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ON THE HURWITZ PROBLEM OVER AN ARBITRARY 
FIELD* 

BY DANIEL B. SHAPIRO 

In this article we deal with product formulas of the type 

(x/ + x/ + · · · + x,2)(y/ +Yi+ • • • + y.2) = Z1 2 + zi + · · · + Zn2, 

where X = (x1 , • • •, x,) and Y = (y 1 , • • •, y.) are systems of indeterminates, 
and each z; = z;(X, Y) is a bilinear form in X, Y with coefficients in a field F. 
A triple (r, s, n) is said to be admissible over F if such a formula exists. We 
assume throughout that the characteristic of F is not 2. 

Which triples (r, s, n) are admissible over F? This question seems to be 
very difficult, with only a few special cases settled. The purpose of this paper 
is to present a new proof of Adem's theorem on the admissibility of (r, n - 1, 
n ). Before stating this theorem let us outline some of the earlier work done in 
this area. 

The question of admissibility was first formulated by A. Hurwitz in 1898 in 
the case Fis the field Cof complex numbers. In [Hl] he proved that (n, n, n) 
is admissible over C if and only if n = 1, 2, 4 or 8. About 20 years later the 
admissibility of (r, n, n) was characterized in terms of the Hurwitz-Radon 
function p (n ), defined as follows. 

Definition. Let n = 2mu where u is odd. If m = 4a + b where O ::s b :5 3 then 
p(n) =Ba+ 2b. Equivalently, 

) 2m + 1 if m=O 
2m if m=l p(n) = 

if m = 2 { 2m 
2m + 2 if m=3 

(mod4). 

THEOREM (1). (r, n, n) is admissible over F if and only if r :5 p(n). 

This result was first proved when F = IR by Radon [R] and when F = C by 
Hurwitz [H2] (published posthumously). The "if" part requires a construction 
of a formula of size (p(n), n, n). Such formulas valid over any field F have 
been constructed by a number of authors. The "only if" part for general F can 
be proved by a straightforward modification of Hurwitz's argument. Further 
details and references can be found in the survey article [S]. 

ADEM'S THEOREM (2). [A] Suppose (r, n - .1, n) is admissible over F. 
(i) If n is even then (r, n, n) is admissibk over F. 

(ii) If n is odd then (r, n - 1, n - 1) is admissible over F. 

Combining this result with Theorem 1, we know exactly when (r, n - 1, n) 

* This research was supported in part by the NSF. 

1 



2 DANIEL B. SHAPIRO 

is admissible. If n = 2k or 2k + 1 for an integer k, then (r, n - 1, n) is 
admissible over F if and only if r $ p(2k). 

Before beginning the proof of Adem's theorem, we remark that Yuzvinsky 
has a result on the much harder case (r, n - 2, n). 

THEOREM (3). (Yuzvinsky [Y]). If n = 3 (mod 4) then (4, n - 2, n) is not 
admissible over F. 

The three theorems above suffice to characterize the admissibility of (r, s, 
n) over F whenever r ::5 4. The smallest case not settled so far is (5, 9, 12). In 
the case F has characteristic 0, some further conditions are known. The proofs 
involve some algebraic topology, and are outlined in [S]. For example, (5, 9, 
12) is not admissible over F if F has characteristic 0. 

Our proof of Adem's theorem uses an argument involving matrices over 
rings and the generalization of the cross product. We begin with three lemmas. 

LEMMA ( 4). Let X = (xi, • • •, x,) be a system of indeterminates over F. Then 
(r, s, n) is admissible over F if and only if there exists an n X s matrix A whose 
entries are linear forms in X with coefficients in F, satisfying A 1A = (~x;2)I •. 

The proof is well known, going back to Hurwitz. Details appear in [S], for 
example. One can further express this A as A = xiAi + • • • + x,Ar, and restate 
the conditions in terms of the n X s matrices A; over F. For our purposes 
however, it is convenient to work directly with A as a matrix over the 
polynomial ring R = F[X]. 

For the next two lemmas let R be any commutative ring with 1, and consider 
the free R-module V = Rn as an inner product space by means of the usual 
dot product. Let lei, e2, • • • , en l be the canonical basis of V. Then e; • ei = oii, 
(Kronecher delta). 

LEMMA (5). Let vn-i = V X V X • •• X V be the direct product. There is a 
unique map p: vn-i - V satisfying 

(1) p is (n - 1)-linear and alternating; 
(2) VrP(Vi, V2, ••• 'Vn-d = 0, for any Vi, ... 'Vn-i E V; 
(3) p(ei, e2, .. ·, en-i) = en; 
(4) p(vi, •.. ' Vn-i)-p(vi, •.. '· Vn-i) = det( (V;• Vj) ), for any Vi, ••• ' Vn-i E V. 

Proof. This is the standard generalization of the usual cross product p:R 3 

X R3 - R3 in the case n = 3. We sketch how p arises in terms of exterior 
algebra. The dot product on V = Rn induces a dot product on f\P Vby requiring: 
(ui I\ • • • I\ up)·(Vi I\••• I\ up)= det((u;•Vj)), the determinant of the Gram 
matrix. Using the basis vector e = ei /\ e2 I\ • • • I\ en of I\ n V, we define the 
(Hodge) star operator *: /\ n-p V - I\ P V by requiring ;\ /\ µ = ( ( * ;\) . µ )e, 
whenever ;\ E /\ n-p V and µ E /\ P V. Our map p is then defined as p (vi, v2 , 

• • • , Vn-i) = * (vi I\ v2 I\ • • • I\ Vn-i ). The properties (1), (2), (3) follow easily 
and ( 4) is deduced from the formula: (*a) • ( * ~) = a•~ whenever a, ~ E /\ n-p V. 
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A concise exposition of these ideas can be found in [F] Chap. II~ For more 
information see [B]. □ 

For concreteness let us describe p in terms of determinants. Given the 
column vectors Vi, V2, • • ·, Vn-I E V = Rn, let A be then X (n - 1) matrix 
having these columns. Let Ai be the (n - 1) x (n - 1) submatrix of A obtained 
by deleting thej-th row, and set di= (-1t-idet(Aj), Then 

p(u,. u,, • , u.-d ~ (DE V. 

This formula can be derived quickly from the exterior algebra description 
given above. Alternatively one can take this formula as the definition of p and 
deduce the properties listed in Lemma 6. To do this, we first use expansion by 
minors to see that p(v 1, • • •, Vn-d•w = det(A I w), where (A I w) denotes the 
n X n matrix obtained by adjoining the column w to A. Properties (1), (2), (3) 
are now easy, but (4) requires more work. That formula follows from the 
"Lagrange identity" (sometimes called the "Cauchy-Binet formula") given in 
[B] §8, no. 2 or [F] Chap. II, exer. 6. One can also deduce (4) by considering 
the determinant of (A I uY(A I u) when u = p(v1, • • ·, Vn-d, 

LEMMA (6). Let v1 , • • •, Vn-i E V = Rn and let these be the columns of the 
n X (n - 1) matrix A. Let p(v1, V2, · • ·, Vn-1) = (d1, d2, • • •, dn)t as above. If 
AtA = aln-I for some a ER, then d/ = 0(mod an-2), for each}= 1, 2, • • •, 
n -1. 

Proof. We need only consider the case j = 1. Express A in blocks as: A = 
(;J where w E Rn-I and A1 has size (n - 1) X (n - 1). We know d1 = ± 

det(A1). Also aln-i = AtA = wwt + A/A 1 , so that we have d/ = det(A/Ai) = 
det(aln-i - wwt). Now the square matrix wwt has characteristic polynomial 
x(t) = det(tln-i - wwt) = tn- 2(t - c) where c = wtw ER. This equality can 
be seen over fields using eigenvalues, and then generalized to rings in the 
standard way. A more direct proof is provided by the clever argument of 
Schmid [Sch]. Therefore d12 = x(a) = an-2(a - c) in the ring R. □ 

We are now in a position to prove Adem's Theorem. Suppose (r, n - 1, n) 
is admissible over F. By Lemma 4 we have an n X (n - 1) matrix A, whose 
entries in F[X] = F[x 1 , • • •, Xr] are linear forms, satisfying A tA = aln-i, where 
a= x/ + • • • + x/. If r = 1 the conclusion is trivial, so let us assume r > 1. 
Then the element a E F[X] is squarefree. (In fact if r ~ 3 then a is irreducible.) 

Let v1, V2, • • •, Vn-i E F[Xt be the columns of A and define u = p(vi, v2, 
• • •, Vn-d = (d1, d2, • • •, dnf as in the Lemmas. Then u-u = det((vi•Vj)) = 
det(A 1A) = det(aln-i) = an-1• The description di=± det(Aj) implies that di E 
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F[X] is a homogeneous polynomial of degree n - 1. Also Lemma 6 says d/ = 
0(mod an- 2). 

Case (i): n = 2k is even. Since F[X] is a unique factorization domain and a 
E F[X] is squarefree, we conclude dj = 0(mod ak-i ). Then the vector u = 
a-k+iu still lies in F[Xt. Computing degrees we see that the entries of u are 
linear forms in F[X]. Also vru = 0, so that A tu= 0, and u-u = a- 2k+2 (u-u) = 
a. Then the n x n matrix (A I u) satisfies the conditions of Lemma 4, showing 
that (r, n, n) is admissible over F. 

Case (ii): n = 2k + 1 is odd. Then dj = 0(mod ak) so that the vector u = 
a-ku still lies in F[Xt. Computing degrees we see that u has entries of degree 
0, that is: u E pn_ Also A tu = 0 and u • u = 1. We can choose a new orthonormal 
basis of pn having u as the last element. Rewriting everything relative to the 
new basis we have the same situation as before, but now with u = en = (0, 

• - •, 0, lY. Since Atu = 0, the bottom row of A is zero: A=(~) where B has 

size (n - 1) x (n - 1). Then B satisfies the conditions of Lemma 4, showing 
that (r, n - 1, n - 1) is admissible over F. □ 
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