watson process with immigration, initiated by [xn] objects, tends in the sense of finite-dimensional distributions, as $n \to \infty$, to a diffusion process $\{X_x(t), t \ge 0\}$ on $[0, \infty)$ with drift parameter $\mu(v) = \gamma > 0$ and diffusion parameter $\sigma^2(v) = 2v$, if additionally conditioned on having the size [yn] at time n to a diffusion bridge

$$\{X_{x,y}(t), 0 \le t \le 1\}$$
 with $X_{x,y}(0) = x$ and $X_{x,y}(1) = y$.

In this paper we study Kac functionals of these processes obtaining diffusion counterparts of limit theorems for the total progeny of critical Galton-Watson processes.

1. Introduction

Let X_n be the number of particles at time n in a critical Galton-Watson process with immigration and f and h be the probability generating functions of its offspring and immigration distributions respectively. Denote the variance of the offspring distribution by 2α and let $\gamma = \alpha^{-1}h'(1-)$. Imposing some further assumptions it was shown [7] that, in the sense of finite-dimensional distributions,

(1)
$$\left\{\frac{X_{[nt]}}{\alpha n}; 0 \le t \le 1 \mid X_0 = [\alpha x n + o(n)], X_n = [\alpha y n + o(n)]\right\},$$

converges, as $n \to \infty$, to a nonhomogeneous diffusion process $\{X_{x,y}(t), 0 \le t \le 1\}$ on $[0, \infty)$ with initial state $X_{x,y}(0) = x$, final state $X_{x,y}(1) = y$, infinitesimal variance $\sigma^2(v, s) = 2v$ and a rather complicated drift parameter (see [7]). Its *n*-dimensional density function is given in Lemma 4. In Section 3 we find an explicit expression for the Laplace transform

(2)
$$K(x, y, \lambda, t) = E(\exp\{-\lambda \int_0^t X_{x,y}(s) \, ds\}), \qquad 0 \le t \le 1,$$

of the diffusion bridge $\{X_{x,y}(t), 0 \le t \le 1\}$.

C

In Section 4 we study Kac functionals of the form

(3)
$$K_g(x, \lambda, t) = E[\exp\{-\lambda \int_0^t X_x(s) \, ds\}g(X_x(t))], \quad t \ge 0,$$

where $\{X_x(t), t \ge 0\}$ denotes the weak limit $(n \to \infty)$ of

$$\left\{\frac{X_{[nt]}}{\alpha n}; t \ge 0 \mid X_0 = [\alpha x n + o(n)]\right\},\$$

^{*} Research supported in part by COLCIENCIAS project 2004-1-37-81. See at the end of the paper the present address of the author.

and where g may be a power function (exponent $> -\gamma$) or the exponential function. The multivariate density function of $\{X_x(t), t \ge 0\}$ is stated in Lemma 5 and may be used to identify the process as a time homogeneous diffusion process on $[0, \infty)$, with initial state $X_x(0) = x$, drift parameter $\mu(v) = \gamma$, diffusion parameter $\sigma^2(v) = 2v$ and no boundary conditions adjoined. (See also [3]).

At this point we mention that the distribution of $X_x(t)$ may be obtained from that of $X_{x,y}(t)$ by randomizing the quantity y (see Remark 2), more precisely, treating it as a random variable with the density function f_x of $X_x(1)$, given by

(4)
$$f_{x}(v) = \left(\frac{v}{x}\right)^{(\gamma-1)/2} \exp\{-x - v\} I_{\gamma-1}(2\sqrt{xv}), \qquad v \ge 0,$$

where $I_{\gamma-1}$ is the modified Bessel function. Whence integrating (2) with respect to $f_x(y)$ should lead to (3) with $g \equiv 1$. In this spirit is Corollary 1 of Section 3.

It is obvious that the distribution of the process $X_{x,y}(t)$, just as that of $X_x(t)$, depends on the parameter γ , the case $\gamma = 2$ playing a special rôle in other contexts: If in (1) $\{X_n\}$ is a (sufficiently nice) critical Galton-Watson process with variance 2α (i.e. $E(X_1^2 | X_0 = 1) = 2\alpha + 1$), then (1) is found [7] to be approximated by $\{X_{x,y}(t), 0 \le t \le 1\}$ with parameter $\gamma = 2$. Moreover the distribution of the diffusion process gotten by Lamperti & Ney [5] as an approximation of the critical Galton-Watson process with finite survival time (i.e. by conditioning on its not being extinct at time n and on having initial size $[\alpha xn]$) may be obtained from that of $X_{x,y}(t)$ with $\gamma = 2$ by randomization of y. For more details see Section 5 where we deal with the Laplace transform of the integral of the Lamperti-Ney diffusion. Finally, $\{X_x(t), t \ge 0\}$ with drift parameter $\gamma = 2$, approximates the critical Galton-Watson process with infinite survival time, the so-called Q-process [5].

Pakes ([9], [10]) has proven limit theorems for the total progeny of the critical Galton-Watson process (with and without immigration) and the critical Q-process. Their diffusion analogues will be presented in Section 5, the relations of the preceding paragraph connecting the different processes being relevant.

The observation that in the case $\gamma = n/2$, $n = 1, 2, \dots, X_0(t)$ equals in distribution $\frac{1}{2}(B_1^2(t) + \dots + B_n^2(t))$, where $\{B_k(t), t \ge 0\}$ are independent standard Brownian motions, is used in Section 6 to derive a generalization of Kac's formula giving the distribution of the integral of the squared Brownian motion process.

For a detailed survey of the work done by several authors on integral functionals of stochastic processes in various domains of applications the reader may consult Puri [11].

2. Some preliminary results

The proofs of the following three lemmas are straightforward and will be omitted.

LEMMA (1). Let a, b and c be constants. If the sequence $\{c_n\}$ satisfies the recurrence relation

$$c_n = (ab^2 + 2b)c_{n-1} - b^2c_{n-2}, \qquad n = 3, 4, \cdots$$

with

$$c_1 = abc + b + c$$
$$c_2 = (ab^2 + 2b)c_1 - cb$$

then

$$c_{n} = cb^{n-1} \sum_{j=0}^{n} \binom{n+j}{2j} (ab)^{j} + b^{n} \sum_{j=0}^{n-1} \binom{n+j}{2j+1} (ab)^{j},$$
(5)

In the case b = c the solution reduces to

(6)
$$c_n = b^n \sum_{j=0}^n \binom{n+j+1}{2j+1} (ab)^j, \qquad n = 1, 2, \cdots.$$

LEMMA (2). Let a', b' > 0 and c_n be as in (5) with

$$a = \frac{a'}{n}, \qquad b = \frac{b'}{n}$$

and $c \ge 0$. Set $w = \sqrt{a'b'}$. Then

(i)
$$\lim_{n \to \infty} \frac{c_n}{b^{n-1}} = c \cdot \cosh(w) + \sqrt{b'/a'} \sinh(w).$$

(ii)
$$\lim_{n \to \infty} \left(\frac{c_{n-1}}{c_n} - \frac{1}{b} \right) = -\frac{\cosh(w) + c\sqrt{a'/b'} \sinh(w)}{c \cdot \cosh(w) + \sqrt{b'/a'} \cdot \sinh(w)}.$$

An obvious consequence of this result is stated separately as

LEMMA (3). Let a', b', a, b, w be as in the preceding lemma. If c_n has the form (6) then

(i)
$$\lim_{n \to \infty} \frac{c_n}{b^{n-1}} = \sqrt{b'/a'} \sinh(w)$$

(ii)
$$\lim_{n \to \infty} \left(\frac{c_{n-1}}{c_n} - \frac{1}{b} \right) = -\sqrt{a'/b'} \cdot \coth(w)$$

In what follows it is of fundamental importance to know the multidimensional distribution functions of the processes $X_{x,y}(t)$ and $X_x(t)$. To state the formulae we introduce some notation. From now on let

$$0 = t_0 < t_1 < \cdots < t_n, \qquad d_n = t_n - t_{n-1}, \qquad n = 1, 2, \cdots$$

 $n = 1, 2, \cdots$

and define for nonnegative $x = x_0, x_1, \dots, x_n$

(7)
$$g_x(x_1, \dots, x_n) = \prod_{k=1}^n \frac{1}{d_k} I_{\gamma-1} \left(\frac{2}{d_k} \sqrt{x_{k-1} x_k} \right) \cdot \exp \left\{ -\frac{1}{d_k} (x_{k-1} + x_k) \right\},$$

where I_{ρ} is the modified Bessel function of order ρ , given by

$$I_{\rho}(2v) = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \frac{1}{\Gamma(k+1+\rho)} v^{2k+\rho}.$$

LEMMA (4). ([7]). Let $(x_0 =) x, y > 0, t_n < 1$ and set $d_{n+1} = 1 - t_n$. The joint density function of $(X_{x,y}(t_1), \dots, X_{x,y}(t_n))$ is

(8)
$$f_{x,y}(x_1, \dots, x_n) = [d_{n+1}I_{\gamma-1}(2\sqrt{xy})]^{-1} \cdot I_{\gamma-1}\left(\frac{2}{d_{n+1}}\sqrt{yx_n}\right)$$
$$\cdot \exp\left\{x + y - \frac{y + x_n}{d_{n+1}}\right\} \cdot g_x(x_1, \dots, x_n).$$

Remark 1. We do not give the explicit form of the densities $f_{0,y}$, $f_{x,0}$ and $f_{0,0}$ but mention that they may be obtained as limits of (8), sending x resp. y resp. x and y to zero.

LEMMA (5). Let $x_0 = x \ge 0$. The random vector $(X_x(t_1), \dots, X_x(t_n))$ has density function

(9)
$$f_x(x_1, \dots, x_n) = \left[\frac{x_n}{x}\right]^{(\gamma-1)/2} g_x(x_1, \dots, x_n), \qquad x > 0.$$

Furthermore

 $f_0(x_1, \ldots, x_n) = \lim_{x \downarrow 0} f_x(x_1, \ldots, x_n).$

PROOF. As $m \to \infty$ apply the local limit theorem for the Galton-Watson process with immigration [6] to

$$P\left(\frac{X_{[mt_1]}}{\alpha m} < x_1, \cdots, \frac{X_{[mt_n]}}{\alpha m} < x_n \mid X_0 = [\alpha x m + o(n)]\right)$$

to get (9) immediately.

Remark 2. Consulting e.g. [8] it is easy to verify that

$$f_x(x_1, \dots, x_n) = \int_0^\infty f_{x,y}(x_1, \dots, x_n) f_x(y) \, dy,$$

where f_x is the density of X_x (1) stated in (4). Hence the distributions of the processes $X_x(t)$ and $X_{x,y}(t)$ are connected by randomization.

3. The diffusion bridge $X_{x,y}(t)$.

Our approach to find the integral functional (2) is the most direct one. As suggested in [1] we approximate the integral under consideration by the

Riemann sum

$$\frac{t}{n}\sum_{k=1}^{n}X_{x,y}\left(\frac{kt}{n}\right)$$

and obtain (2) as the limit of the multidimensional Laplace transform

(10)
$$L_{n,x,y}(\theta_1, \dots, \theta_n; t_1, \dots, t_n) = E(\exp\{-\sum_{k=1}^n \theta_k X_{x,y}(t_k)\})$$

of the X(kt/n) with $\theta_k = \lambda t/n$ and $t_k = kt/n$, $k = 1, \dots, n$.

We concentrate on the case x > 0, y > 0. The density function given in Lemma 4 admits writing (10) as an iterated integral. Carrying out the integrations in the order x_1, x_2, \dots, x_n (the necessary integral formulae may be found e.g. in [8]) leads to

$$L_{n,x,y}(\theta_1, \cdots, \theta_n; t_1, \cdots, t_n) = \frac{e_n}{s_n} \cdot I_{\gamma-1} \left(2 \frac{e_n}{s_n} \sqrt{xy}\right) [I_{\gamma-1}(2\sqrt{xy})]^{-1}$$

(11)

$$\cdot \exp\left\{y\left(1-\frac{1}{d_{n+1}}+\frac{d_ns_{n-1}}{d_{n+1}s_n}\right)+x+x\psi_n(d_1, \dots, d_{n+1})\right\}$$

with $e_n = d_2 \cdots d_n$,

(12)
$$\psi_n(d_1, \dots, d_{n+1}) = -\frac{1}{d_1} + \frac{d_2}{d_1s_1} + \frac{d_2d_3}{s_1s_2} + \sum_{r=1}^{n-1} \frac{d_{r+1}d_{r+2}}{s_rs_{r+1}} \cdot \prod_{j=2}^r d_j^2,$$

and the s_n satisfying the recurrence relation

(13) $s_k = (\theta_k d_k d_{k+1} + d_k + d_{k+1})s_{k-1} - d_{k-1} d_{k+1}s_{k-2}, \qquad k = 3, 4, \dots, n,$ where

$$s_1 = \theta_1 d_1 d_2 + d_1 + d_2$$

and

$$s_2 = (\theta_2 d_2 d_3 + d_2 + d_3) s_1 - d_1 d_3.$$

Reversing the order of integration in (10) yields

$$L_{n,x,y}(\theta_1, \cdots, \theta_n; t_1, \cdots, t_n) = \frac{e_n}{r_n} I_{\gamma-1} \left(2 \frac{e_n}{r_n} \sqrt{xy} \right) [I_{\gamma-1}(2\sqrt{xy})]^{-1}$$

(14)

$$\cdot \exp\left\{x\left(1-\frac{1}{d_1}+\frac{d_2r_{n-1}}{d_1r_n}\right)+\xi_n(y, d_1, \cdots, d_{n+1})\right\}$$

where $\xi_n(y, d_1, \dots, d_{n+1})$ stands for an expression (equally complicated looking as that for ψ_n in (12)) not depending on x and r_n being recursively determined by

$$r_k = (\theta_1 d_1 d_2 + d_1 + d_2) r_{k-1} - d_1 d_3 r_{k-2}, \qquad k = 3, 4, \cdots, n,$$

with

$$r_1 = \theta_n d_n d_{n+1} + d_n + d_{n+1}$$

and

$$r_2 = (\theta_{n-1}d_{n-1}d_n + d_{n-1} + d_n)r_1 - d_{n-1}d_{n+1},$$

giving us the possibility to avoid a direct analysis of the asymptotic behaviour of ψ_n in (12). To see this set

$$\theta_1 = \cdots = \theta_n = \theta = \frac{\lambda t}{n}, \qquad d_1 = \cdots = d_n = d = \frac{t}{n}, \qquad d_{n+1} = 1 - t,$$

 $t \le 1,$

and observe that $\{r_n\}$ forms a sequence of the type appearing in Lemma 1 with $a = \theta$, b = d and c = 1 - t. Hence Lemma 2 (i) gives

(15)
$$\lim_{n\to\infty}\frac{e_n}{r_n}=d(\lambda, t),$$

where we put

(16)
$$d(\lambda, t) = \left[(1-t)\cosh(t\sqrt{\lambda}) + \frac{1}{\sqrt{\lambda}}\sinh(t\sqrt{\lambda}) \right]^{-1}$$

On the other hand, inspection of (13) shows that Lemma 1 with $a = \theta$, b = c = d applies to s_1, \dots, s_{n-1} , yielding

(17)
$$s_k = d^k \Sigma_{j=0}^k \binom{k+j+1}{2j+1} (\theta d)^j, \qquad k = 1, 2, \cdots, n-1.$$

Substituting in (13) we obtain

(18)
$$s_n = d^n (1 + \theta(1 - t)) \sum_{j=0}^{n-1} {\binom{n+j}{2j+1}} (\theta d)^j + d^{n-1} (1 - t) \sum_{j=0}^{n-1} {\binom{n+j-1}{2j}} (\theta d)^j$$

to conclude that

(19)
$$\lim_{n\to\infty}\frac{e_n}{r_n} = \lim_{n\to\infty}\frac{e_n}{s_n}$$

But this together with (11) and (14) implies that

(20)
$$\lim_{n\to\infty}\psi_n(d_1,\ \cdots,\ d_{n+1})=\lim_{n\to\infty}\left(-\frac{1}{d_1}+\frac{d_2r_{n-1}}{d_1r_n}\right).$$

The limit on the right-hand side of this relation is dealt with in Lemma 2 (ii) with $a = \theta$, b = d and c = 1 - t.

Putting

$$e(\lambda, t) = \cosh(t\sqrt{\lambda}) + \sqrt{\lambda} \cdot (1-t)\sinh(t\sqrt{\lambda})$$

and recalling (16) we can formulate

LEMMA (6). With the foregoing notations

$$\lim_{n\to\infty}\psi_n(d_1,\ \cdots,\ d_{n+1}) = \begin{cases} -\sqrt{\lambda} \coth(\sqrt{\lambda}) & \text{if } t=1\\ -d(\lambda,\ t)e(\lambda,\ t) & \text{if } 0 < t < 1. \end{cases}$$

In the case xy > 0 the following theorem follows from (11), (15), (17), (18), (19) and Lemma 6. The cases xy = 0 may be obtained by passing to the respective limits (see Remark 1).

THEOREM (1). The Kac functional (2) of the diffusion bridge $\{X_{x,y}(t), 0 \le t \le 1\}$ is

$$K(x, y, \lambda, t) = \begin{cases} d(\lambda, t)[I_{\gamma-1}(2\sqrt{xy})]^{-1}I_{\gamma-1}(2d(\lambda, t)\sqrt{xy}) \\ \cdot \exp\left\{x[1 - d(\lambda, t)e(\lambda, t)] + \frac{y}{1 - t} \\ \cdot \left[\frac{d(\lambda, t)}{\sqrt{\lambda}}\sinh(t\sqrt{\lambda}) - t\right]\right\} \\ if \quad t < 1, \quad xy > 0, \\ \sqrt{\lambda} \cdot I_{\gamma-1}\left(\frac{2\sqrt{xy\lambda}}{\sinh(\sqrt{\lambda})}\right)[\sinh(\sqrt{\lambda})I_{\lambda-1}(2\sqrt{xy})]^{-1} \\ \cdot \exp\{(x + y)[1 - \sqrt{\lambda}\coth(\sqrt{\lambda})]\} \\ if \quad t = 1, \quad xy > 0, \\ [d(\lambda, t)]^{\gamma} \cdot \exp\left\{\frac{y}{1 - t}\left[\frac{d(\lambda, t)}{\sqrt{\lambda}}\sinh(t\sqrt{\lambda}) - t\right]\right\} \\ if \quad t < 1, \quad x = 0, \quad y > 0, \\ \left[\frac{\sqrt{\lambda}}{\sinh(\sqrt{\lambda})}\right]^{\gamma}\exp\{y[1 - \sqrt{\lambda}\coth(\sqrt{\lambda})]\} \\ if \quad t = 1, \quad x = 0, \quad y > 0, \\ [d(\lambda, t)]^{\gamma}\exp\{x[1 - d(\lambda, t) \cdot e(\lambda, t)]\} \\ if \quad t < 1, \quad x = 0, \quad y > 0, \\ [d(\lambda, t)]^{\gamma}\exp\{x[1 - d(\lambda, t) \cdot e(\lambda, t)]\} \\ if \quad t < 1, \quad x > 0, \quad y = 0, \\ [d(\lambda, t)]^{\gamma} \quad if \quad t < 1, \quad x = y = 0. \end{cases}$$

COROLLARY (1) Let f_x be as defined in (4). Then

 $\int_0^\infty K(x, y, \lambda, 1) f_x(y) \, dy = (\text{sech } \sqrt{\lambda})^{\gamma} \exp\{-x\sqrt{\lambda} \tanh \sqrt{\lambda}\}, \qquad x \ge 0.$ Proof. Consult e.g [8] and use the fact that for all x, $1 + \sinh^2(x) = \cosh^2(x)$.

Taking into account what we said in Section 1 about the randomization relation connecting $X_{x,y}(t)$ and $X_x(t)$ it is obvious that we will meet again with the expression of Corollary 1 in the next section when studying Kac functionals of the form (3).

4. The diffusion $X_x(t)$.

In this section we investigate the Kac functional (3) of the diffusion process $\{X_x(t), t \ge 0\}$. Adopting the same method presented in the preceding section we study the limit of

$$L_{n,x,g}(\theta_1, \cdots, \theta_n; t_1, \cdots, t_n) = E[\exp\{-\sum_{k=1}^n \theta_k X_x(t_k)\} \cdot g(X_x(t))],$$

confining ourselves to the case

$$\theta_k = \frac{\lambda t}{n}, t_k = \frac{kt}{n}, t > 0, \qquad k = 1, \cdots, n.$$

Denoting the resulting Laplace transform $L_{n,x,g}(\lambda, t)$, setting $\theta = \frac{\lambda t}{n}$, $d = \frac{t}{n}$ and with the aid of Lemma 5 and [8] carrying out n - 1 integrations leads to

(21)
$$L_{n,x,g}(\lambda, t) = (\sqrt{x})^{1-\gamma} \frac{d^{n-2}}{s_{n-1}} \cdot \exp\{x\psi_{n-1}(d, \cdots, d)\}$$
$$\cdot \int_0^\infty \exp\left\{-v\left(\theta + \frac{1}{d} - \frac{s_{n-2}}{s_{n-1}}\right)\right\} I_{\gamma-1}\left(2\frac{d^{n-2}}{s_{n-1}}\sqrt{xv}\right)(\sqrt{v})^{\gamma-1} \cdot g(v) \ dv,$$

with ψ_{n-1} the function introduced in (12) and s_{n-1} , s_{n-2} obeying the recursion rule (13).

The integral can be evaluated in closed form for functions g such as

(i) $g(v) = \exp\{-\rho v\}, \quad \rho \ge 0$ (ii) $g(v) = v^s, \quad s > -\gamma.$

We first treat the case(i) which is of particular interest as (3) then gives the joint distribution of $X_x(t)$ and $\int_0^t X_x(w) dw$, t > 0. Performing the integration in (21) and setting

$$q_n = (1 + (\theta + \rho)d)s_{n-1} - ds_{n-2}$$

one verifies that

$$L_{n,x,g}(\lambda, t) = \left[\frac{d^{n-1}}{q_n}\right]^{\gamma} \exp\left\{x\left[\psi_{n-1}(d, \cdots, d) + \frac{d^{2n-3}}{s_{n-1}q_n}\right]\right\}.$$

The sequence $\{s_n\}$ and its associated sequence $\{r_n\}$ in (20) being of the form (6) we conclude from Lemma 3 and (20)

THEOREM (2). For all $x, t \ge 0$

(22)

$$E(\exp\{-\rho X_{x}(t) - \lambda \int_{0}^{t} X_{x}(w) dw\}) = \left[\frac{\rho}{\sqrt{\lambda}}\sinh(t\sqrt{\lambda}) + \cosh(t\sqrt{\lambda})\right]^{-\gamma} \cdot \exp\left\{-x \frac{\lambda \sinh(t\sqrt{\lambda}) + \rho\sqrt{\lambda}\cosh(t\sqrt{\lambda})}{\rho \sinh(t\sqrt{\lambda}) + \sqrt{\lambda}\cosh(t\sqrt{\lambda})}\right\}.$$

Remark 3. a) In the case $\lambda = 0$ (22) reduces to

$$(1+\rho t)^{-\gamma} \exp\left\{-x \frac{\rho}{1+\rho t}\right\}$$

which for t = 1 is the Laplace transform of f_x in (4).

b) If $\rho = 0$, t = 1 (22) coincides with the expression gotten in Corollary 1.

Assume now that g is of the form (ii). From (21) we obtain

$$L_{n,x,g}(t, \lambda) = \frac{\Gamma(s+\gamma)}{\Gamma(\gamma)} \left[\frac{d^{n-2}}{s_{n-1}} \right]^{\gamma} \cdot \left[\frac{ds_{n-1}}{p_n} \right]^{\gamma+s} \exp\{x\psi_{n-1}(d, \dots, d)\}$$
$$\cdot {}_1F_1\left(\gamma+s; \gamma; \frac{xd^{2n-3}}{p_n s_{n-1}}\right),$$

where we put $p_n = (1 + \theta d)s_{n-1} - ds_{n-2}$ and ${}_1F_1$ denotes the confluent hypergeometric function. Just as above we get with the aid of Lemma 3 and (20).

THEOREM (3). For all
$$x, t \ge 0$$
 and $s > -\gamma$
 $E[\exp\{-\lambda \int_0^t X_x(v) dv\}[X_x(t)]^s] = \frac{\Gamma(s+\gamma)}{\Gamma(\gamma)} [\operatorname{sech}(t\sqrt{\lambda})]^{\gamma}$
 $\cdot \left[\frac{1}{\sqrt{\lambda}} \tanh(t\sqrt{\lambda})\right]^s \exp\{-x\sqrt{\lambda} \coth(t\sqrt{\lambda})\}_1 F_1\left(\gamma + s; \gamma; \frac{2x\sqrt{\lambda}}{\sinh(2t\sqrt{\lambda})}\right).$

Remark 4. It is known that the confluent hypergeometric function may be written in terms of the Laguerre polynomials (see e.g. [8])

(23)
$${}_1F_1(-n;\beta;v) = n! \frac{\Gamma(\beta)}{\Gamma(n+\beta)} \cdot L_n^{\beta-1}(v).$$

Being interested in moments of $X_x(t)$ we may set $\lambda = 0$ in Theorem 3 to obtain for integral $s > -\gamma$

$$E[X_{x}(t)]^{s} = \frac{\Gamma(s+\gamma)}{\Gamma(\gamma)} t^{s} \exp\left\{-\frac{x}{t}\right\} {}_{1}F_{1}\left(\gamma+s;\gamma;\frac{x}{t}\right)$$
$$= \frac{\Gamma(s+\gamma)}{\Gamma(\gamma)} t^{s}{}_{1}F_{1}\left(-s;\gamma;-\frac{x}{t}\right) \qquad (\text{see [8]})$$
$$= s! t^{s} L_{s}^{\gamma-1} \left(-\frac{x}{t}\right) \qquad \text{due to (23).}$$

This last expression reduces e.g. for s = 1 to

$$EX_x(t) = x + \gamma t.$$

Remark 5. It is well known (see e.g. [3]) that the Kac functional satisfies a partial differential equation which reads in our case

(24)
$$\frac{\partial}{\partial t} K_g(x, \lambda, t) = -\lambda x K_g(x, \lambda, t) + \gamma \frac{\partial}{\partial x} K_g(x, \lambda, t)$$

 $+ x \frac{\partial^2}{\partial x^2} K_g(x, \lambda, t),$

with the initial condition $K_g(x, \lambda, 0) = g(x)$. Hence Theorems 2 and 3 state explicit solutions of (24).

5. The total progeny of a Galton-Watson process

Let $\{X_n\}$ be the critical Galton-Watson process with immigration as described in Section 1. Assume $X_0 = 0$. Pakes [10] studied the behaviour of

$$Y_n = \sum_{k=0}^n X_k,$$

the total number of individuals that have existed up to and including the n-th generation. He has shown that

(25)
$$\lim_{n\to\infty} E\left(\exp\left\{-\frac{\lambda}{\alpha n^2} \cdot Y_n\right\}\right) = [\operatorname{sech}(\sqrt{\lambda})]^{\gamma}.$$

As observed in Remark 3b) Theorem 2 states that

$$E(\exp\{-\lambda \int_0^1 X_0(v) \, dv\}) = [\operatorname{sech}(\sqrt{\lambda})]^{\gamma},$$

hence constituting a diffusion counterpart of (25).

In Section 1 we pointed out that a critical Galton-Watson process $\{Z_n\}$ with $Z_0 = 1$, Var $Z_1 = 2\alpha$ and infinite survival time, the so-called (critical) Q-process converges weakly to a limiting diffusion with $\mu(v) = 2$, $\sigma^2(v) = 2v$ i.e. to $\{X_0(t), t \ge 0\}$ with parameter $\gamma = 2$ [5]. Whence we would expect that

$$\lim_{n\to\infty} E\left(\exp\left\{-\frac{\lambda}{\alpha n^2} \sum_{k=0}^n Z_k\right\} \middle| Z_{\infty} > 0\right) = [\operatorname{sech}(\sqrt{\lambda})]^2$$

which is indeed the case [9].

Also in [9] Pakes has proved the limit relation

(26)
$$\lim_{n\to\infty} E\left(\exp\left\{-\frac{\lambda}{\alpha n^2} \sum_{k=0}^n Z_k\right\} \middle| Z_n > 0\right) = \frac{2\sqrt{\lambda}}{\sinh(2\sqrt{\lambda})}$$

whose diffusion analogue we produce in the following manner.

In (1) replace X_n by Z_n and recall what we said in Section 1: In the sense of finite-dimensional distributions (1) is approximated by $\{X_{x,y}(t), 0 \le t \le 1\}$

with $\gamma = 2$. On the other hand as shown by Lamperti & Ney [5],

(27)
$$\left\{ \frac{Z_{[nt]}}{\alpha n}; \ 0 \le t \le 1 \, | \, Z_0 = [\alpha xn + o(n)], \, Z_n > 0 \right\}$$

tends weakly to a nonhomogeneous diffusion $\{Y_x(t), 0 \le t \le 1\}$ whose distribution may be derived from that of $\{X_{x,y}(t), 0 \le t \le 1\}$ with $\gamma = 2$ by randomization [7], treating y as random variable with density function ξ_x on $(0, \infty)$, defined by

$$\xi_x(z) = \begin{cases} \exp\{-z\} & \text{if } x = 0 \\ \\ \sqrt{\frac{x}{z}} I_1(2\sqrt{xz}) \cdot \frac{\exp\{-x-z\}}{1-\exp\{-x\}} & \text{if } x > 0. \end{cases}$$

So (26) should be equal to

(28)
$$\int_0^\infty E(\exp\{-\lambda \int_0^1 X_{0,y}(v) \, dv\}) \xi_0(y) \, dy.$$

Indeed, with the aid of Theorem 1 we may write (28) as

$$\begin{split} &\left[\frac{\sqrt{\lambda}}{\sinh(\sqrt{\lambda})}\right]^2 \int_0^\infty \exp\{-y\sqrt{\lambda} \coth(\sqrt{\lambda})\} \, dy \\ &= \left[\frac{\sqrt{\lambda}}{\sinh(\sqrt{\lambda})}\right]^2 \left[\sqrt{\lambda} \coth(\sqrt{\lambda})\right]^{-1} = \sqrt{\lambda} [\sinh(\sqrt{\lambda}) \cdot \cosh(\sqrt{\lambda})]^{-1} \\ &= \frac{2\sqrt{\lambda}}{\sinh(\sqrt{\lambda})}, \end{split}$$

affirming the conjecture.

Similarly one can obtain the Laplace transform of the integral of the Lamperti-Ney process $\{Y_x(t), 0 \le t \le 1\}$ from the expressions of Theorem 1, integrating with respect to $\xi_x(y)$. Confining ourselves to the case t = 1 we can state

THEOREM (4). Let $\{Y_x(s), 0 \le s \le 1\}$ be the Lamperti-Ney diffusion process approximating (27). Then

$$E(\exp\{-\lambda \int_0^1 Y_x(s) \, ds\}) = \begin{cases} \frac{2}{1 - \exp\{-x\}} \exp\{-x\sqrt{\lambda} \coth(2\sqrt{\lambda})\}\sinh\left(\frac{x\sqrt{\lambda}}{\sinh(2\sqrt{\lambda})}\right) & \text{if } x > 0\\ \frac{2\sqrt{\lambda}}{\sinh(2\sqrt{\lambda})} & \text{if } x = 0. \end{cases}$$

Proof. Use e.g. formula 15.25 (multiplied by the missing factor $\exp\{-a^2/4p\}$) in [8] and the relation [2]

$$\gamma(1, 2x) = 2e^{-x}\sinh(x)$$

for the incomplete gamma function $\gamma(\cdot, \cdot)$.

6. A connection with Brownian motion

Let n be a natural number, $B(t) = (B_1(t), \dots, B_n(t))$ be a standard ndimensional Brownian motion process and set

$$W(t) = \frac{1}{2}(B_1^2(t) + \cdots + B_n^2(t)).$$

Assume $\gamma = n/2$. It is easy to see (use e.g. Theorem 2.1, p. 173 in [3]) that then $\{X_0(t), t \ge 0\}$ and $\{W(t), t \ge 0\}$ are equal in distribution. Clearly, this observation (together with Theorems 2 and 3) provides the possibility to deduce explicit expressions for Kac functionals of W(t).

We give just one example assuming n = 1, whence $\gamma = \frac{1}{2}$. Suppose that B(t) is started in $x \ge 0$. As this induces the initial condition $W(0) = x^2/2$ for $W(t) = B^2(t)/2$ we obtain from Theorem 2,

$$E(\exp\{-\lambda \int_0^t B^2(v) \, dv\} | B(0) = x)$$

= $E(\exp\{-2\lambda \int_0^t X_{x^2/2}(v) \, dv\})$
= $\sqrt{\operatorname{sech}(t\sqrt{2\lambda})} \cdot \exp\{-\frac{x^2}{2} \cdot \sqrt{2\lambda} \cdot \tanh(t\sqrt{2\lambda})\}$

which reduces for t = 1, x = 0 to Kac's formula [4].

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas Sucursal 4 – Casilla de Correo 16 (1900) La Plata, Argentina

References

- W. J. BUHLER, AND B. MELLEIN, Integrals of Birth and Death Processes; J. Math. Biology 10 (1980) 205-207.
- [2] H. EXTON, Handbook of Hypergeometric Integrals; Ellis Horwood Limited, Chichester, 1978.
- [3] S. KARLIN, AND H. M. TAYLOR, A second course in stochastic processes, Academic Press, New York, 1981.
- [4] H.-H. KUO, Gaussian Measures in Banach Spaces; Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975.
- [5] J. LAMPERTI, AND P. NEY, Conditioned branching processes and their limiting diffusions; Theory Prob. Appl. 13 (1968) 128-139.
- [6] B. MELLEIN, Local limit theorems for the critical Galton-Watson process with immigration; Rev. Col. Mat. XVI, 1 (1982) 31–56.
- [7] ——, Diffusion limits of conditioned critical Galton-Watson processes, Rev. Col. Mat. XVI, 3 (1982) 125–140.
- [8] F. OBERHETTINGER, AND L. BADII, Tables of Laplace transforms, Springer-Verlag, Berlin, 1973.

- [9] A. G. PAKES, Some limit theorems for the total progeny of a branching process; Adv. Appl. Prob. 3 (1971) 176-192.
- [10] —, Further results on the critical Galton-Watson process with immigration; J. Austral. Math. Soc. 13 (1972) 277–290.
- [11] P. S. PURI, A method for studying the integral functionals of stochastic processes with applications. I. Markov Chain case; J. Appl. Prob. 8 (1971) 331-343.