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KAC FUNCTIONALS OF DIFFUSION PROCESSES 
APPROXIMATING CRITICAL BRANCHING PROCESSES 

BY BERNHARD MELLEIN* 

Abstract. A critical Galton-Watson process with immigration, initiated by 
[xn] objects, tends in the sense of finite-dimensional distributions, as n - co, 
to a diffusion process IXx(t), t ;;;,, 0I on [0, co) with drift parameter µ(v) = 
--y > 0 and diffusion parameter a-2(v) = 2v, if additionally conditioned on 
having the size [yn] at time n to a diffusion bridge 

IXx,y(t), 0 ::::: t:::;; 1} with Xx,y(0) = X and Xx,y(l) = y. 

In this paper we study Kac functionals of these processes obtaining diffusion 
counterparts of limit theorems for the total progeny of critical Galton-Watson 
processes. 

1. Introduction 

Let Xn be the number of particles at time n in a critical Galton-Watson 
process with immigration and f and h be the probability generating functions 
of its offspring and immigration distributions respectively. Denote the variance 
of the offspring distribution by 2 ex and let --y = ex -i h' ( 1-). Imposing some 
further assumptions it was shown [7] that, in the sense of finite-dimensional 
distributions, 

(1) { :[~tJ; 0::::: t:::;; 11 X 0 = [axn + o(n)], Xn = [ayn + o(n)]}, 

converges, as n - co, to a nonhomogeneous diffusion process IXx,y(t), 
0 ::::: t :::;; 11 on [0, co) with initial state Xx,y(0) = x, final state Xx,y(l) = y, 
infinitesimal variance a-2(v, s) = 2v and a rather complicated drift parameter 
(see [7]). Its n-dimensional density function is given in Lemma 4. In Section 
3 we find an explicit expression for the Laplace transform 

(2) K(x, y, A, t) = E(expl- A Ji Xx,y(s) ds}), 

of the diffusion bridge I Xx,y ( t), 0 ::::: t :::;; 1}. 

In Section 4 we study Kac functionals of the form 

(3) Kg(x, A, t) = E[expl- A g Xx(s) ds}g(Xx(t))], 

where IXx(t), t;;;,, 0I denotes the weak limit (n - co) of 

{:l:l; t;;;,, 0 I Xo = [exxn + o(n)]}, 

0::::: t:::;; 1, 

t;;;,, 0, 
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and where g may be a power function (exponent > --y) or the exponential 
function. The multivariate density function of IXAt), t ~ OJ is stated in 
Lemma 5 and may be used to identify the process as a time homogeneous 
diffusion process on [O, oo), with initial state Xx(O) = x, drift parameter 
µ(v) = 'Y, diffusion parameter a 2(v) = 2v and no boundary conditions adjoined. 
(See also [3]). 

At this point we mention that the distribution of Xx ( t) may be obtained 
from that of Xx,y(t) by randomizing the quantity y (see Remark 2), more 
precisely, treating it as a random variable with the density function fx of Xx(l), 
given by 

(4) V ~ 0, 

where Lr-i is the modified Bessel function. Whence integrating (2) with respect 
to fx(Y) should lead to (3) with g = 1. In this spirit is Corollary 1 of Section 3. 

It is obvious that the distribution of the process Xx,y(t), just as that of 
Xx(t), depends on the parameter 'Y, the case 'Y = 2 playing a special role in 
other contexts: If in (1) IXnl is a (sufficiently nice) critical Galton-Watson 
process with variance 2a (i.e. E(X/ I X 0 = 1) = 2a + 1), then (1) is found [7] 
to be approximated by IXx,y(t), 0 :!S;; t :!S;; 1) with parameter 'Y = 2. Moreover 
the distribution of the diffusion process gotten by Lamperti & Ney [5] as an 
approximation of the critical Galton-Watson process with finite survival time 
(i.e. by conditioning on its not being extinct at time n and on having initial 
size [axn]) may be obtained from that of Xx,y(t) with 'Y = 2 by randomization 
of y. For more details see Section 5 where we deal with the Laplace transform 
of the integral of the Lamperti-Ney diffusion. Finally, IXx(t), t ~ OI with drift 
parameter 'Y = 2, approximates the critical Galton-Watson process with 
infinite survival time, the so-called Q-process [5]. 

Pakes ([9], [10]) has proven limit theorems for the total progeny of the 
critical Galton-Watson process (with and without immigration) and the critical 
Q-process. Their diffusion analogues will be presented in Section 5, the 
relations of the preceding paragraph connecting the different processes being 
relevant. 

The observation that in the case 'Y = n/2, n = 1, 2, • • •, Xo(t) equals in 
distribution ½(B/(t) + • • • + B/(t)), where IBk(t), t ~ Ol are independent 
standard Brownian motions, is used in Section 6 to derive a generalization of 
Kac's formula giving the distribution of the integral of the squared Brownian 
motion process. 

For a detailed survey of the work done by several authors on integral 
functionals of stochastic processes in various domains of applications the 
reader may consult Puri [11]. 

2. Some preliminary results 

The proofs of the following three lemmas are straightforward and will be 
omitted. 



KAC FUNCTIONALS OF DIFFUSION PROCESSES 97 

LEMMA (1). Let a, b and c be constants. If the sequence fen) satisfies the 
recurrence relation 

n = 3, 4, ... 

with 

c1 = abc + b + c 

c2 = (ab2 + 2b)c1 - cb 

then 

bn-1 ~ n (n + j) ( b)j bn ~ n-1 (n + j ) ( b)j Cn = C ~j=O 2j a + ~j=O 2j + 1 a ' 

(5) 

In the case b = c the solution reduces to 

(6) _ bn ~ n (n + j + 1) ( b)j Cn - ~j=O 2j + 1 a ' n = 1, 2, 

LEMMA (2). Let a', b' > 0 and Cn be as in (5) with 

a' 
a=-

n 

a',,,d c ~ 0. Set w = ✓a'b'. Then 

' 
b' 

b =
n 

n = 1, 2, • • • 

(i) 

(ii) 

limn_."' b~~1 = c • cosh(w) + ✓b'/a'sinh(w). 

limn_."' (Cn-1 _ !) = _ cosh(w) + c~ sinh(w) . 
Cn b c • cosh(w) + ✓b'/a' • sinh(w) 

An obvious consequence of this result is stated separately as 

LEMMA (3). Let a', b', a, b, w be as in the preceding lemma. If Cn has the 
form (6) then 

(i) 

(ii) 

limn__.oo b~~l = ✓b' /a' sinh(w) 

limn__.oo ( c;: 1 - ~) = - ✓a' /b' -coth(w) 

In what follows it is of fundamental importance to know the multidimen
sional distribution functions of the processes Xx,y ( t) and Xx ( t). To state the 
formulae we introduce some notation. From now on let 

n = 1, 2, • • • 
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and define for nonnegative x = Xo, Xi, • • • , Xn 

(7) gx(X1, • .. , Xn) = fH=1 ~k l-y-1 (:k .Jxk-1Xk) • exp{- ~k (Xk-1 + xk)}, 

where I,, is the modified Bessel function of order p, given by 

1 1 
I,,(2v) = Lk=o k! • r (k + 1 + p) v 2k+,,_ 

LEMMA (4). ([7]). Let (x0 =) x, y > 0, tn < 1 and set dn+i = 1 - tn, The joint 
density function of (Xx,y(t1), • • ·, Xx,y(tn)) is 

I 

(8) fx,y(X1, .. ·, Xn) = [dn+1lr1(2v1ryW 1 • Lr-1 (d:+1 ✓yx;:) 
f Y + Xn1 

exp-l X + y - dn+l r . gx(xi, ••• ' Xn), 

Remark 1. We do not give the explicit form of the densities fo,y, fx,o and fo,o 
but mention that they may be obtained as limits of (8), sending x resp. y resp. 
x and y to zero. 

LEMMA (5). Let x0 = x ;a,, 0. The random vector (Xx(t 1), • • •, XxCtn)) has 
density function 

(9) fx (xi, · · ·, Xn) = [X: ry-l)/
2 

• gx(X1, · · ·, Xn), X > 0. 

Furthermore 

f o(Xi, • • ·, Xn) = limx1ofxCx1, • • ·, Xn), 

PROOF. As m - oo apply the local limit theorem for the Galton-Watson 
process with immigration [6] to 

to get (9) immediately. 

Remark 2. Consulting e.g. [8] it is easy to verify that 

fx(Xi, • • ·, Xn) = f~ fx,y(X1, • • ·, Xn)fx(Y) dy, 

where fx is the density of Xx (1) stated in (4). Hence the distributions of the 
processes Xx(t) and Xx,y(t) are connected by randomization. 

3. The diffusion bridge Xx,y(t). 

Our approach to find the integral functional (2) is the most direct one. As 
suggested in [1] we approximate the integral under consideration by the 



I 

KAC FUNCTIONALS OF DIFFUSION PROCESSES 99 

Riemann sum 

~ ~Z=i Xx,y (~) 

and obtain (2) as the limit of the multidimensional Laplace transform 

(10) Ln,x,y(0i, • • ·, 0n; ti, • • ·, tn) = E(exp I- ~Z=i 0kXx,y(tk)l) 

of the X(kt/n) with ()k = At/n and tk = kt/n, k = 1, • • •, n. 
We concentrate on the case x > 0, y > 0. The density function given in 

Lemma 4 admits writing (10) as an iterated integral. Carrying out the integra
tions in the order xi, x2, • • •, Xn (the necessary integral formulae may be found 
e.g. in [8]) leads to 

Ln,x,y(Oi, • • ·, Bn; ti, · · ·, tn) = en • I-r-i (2 en ./zy)[J-y-i(2./zy)ri 
Sn Sn 

(11) 

with en = d 2 • • • dn, 

(12) 

and the Sn satisfying the recurrence relation 

(13) Sk = (0kdkdk+l + dk + dk+1)Sk-i - dk-idk+lSk-2, 

where 

k = 3, 4, · • ·, n, 

and 

s2 = (02d2ds + d2 + d3)Si - did3. 

Reversing the order of integration in (10) yields 

Ln,x,y{0i, · • ·, 0n; ti, · · ·, tn) = en 1-r-i (2 en ./zy)[J-y-i(2./zy)r~ 
rn rn 

(14) 

f ( 1 d2rn-i) [ 
-expl X 1 - di+ dirn + tn(Y, di, ••• 'dn+i) f 

where tn (y, di, • • • , dn+1) stands for an expression ( equally complicated looking 
as that for ifin in (12)) not depending on x and rn being recursively determined 
by 

k = 3, 4, .. ·, n, 
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with 

and 
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r2 = (8n-1dn-1dn + dn-1 + dn)r1 - dn-ldn+l, 

giving us the possibility to avoid a direct analysis of the asymptotic behaviour 
of fn in (12). To see this set 

dn+l = 1 - t, 

t ~ 1, 

and observe that Ir n I forms a sequence of the type appearing in Lemma 1 with 
a = 0, b = d and c = 1 - t. 
Hence Lemma 2 (i) gives 

(15) 

where we put 

(16) d(A, t) = [(1 - t)cosh(t✓X) + ~ sinh(t✓X)r1 

On the other hand, inspection of (13) shows that Lemma 
b = C = d applies to S1, • • •, Sn-1, yielding 

1 with a = 0, 

(17) - dk k (k + j + 1) ( d)j Sk - :r j=O 2j + l 0 , k = 1, 2, • • • , n - 1. 

Substituting in (13) we obtain 

(18) Sn= dn(l + 0(1 - t)) iy::J (;j ++\) (0d)j 

+ dn- 1(1 - t) :ry:;J (n + ,j- 1) (0d)j 

to conclude that 

(19) 

But this together with (11) and (14) implies that 

(20) limn-+oov,'n(di, • • ·, dn+l) = limn-+"' (- :l + d~~;: 1). 

The limit on the right-hand side of this relation is dealt with in Lemma 2 (ii) 
with a = 0, b = d and c = 1 - t. 
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Putting 

e(;\, t) = cosh(t✓A) + ✓A • (1 - t)sinh(t✓A) 

and recalling (16) we can formulate 

LEMMA (6). With the foregoing notations 

. _ J- ✓A coth( ✓A) if t = 1 
hmn---+ooi/'n(d1, • • ·, dn+1) - l- d(;\, t)e(A, t) if 0<t<l. 

In the case xy > 0 the following theorem follows from (11), (15), (17), (18), 
(19) and Lemma 6. The cases xy = 0 may be obtained by passing to the 
respective limits (see Remark 1). 

THEOREM (1). The Kac functional (2) of the diffusion bridge {Xx,y(t), 
0~t~ljis 

d(;\, t )[Ly-1(2 ✓xy )r 1l-r 1(2d(;\, t) ✓xy) 

• exp{x[l - d(X, t)e(X, t)] + 1 ~ t 

•[d~t) sinh(t✓X) - t]} 
if t < 1, xy > 0, 

( 2../xyi. ) . ,- ,- 1 ✓A • Lr-1 . ✓A [smh( v;\)l1,-1(2vxy)r 
smh( ;\) 

• exp{(x + y)[l - ✓A coth( ✓A)]l 

K(x, y, ;\, t) = if t = 1, xy > 0, 

{ y [d(;\, t) • ( ") ]1 [d(;\, t)F -exp 1 _ t ✓A smh tv;\ - t [ 

if t < 1, x = 0, y > 0, 

[ . ✓A ✓A ]\xp{y[l - ✓A coth( ✓A)]l 
smh( ;\) 

if t = 1, X = 0, y> 0, 

[d(;\, t)]'Yexp{x[l - d(X, t)-e(X, t)]l 

if t ~ 1, X > 0, y = 0, 

[d(;\, t)]'Y if t ~ 1, x = y = 0. 

COROLLARY (1) Let fx be as defined in (4). Then 

Jo K(x, y, X, l)fx(y) dy = (sech ✓X)-Yexp{-x✓A tanh .Jxj, X ;.i, 0. 

Proof. Consult e.g [8] and use the fact that for all x, 1 + sinh 2(x) = cosh2(x). 
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Taking into account what we said in Section 1 about the randomization 
relation connecting Xx,y ( t) and Xx ( t) it is obvious that we will meet again 
with the expression of Corollary 1 in the next section when studying Kac 
functionals of the form (3). 

4. The diffusion Xx(t). 

In this section we investigate the Kac functional (3) of the diffusion process 
IXx(t), t ;a,, Oj. Adopting the same method presented in the preceding section 
we study the limit of 

Ln,x,g(Oi, ••• ' On; ti, ••• 'tn) = E[expl- ~k=l OkXx(tk)} • g(Xx(t))], 

confining ourselves to the case 

'}...t kt 
(h = - , tk = - , t > 0, k = 1, • • ·, n. 

n n 

Denoting the resulting Laplace transform Ln,x,g(A, t), setting 8 = At, d = !_ 
n n 

and with the aid of Lemma 5 and [8] carrying out n - 1 integrations leads to 

(21) 

dn-2 
Ln,x,g(A, t) = ( ✓x)l--y - -explxfn-1(d, · • •, d)l 

Sn-I 

00 J ( 1 Sn-2)1 ( dn- 2 r-) 1 1 ·fo exp·l-v O + -d - - Jlr1 2- vxv .('1v)'Y- -g(v) du, 
Sn-1 Sn-1 

with V/n-1 the function introduced in (12) and Sn-i, Sn- 2 obeying the recursion 
rule (13). 

The integral can be evaluated in closed form for functions g such as 

(i) g(v) = expl-pv}, p ;a,, 0 

(ii) g(v) = us, s > --y. 

We first treat the case(i) which is of particular interest as (3) then gives the 
joint distribution of Xx(t) and H Xx(w) dw, t > 0. Performing the integration 
in (21) and setting 

qn = (1 + (0 + p)d)sn-1 - dsn-2 

one verifies that 

The sequence !snl and its associated sequence lrnl in (20) being of the form 
(6) we conclude from Lemma 3 and (20) 



KAC FUNCTIONALS OF DIFFUSION PROCESSES 

THEOREM (2). For all x, t;;;:,, 0 

E(expl-pXx(t) - "'A fb Xx(w) dw)) = 
(22) 
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[ P . h( ") h( ")]-,, f "'A sinh(tv'),) + pv'X cosh(tv'X) 1 
- sm tv"'A + cos t-v"'A -exp-l-x • (· 
Jx p sinh(tv'X) + v'X cosh(tv'X) J 

Remark 3. a) In the case "'A = 0 (22) reduces to 

(1 + pt)-,,explf-x _P _i 
1 + ptJ 

which for t = 1 is the Laplace transform of fx in (4). 
b) If p = 0, t = 1 (22) coincides with the expression gotten in Corollary 1. 

Assume now that g is of the form (ii). From (21) we obtain 

r (s + 'Y) [dn- 2],, [dsn-i],,+s 
Ln,x,g(t, A)= r(-y) Sn-1 • Pn exp{xfn-1(d, • • ·, d)l 

·1F1('Y + s; -y; xd2n-3)' 
PnBn-1 

where we put Pn = (1 + 0d)sn-l - dsn- 2 and 1F1 denotes the confluent 
hypergeometric function. Just as above we get with the aid of Lemma 3 and 
(20). 

THEOREM (3). For all x, t;;;:,, 0 ands> --y 

r(s + -y) " 
E[expl-"'A H Xx(v) dvl[Xx(t)]8] = r(-y) [sech(t-v"'A)P 

·[ ~ tanh(tv'X)].expl-xv'X coth(tv'X)hFi('Y + s; -y; . 2x'1~). 
-v"'A smh(2t "'A) 

Remark 4. It is known that the confluent hypergeometric function may be 
written in terms of the Laguerre polynomials (see e.g. [8]) 

(23) F (-n· (3· v) = n 1 r(;J) ·Ln/3-l(v). 
i i ' ' • r (n + (3) 

Being interested in moments of Xx(t) we may set A= 0 in Theorem 3 to obtain 
for integral s > - 'Y 

(see [8]) 

due to (23). 
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This last expression reduces e.g. for s = 1 to 

EXx(t) = X + "(t. 
Remark 5. It is well known (see e.g. [3]) that the Kac functional satisfies a 

partial differential equation which reads in our case 

(24) 
a a 
at Kg(x, ;\, t) = - ;\xKg(x, ;\, t) + 'Yax Kg(x, ;\, t) 

a2 

+ x -a 2 Kg(x, A, t), 
X 

with the initial condition Kg(x, ;\, 0) = g(x). Hence Theorems 2 and 3 state 
explicit solutions of (24). 

5. The total progeny of a Galton-Watson process 

Let {Xnl be the critical Galton-Watson process with immigration as de
scribed in Section 1. Assume X 0 = 0. Pakes [10] studied the behaviour of 

Yn = Lk=O Xk, 

the total number of individuals that have existed up to and including the n-th 
generation. He has shown that 

(25) limn-+co E(exp{- a~ 2 • Yn}) = [sech(~)p. 

As observed in Remark 3b) Theorem 2 states that 

E(exp{-;\ n Xo(v) dvl) = [sech( ~)P, 

hence constituting a diffusion counterpart of (25). 
In Section 1 we pointed out that a critical Galton-Watson process {Znl with 

Z 0 = 1, Var Z1 = 2a and infinite survival time, the so-called (critical) Q
process converges weakly to a limiting diffusion with µ(v) = 2, a 2 (v) = 2v i.e. 
to {X0 (t), t ~ OI with parameter 'Y = 2 [5]. Whence we would expect that 

limn-+co E(exp{- a~2 Lk=O zk}lzco > o) = [sech(~)] 2 

which is indeed the case [9]. 
Also in [9] Pakes has proved the limit relation 

(26) • ( { ;\ n 11 ) 2~ hmn-+CO E exp - -2 L k=O zkJ. Zn > 0 = ' 
an sinh(2~) 

whose diffusion analogue we produce in the following manner. 

In (1) replace Xn by Zn and recall what we said in Section 1: In the sense of 
finite-dimensional distributions (1) is approximated by {Xx,y(t), 0 '!!:: t '!!:: 11 
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with 'Y = 2. On the other hand as shown by Lamperti & Ney [5], 

(27) {~~l; 0 :::;; t :s;; 11 Zo = [axn + o(n) ], Zn > 0 }-
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tends weakly to a nonhomogeneous diffusion IYAt), 0:::;; t :s;; 1} whose distri• 
bution may be derived from that .of IXx,y(t), 0 :s;; t :s;; 1} with 'Y = 2 by 
randomization [7], treating y as random variable with density function ~x on 
(0, oo ), defined by 

expl-zl if X = 0 

L(z) = 
"\ rx I1(2✓xz)• expl-x - z} 
V; 1 - expl-x} 

if X > 0. 

So (26) should be equal to 

(28) Jo E(expl-X f6 Xo, y(u) dv}Ho(Y) dy. 

Indeed, with the aid of Theorem 1 we may write (28) as 

[ ✓A. ]2 . ~ J0 expl-y✓Xcoth(✓X)}dy 
smh( X) 

[ ✓A. ]2 
= . " [ ✓A. coth( ✓X)]- 1 = ✓X[sinh( ✓X)-cosh( ✓X)]-1 

smh( vX) 

2✓X 
= 

sinh( ✓A.)' 

affirming the conjecture. 

Similarly one can obtain the Laplace transform of the integral of the 
Lamperti•Ney process IYx(t), 0:::;; t ~ 1} from the expressions of Theorem 1, 
integrating with respect to L(y). Confining ourselves to the case t = 1 we can 
state 

THEOREM (4). Let \Yx(s), 0 :s;; s :s;; 1} be the Lamperti•Ney diffusion process 
approximating (27). Then 

E(exp\-X f6 Yx(s) ds)) 

2 I } expl-x✓X coth(2✓X)}sinh(. x✓X ✓A) 
1 - exp -x smh(2 X) 

if X > 0 

= 

sinh(2✓X) 
if X = 0. 
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Proof. Use e.g. formula 15.25 (multiplied by the missing factor exp{-a 2/ 

4p l) in [8] and the relation [2] 

')'(l, 2x) = 2e-xsinh(x) 

for the incomplete gamma function 'Y ( •, • ). 

6. A connection with Brownian motion 

Let n be a natural number, B(t) = (B1 (t), • • •, Bn(t)) be a standard n
dimensional Brownian motion process and set 

W(t) = ½(B12 (t) + · · · + B/(t)). 

Assume 'Y = n/2. It is easy to see (use e.g. Theorem 2.1, p. 173 in [3]) that 
then {X0 (t), t;;;:, 0I and {W(t), t;;;:, 0I are equal in distribution. Clearly, this 
observation (together with Theorems 2 and 3) provides the possibility to 
deduce explicit expressions for Kac functionals of W(t) .. 

We give just one example assuming n = 1, whence 'Y =½.Suppose that B(t) 
is started in x;;;:, 0. As this induces the initial condition W(0) = x 2/2 for W(t) 
= B 2 (t)/2 we obtain from Theorem 2, 

E(exp{-;\. fb B 2(v) dvl I B(0) = x) 

= E(exp{-2;\. fb Xx212(v) dvl) 

~--~~ x2 
= v'sech(tffi) -exp{- 2 • ffi-tanh(tffi)I 

which reduces fort= 1, x = 0 to Kac's formula [4]. 
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