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MAPPING THREE-MANIFOLDS INTO THE PLANE I 

BY LE6N KUSHNER<\ HAROLD LEVINE<2 AND PAULO PORT0< 3 

Introduction 

This paper is the beginning of our study of stable maps of compact three 
manifolds into the plane. If /:M - R2 is such a map, we consider an auxiliary 
space W1 defined by identifying points in M if they belong to the same 
connected component of the fibre off. 

In § 1, we study W1 in detail, showing that it is a two dimensional complex 
with very simple singularities. 

In § 2, we apply the preceding to the problem of the existence of an immersion 
F of M in R.4 over f, but using unnecessarily strong restrictions. 

Throughout we assume that M is orientable. 

1. 1. Stable Maps 

In this paragraph we describe the stable maps from three dimensional 
manifolds into the plane. Throughout; we will denote by M, a compact 
orientable 3-manifold without boundary. 

Let C(M, R2 ) be the smooth maps of Minto R2. For f E C(M, R2 ), the 
singular set off, S(f) = Ix E Ml rank Tf(x) < 2l. The stable maps, Y(M, 
R2 ) ~ C(M, R2 ) are those whose multijet extensions satisfy the usual trans-
versality conditions [Mather, G2 ]. •• 

We give an equivalent description of Y(M, R2 ). 

Definition. f E Y(M, R2 ), if near each point p E S(f), and in some local 
coordinates centered at p and f ( p), / is one of the following: 

(L 0 )(u, x, y) - (u, x2 + y 2 ), definite fold point 
or fold point. 

(Li)(u, x, y) - (u, x2 - y 2 ), indefinite fold point 
or saddle point. 

(L2)(u, x, y) - (u, y 2 + ux - x3/3), cusp point. 

In addition, the following global conditions are satisfied: 

(G1) Ifp is a cusp point, thenr 1(f(p)) n S(f) = {pl. 
(G2 ) f I S(f) - !cuspj is an immersion with normal crossings. 
(In particular f I S(f) has no triple points) 

We let S 0 = {definite fold points!, S1 = {indefinite fold pointsl, C = {cuspsj. 
As an immediate consequence of these conditions, we see that for f E .9" (M, 
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12 KUSHNER, LEVINE AND PORTO 

R2 ), S(/) is a finite disjoint union of embedded circles in M, and C is a finite 
set of points. On any component of S(/), the points of C separate arcs 
belonging to S0 from those of S1 . Hence on every component of S ( /) there is 
an even number of cusps. A component of S(/) - C is in either S0 or S1 and 
is called definite or indefinite, accordingly. 

From now on we will write Y for Y(M, R2 ). 

1.2. The Space W, and the Local Structure at Simple Points 

Let f E Y. Define W1 as the quotient of M obtained by identifying two points 
of M if they are in the same connected component of the same fibre off. Let 
q :M - W = W1 be the quotient map and let T: W - R 2 be defined by f = 
foq. 

PROPOSITION (1). If x ES(/), then q- 1 (q(x)) n S(f) = Ix) if x E So UC 
and if x E S1, q- 1 (q(x)) = lxl or {x, x' ). 

Proof: Condition (Gi) guarantees that q- 1 (q(x)) n S(f) = {x) if x EC and 
condition (G2), guarantees that f I S(f) has at most double points. From (Lo), 
the local form off about a point of S0 , we see that locally the f preimage of a 
point ( V, Y) E R is just: { ( V, x; y) I x 2 + y 2 = Y). So the preimage of the origin 
is just the origin which is a connected component of the fibre. □ 

Definition. A point x ES(/) for which q- 1 (q(x)) = Ix) is called a simple 
singular point. 

By the preceding proposition, if x E S(f) is not simple, then x E S1 . 

Remarks 

(1) Under these assumptions, it is clear that we are interested in exactly six 
normal forms: three types of singular points and possibilities for three crossings 
for pairs of singular points. As a matter of fact, the local structure for at least 
four of these is immediately clear, by using elementary knowledge of Morse 
singularities-using normal forms for pairs of singularities as well as for single 
ones. ([W]). 

These structures will be analysed in this section. 

(2) Since f is a submersion on M - S (f) and a local diffeomorphism at a 
saddle or cusp point, hence locally open, it follows that f I (M - S0 ) is open. 

(3) W - q(S(f)) is a smooth surface without boundary (not a compact 
surface), immersed via Tinto R2• Its smooth structure is pulled back by the 
local diffeomorphism TI (W - q(S(f))). Since the restriction off f I :M -
f- 1 (/(S(/))) - f(M) - f(S(f)) is a proper submersion, it follows that 
q I q- 1 (W - q(S(f))) - W - q(S(f)) is a smooth surjective submersion with 
fibre S 1-thus a trivial circle bundle-since M, hence q- 1 (W - q(S(f))) is 
orientable. 
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PROPOSITION (2). Let x E S0 . There is a nbhd of x which is diffeomorphic to 
IX D,, where I is an open interval and Dr is a closed disc with radius r in R2• 

The components of the /-fibres in the nbhd are just the circles t x S, where S, 
~ Dr is the circle of radius f, t E I. The q-image of the nbhd I X Dr is just I X 
[0, r], where q(t X S,) = (t, €:) = f (t XS,). 

Proof. To see this, merely look at the normal form (L0 ) at a point x E S0 • 

Choosing a transverse arc (0 X J), J = [-r 2, r2 ] locally in the local coordinate 
expression for f we have 

r 1 (0 X J) = {(0, x, y) I x2 + y 2 :s r2 } = 0 X Dr. 

Obviously r 1 (0, €:) is empty if(;< 0 and is Ox S, if(;~ 0. □ 

Note. We-have begun and will continue to take some liberties in the notation 
by suppressing some diffeomorphisms. We hope no confusion will result. 

PROPOSITION (3). Let x be a simple point in S1 . There exists a nbhd I X 
T(x) of x such that T(x) is a disc with two holes $3 (a sphere with three discs 
removed). The q-image of T(x) is a Y with q(x) the interior vertex. Ix T(x) is 
mapped by q onto IX Y and by Tonto IX J, J a closed interval. In fact f I IX 
T(x) is equivalent to a product map. 

Proof. By the local form (L2) it follows that f:I X T(x) -IX J, (t, z) - (t, 
ht(z)) where h1:T(x) - J is a Morse function which is constant on each 
boundary component and which has a single saddle singularity at x. Since 
T(x) is orientable, it is $3 (see for example [H;] §3, p. 201). 

The statements about q and Tare obvious from the following picture: 

q q(x) f f (x) 

Since h. is a smooth homotopy through stable maps each of which has a single 
saddle singular point whose image is 0 E J, it is easy to construct a diffeomor­
phorism <J,:I X T(x) - IX T(x) such that f 0 <f,(t, z) = (t, ho(z)) (see [G2 ] 

Theorem 3.3, p. 104 or [L] Theorem 12.3, p. 73). □ 

PROPOSITION (4). Let x E C. There exists a nbhd IX T(x) of x such that 
T(x) is a cylinder $2 (a sphere with two discs removed). The map f :IX T(x) -
IX J, (t, z) - (t, hi(z)) is such that fort< 0 h1 has no singularities and fort 
> 0 ht has one saddle and one extremum. As t approaches zero from the right, 
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the saddle and the extremum coalesce. Thus the q-image of I X T(x) is a 
rectangle with a fin attached. 

I 

The heavy lines represent the q-images of 
arcs of S ( f) on either side of the cusp x. The 
top of the fin is in q(So) and the base of the 
fin is in q(Si). 

Proof: Here again, all that is needed is to examine the local form (£ 2 ) at a 
cusp. In coordinates we have (u, x, y) - (u, y 2 + ux - x3/3). If we label the 
coordinates in R2, (Y, X) and take as IX J the coordinate rectangle I YI < t, 

IX I :s; o with 982 > 4t 3, the image of the singular set off is just I ( Y, X) I 4 Y3 

=9X 2 l. 
Here the X-axis interval is a transverse arc to f. The singular arcs in M 

above 4 Y3 = 9X 2 are 8 1 -points for X > 0 and 80-points for X < 0. We show 
f I r 1 (Y x J) for Y> 0, Y = 0 and Y < 0. 

If Y> 0: 

q I 

If V = 0 

q I 
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If V < 0 : 

15 

q 

__ ... _ ... -. ----

I 

I 

Thus the nbhd of W above I X 

J, q(I x T(x)), is the finned rec­
tangle and the map T of this 
nbhd of q (x) is the indicated 
projection. The three preceding 
figures show f = T0 q in the pre­
images of the three dotted ver­
ticle lines. 

COROLLARY. A component of S(f) is either completely in S 0 or S1 o,: it has 
an even number of cusps on it which divides the component into arcs of type S0 

and S1, 

1.3. The Local Structure at Non Simple S1 -Points 

Let x be a simple indefinite point and let h: T - J be the associat~d Morse 
function ( § 1.2, Prop. 3), The fibres of this map are circles ( one or two) except 
over the image s0 of the one saddle singularity of h where it is a figure eight. 
If we let h- 1 (s) = T., we see that the transition from T./s 1 < so) to T • .(s2 > 
s0) is effected by one surgery. 

To analyze the non-simple S1 -points, we must consider all pairs of such 
surgeries on a circle. 

0 O<J 00 
T 

s 
0 
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Let x be a non-simple indefinite point. We know that q- 1 (q(x)) = Ix, x' I, 
and two small open arcs of S1 say c 3 x, and c' 3 x' have q-images in Wand 
/-images in R2, which cross transversally at q(x) in Wand at/ (x) = y E R2. 

Take a small rectangular nbhd V of y in R2 and let U be the component of 
r 1 ( V) which contains x. We assume that / ( c U c ' ) cuts V into four regions. 
Label each of these open regions of V with the number of components of U 
above it (i.e. the number of components of the fibre off I U above each point 
is constant in each open connected region of V - f ( c U c ' ) ) . Label the regions 
as indicated with n0 , the smallest. We know that the number of components 
in abutting regions differ by one. Thus there are only two possibilities: 

n +l 
0 

LEMMA. In the local description at a non-simple S1 point no = l. 
Proof: Consider the picture of V with the regions of V - f ( c U c ' ) labelled 

n;, i = 0, 1, 2, 3 as above. If we follow the fibre above the arc passing from the 
n0-region to the n1-region and from the n0-region to the nrregion, two surgeries 
occur. Each surgery involves a single component of the fibre over the no-

. region, since any surgery involving two circles replaces two circles by one 
which would contradict the minimality of n0 • On the other hand, following the 
fibre above the points of a transverse arc travelling from the n0-region through 
y to the n3-region, both of the above mentioned surgeries, occur simultaneously 
above y. If the surgeries were performed on distinct circles, the f I U pre-image 
of the transverse arc at x would not be connected-contradiction. Hence both 
surgeries-the one effecting the transition across the (no - ni}-arc as well as 
that across the (no - n2 )-arc, both involve one circle in the fibre above the n0-

region. Hence n0 = l. □ 

Consequence. The non-simple S1-points are described by the two diagrams: 

(1-2-2-1) or double cone p::>int (1-2-2-3) or trident p::>int 
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Again, in this case, f:I X T(x) ._ j x J, (t, z) ._ (t, ht(z)). T(x) is a torus 
with two holes T 2, if x is a double cone point, If x is a trident point, the 
connected component of the inverse image of a transverse ate joining (1~3) 
regions, T(x) is $4: a sphere wit~ four discs removed. It is enough to consider 
two possible ways: two surgeries can be performed on one circle. If we orient 
the circle arbitrarily, a surgery replaces- i! by~. 

- 1'17, _ 
We indicate the paired points by (A, A) and (B, B); they can appear on the 

circle over n0-region as follows: 

B A 

AOA A B 

B ~ 

We follow these circles around the diagram ®. 

ooo 
The manifolds T(x) are uniquely specified by the number of boundary 

components and by the fact that there is a Morse function on the manifold, 
constant on each boundary component, with two singular points-both sad­
dles. □ 
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Remark. Although at each non-simple Si-point and cusp point, there is a 
nbhd of the form I x T, the map f to I X JC R 2 is not equivalent to a product. 
This fact is reflected by the fact that the q-image of the nbhd is not a product 
in W. Just as we did for the other singular points we will illustrate the map 
/ I r 1 (t x J) where t < 0, t = 0, t > 0 for the double cone and the trident 
singularities. 

the double cone (1·2·2·1) 

0 q I 

q 

,____.,,,,. 
I I 

I I 
I 

q 

I . 
~ 
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the trident (1·2·2·3) 

We now give a complete catalog of local descriptions of W1 which can arise 
for fa stable map of a (compact) orientable manifold into R2. 

19 
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If q(lC) = Q € q(I X T(x)) is: T (x) ;Ls: 

-

W-q(S(f)) 

I 
9 

I 
$2 

I 
• Q 

I 
q(So) $1 

. ,. 
., 

q(S 1 ), sinple t ~· $3 

q(C) 

I 02 
$2 

q(Sl) 

~. 
dooble cooe T2 
(1-2-2·1) .. .. 

q(Sl) 

~Q:sn trident $4 
(1•2 •2•3) 

The heavy lines represent the q-images of S(f} near Q and as usual $k (and 
Tk) mean the 2-sphere (and the 2-torus) with k discs removed. Notice that for 
all Q E W, the pre-image of a nbhd IX T about Q is homeomorphic to the 
join of Q with the boundary of the q-image. Thus: 

Definition. for Q E W, a conical nbhd of Q is the q-image of any nbhd IX T 
of a point of q- 1(Q). 

We see that the T-image of a conical nbhd of Q E W is always a rectangle 
in which / (S ( /)) looks like: 



MAPPING THREE-MANIFOLDS INTO THE PLANE I 21 

D D 
B Qi q(S(f)) Q E q(S 0 ) 

G ~ Q E q(Sl), silrple 

Q E q(C) Q E q (S1) , non-simple 

1.4. An Orientation of S(f) ... {(1,2-2-1)-Points) 
We assign t(f each connected component, n, of R2 - /(S(/)) an integer 

nt( n) = the number of components of the fibre above each point of n. 
Obviously, 7-1 (0) LU is a covering space and nt(il) is the number of times 
7-1 (0) covers 0. Every arc of /(S(f)) - If-images of double points and cusps) 
is contained in the boundary of two components of R~ - /(S(/)) whose nr 
values are different. Orient that arc so that the region with the larger nrvalue 
is on the left. These orientations induce orientations on the arcs of S ( /) - C 
U {double points). Notice that all of So can be oriented'in a w~y compatible 
with this partial orientation; it is oriented so that locally the image of M lies 
to the left of the immersed curve, f (So); or so that q(S0 ) is the boundary of 
W. Also notice t~{:l.t the arcs of siml)le S1 -points can be oriented consistently. 
Where a cusp s,;,parates a So-arc from the S1 •arc the orientation are also 
compatible; the orientations also extend through the (l • 2. 2. 3)-points as well. 

cusp (1•2·2·3)-point 
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However the orientations do ·not extend through the double cone (l • 2 • 2 -1)­
points. 

double cone (1•2•2·1)-point 

Resuming. Each componet of S(/) - {(1·2•2·1)-points} can be oriented so 
that the value of n1 is always greater to the left of the image than to the right. 
The orientation does not extend through any (l • 2 • 2 • l)-points. 
~ Consequently, on any component of S (/), there is an even number of (l • 2 • 
2 -1)-points. • 

, Note: This orientation on S (/) - { (l • 2 • 2 • l)-points} induces an orientation 
on its q-image. 

1.5. Decomposing Mand W, 
In this secti9n we decompose Mand W = W1 into simple pieces. As a matter 

of fact, Mis. the union 0£: 

(1) Trivial circle bundles over 2-dimensional regions R of W; B(R). 

(2) Trivial disc bundles over the components of S0, B(c), where c is the q­
image of the component. 

(3). $s-bundles over the components of S1 , B(c) (again c is the q-image of 
the component). If the component is a circle, the bundle is either trivial or the 
one in which two of the holes of $s are exchanged. 

(4) Neighborhoods B(v) containing.the q-fibre above the image v of a non­
simple S1-points or a cusp. B(v) ~IX T(v) where T(v) is $2 if v E q(C); it is 
T2 , if vis the image of a double cone point and it is $4, if vis the image of a 
trident point. 

We now give some notation. Let~= q(S(/)) and let the set of components 
of W - ~ be denoted by !JR. For each RE YR (a surface without boundary), 
the same arguments as used in § 1.2 show that R is a surface with boundary 
(possibly with corners). Moreover TI R is an immersion. B(R) is a trivial circle 
bundle over R. In~. let Vbe the set of q-images of cusp points and non-simple 
points of S1-called vertices of W. Let~ be the set of components of~ - V. 
An arc c E ~ is immersed by T (with double points at worst). An element v 
E V is the end point of at most four distinct arcs in ~ We write ~ = jfo U 
5fi, where :.i:f; is the set of q-images of components of S,-{non-simple points}. 
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About each v E V, choose a conical nbhd N(v) (see the end of §1.3). We 
know that B(v) = q- 1 (N(v)) is diffeomorphic to an interval I times the 
transverse manifold T(v) at v. Let c E :£ and let N 1 be the normal bundle of 
the immersion TI c:c - R 2 and let p:N 1 - c be the bundle projection. We 
may assume that we have an immersion e:N 1- R 2 which is an embedding on 
the fibres and such that TI c = e0 (zero section). 

THEOREM. For each component c E :ff, there is nbhd B(c) of q- 1 (c) with 
smooth boundary and a map 1r:B(c) - c making B(c) a bundle over c. The fiber 
of this bundle is T(c), introduced in §1, at any point of q- 1 (c). Further, there is 
a fibre preserving map /:B(c) - N7I cover c, such that e0 1 = f I B(c). 

Remark: Since q:S(f) n q- 1 (c) - c is a homeomorphism, we may regard 
B(c) as a bundle over q- 1 (c) n S(f) as well as over c. 

Proof. Choose a covering of c by a collection Y of open intervals such that 
for each IE Y; e jp- 1(1) is an embedding. Let ¢ 1:J X R - p- 1(1) be a 
trivialization. It is no restriction to assume that for each I, if J = [-1, 1 ], then 
e0 ¢1 = 1/;J:l X J - R2, satisfies: 

(1) proj 0 y;1-10 f:r 1 (y;1(I X J)) -ns a trivial bundle, and 

(2) U1e 1 ¢1 (1 X J) =Ne~ N7 I c is a smooth submanifold with smooth boundary 
a Ne transverse to the fibres of p. Ne is a sub-bundle of N7I c with fibre J. 

As we did in §1, construct a nbhd Ix T(c) for every point of q- 1(1): 

<I>1 

Ix T(c)---+M 

IX h, l f,lt 
I x'J--+R 2 

' r 

where <1>1 is a diffeomorphism onto B(c) I J, the component of r 1 (f1(l X J)) 
containing q- 1 (1). We define / 1 and 1r1 by the commutativity of: 

IX T(c) 
<I>1 

B(c) 11 

~ I ~ 
11 

1 X h1 jp f 

IxJ <PI 
Nell 

e 
R2 

i.e., 1r1 = proj 0 <I>1-1, /1 = (e I Ne11)-10 /. 

Setting B(c) = UieJB(c) 11, it is obvious by construction that the maps 1r1 
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cohere to define a global projection 1r:B(c) - c, making B(c) a bundle over c, 
with fibre T(c). Since q- 1 (I) = <h((l X h1)- 1 (I X 0)) k B(c) I I, it is clear that 
B(c) is a nbhd of q- 1 (c). Also since B(c)l1n1' k u-10 e)(Nel1nr) and 11 = 
( e I Ne I J) ~ f "f I B ( C) I I, 11 I B ( C) I I n I I = lr I B ( C) I I n I I. 

Thus the 11 cohere to give a fibre preserving map of B(c) onto Ne~ N 1 such 
thate 0 l=/IB(c). □ 

Then, we have M as union of three types of subsets: 

(1) B(R):trivial circle bundles over R, for RE !JR. 
(2) B(c):T(c)-bundles over c, for c E _yf. 

(3) B(v):diffeomorphic images of IX T(v), for v E V, where T(v) is the 
transverse manifold to a vertex v. 

The possible types for T(c) and for T(v) are given in §1.2 and §1.3 
respectively and this completes our statement about the decomposition of M. 

i,Given any bundle 1r:B(c) - c as in the preceding Theorem, let N(c) = 
q(B(c)) and define II:N(c)-c by 1r = Il 0 q. By construction,B(c) = q- 1 (N(c)) 
and II:N(c) - c is a bundle with fibre q(T(c)). 

Remark, N(c) is diffeomorphic to c x [O, 1] if c E 5.ifo where c is identified 
with c X !OJ. If c E .1f1 , then N(c) is either c X Y, or the non trivial bundle 
over a circle c in which two arms of the Y are exchanged. In both cases c is 
identified as c x (branching point). To see that these are the only possibilities 
for ¥-bundles over a circle, c, we argue as follows. Since N(c) - c is immersed 
in R 2, it consists of a number of cylinders; the circle is oriented so that two 
arms are on the left and the stem is always on the right of the image. Thus, 
one cyli11der is immersed on the right of the image of c. The rest of N(c) - c, 
double covers the left of the image of c. If the rest of N(c) - c is one cylinder, 
then the bundle is the one which the two arms of the Y are exchanged. If the 
rest of N ( c) - c is two cylinders the bundle is trivial. Then, if we take q­
images of the pieces of M we obtain W as the union of: 

(1') Regions 11, R E ~ oriented surfaces with boundary (possibly with 
corners). 

(2') c x [O, 1] g;, N(c) for c E 5.ifo. 
(3') N(c) g;, either c X Yor the non trivial Ybundle over c.(described in the 

preceding remark) for c E :Ci. 
(4') N(v), a conical nbhd of v E V = !images of cusps and non-simple Si­

pointsj. 

It is no restriction to assume that we can replace the conical nbhds N(v) by 
smaller nbhds, N' (v) so that NCTt) = (UvEV N' (v)) U (UeEif N(c)) has a 
smooth boundary. Since iJN('J:,) is in the q-image of the regular points off, 
q- 1(N('J:,)) = B('J:,) = (U B '(v)) U (U B(c)) will be a nbhd of q- 1 (~) with 
smooth boundary. That is: 

iJB('J:,) is a smooth circle bundle over iJN('J:,). 
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For later use it will also be convenient to replace each R E !JR with slightly 
smaller surface which has a smooth boundary contained in N("l;). We will 
continue to refer to the smoothed, shrunken version of R as R. Thus B (R) = 
q- 1(R) is a circle bundle with boundary a circle bundle over aR. aR is 
homeomorphic with (and parallel to) aN('1;) n Rand aB(R) is equivalent to 
aB('1;) n B(R). 

2.1. Lifting W, to R4 

Here we show that the map 1: W1 - R2 for f:M - R2, where f is a stable 
map, can be lifted to a map g: W = W1 - R4 with pleasant properties. This is 
only a subsidiary result to the next orie, in §2.2, which is the main result of 
§2. We use the notation and the results of §1.5. 

Definition. A continuous map g: w- R2 X R2, x--+ ( T(x), h(x)) is called a 
lift of Tinto R4 if: 

(1) g I (W - '1;) is an immersion with normal crossings; 
(2) g I '1; is 1: 1 and is an embedding on ~ - V. 
(3) g I N(:t) is 1:1, g I (N('1;) - '1;) is an embedding. 

THEOREM. For any stable map f:M - R2, there is always a lift g of Tinto 
R4. 

Proof: We consider R2 c R4 as R2 x 0. For each v E V, define g I (N(v) n 
'1;) = Tl(N(v) n '1;). By the definition of the conical nbhd, .. we know that 
T I (N ( v) n '1;) is 1: 1. It is obvious that g can be extended to an embedding of 
all of '1; above T. All that is required is the separation of a finite number of 
double points of TI ('1; - V), which is easily accomplished by lifting one of the 
crossing curves iri the direction of one of the extra dimensions. (Recall that 
N(v) are chosen so that the double points of Tl ('1; - V) are disjoint from 
N(v)). Thus we have satisfied (2). We now extend this q to all of N('1;). 

We begin by lifting the whole nbhd N(v) about each v E Vinto R3 = R3 x 
0 C R4. The simplest way to explain this is to draw figures. In these figures 
the image of N(v) n '1; is drawn with heavy lines and lies in the horizontal 
plane. The angle at the branches of the Y's in the image of a nbhd of the 
boundary of N(v) (including everywhere in N(v) - N' (v)) is always a standard 
fixed angle, o, and the stems are always horizontal. 

cusp double cone trident 
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To extend this definition to all of N("J;) we work in each N(c) separately. 
Recall that the projection of N(c) to c is denoted by II. For all the bundles 
N(c} for which the fibres are mapped 1:1 by T, we define g:N(c) - Rs, x -
( !(x), h(II(x)). 

This takes care of all of N(c) with c E -5:fo the fibre being a closed interval 
with one end point on c. For N(c) with c E .%, the fibres are Y's and we lift 
all of the stems horizontally exactly as in the case of c E :ifo. For the arm 
components of N(c) - c, the lift has the form g(x) = ( !(x), h(II(x}} + Z(x)), 
where Z(x) E R2 and if II(xi) = II(x2) and !(x 1) = !(x2), but x1 ¥: X2, then 
Z(x 1) = -Z(x 2 ), and I Z(xi) I = I !(xi) - !(II(xi)) I tan o/2. Thus the arms 
are lifted into R4 and make an angle o with the horizontal. 

If c has v0 as its initial end point we can clearly define Z so that the lift of 
N(c} in N(v 0 } agrees with the lift of N(v 0 ). If c is a closed curve, we begin the 
lift on a piece of N(c) say II- 1 (J) for some small intervall ~ c; we lift II- 1(1) 
into Rs just spreading the arms of the Y fibres about the horizontal in the 
angle o. We extend the definitions of Z in both cases travelling along c in its 
positive direction so that the lifting of all of N(c) is consistent with that of 
N(v 1) if c terminates at v1 or with the lifting of II- 1(1) as c returns to I. This 
extension is either trivial, that is, can be accomplished in Rs by lifting the 
arms symmetrically about the horizontal or must be done in R4 if in the 
process of travelling along c, the arm exchange. 

In that case the pairs of values Z(x1) = -Z(x2) (for !(xi)= !(x 2) and II(x 1) 
= II (x2 ) and x1 "# x2) rotate about a half circle in R2 as we travel along c. This 
completes the lifting of N(J;) so as to satisfy (2) and (3). We must now lift 
each region R E .YR so that the lift agrees with that already defined in R n 
N(J;). It is no restriction to assume that we have a tubular nbhd B of the 
boundary of R in Ron which g is defined and such that Rn N("J;) C B 0. (Here 
B 0 is the interior of Bin R). Define go:R - R4 by go I (Rn N("J;)) = g I (Rn 
N("J;)) and g0 I (R - B 0 ) =TI (R - B 0 ). On B - N("J;)0, which we may assume 
to be a finite union of annuli, we just make a smooth transition from Ton one 
boundary component to g on the other boundary component of each annulus. 

Let URE-'"' R = A and let N("J;) n A = E, a nbhd of the boundary of A, a 
finite set of closed annuli. We have defined an immersion g0 :A - R4 such 
that g0 IE= g IE, where g0 is above T-We define a regular homotopy gt:A -
R4 such that gt IE= go IE for all t andg1 is an immersion with normal crossings 
and such that II 1°gt:A - R2 is an immersion for all t, where II1 :R4 - R2 is 
just the projection on the first two coordinates. This gt is easily obtained as 
follows. Let kt be a regular homotopy of A into R4 such that ko = g0 and which 
stays close enough to g0 so that II1 ° kt is an immersion in R2 for all t, kt I E is 
an embedding for all t and k1 is an immersion with normal crossings. It is easy 
to construct a diffeotopy <J,t of R4 so that ¢0 = 1R4 and so that kt I E = <J,t0 ko I E 
(see [P]). Define gt= ¢i- 10 ki. 
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The immersion of g1 surely extends g to all of W; the only problem is that 
g1 I A may not lie over T except on E. We now construct a diffeotopy ft:A -
A such that Vlt IE= 11 E, and Il1 °gt0 Vlt =TI A. For this we apply the following 
lemma to ht= Il 1 °gt:A - R2• 

LEMMA. Let A be a compact surface with boundary and let E be a nbhd of 
the boundary of A. Let ht:A - R2 be a regular homotopy such that ht I E = 
ho IE. Then there is a diffeotopy ft:A - A such that Vlo = lA, Vlt IE= if;o IE 
and ht0 Vlt = ho for all t. 

Proof: Let H:A XI - R2 XI, (x, t) - (ht(x), t). Since ht IE= ho IE we 
may apply Theorem 3.3 of Chap. 5 of [G2] by virtue of which it suffices to find 
a vector field ~ in A x I such that: 

(1) T1r' ( ~) = 0 where 1r' :A X I - I is the projection and 

(2) TH(:t) = - TH(~) + (! 0 H), where :t (respectively!) is the vector 

field which at (z0 , t
0

) is tangent to (t - (z0 , t
0 

+ t)) for (z0 , t
0

) EA XI 
(resp. R2 x J). 

For each (x, t) EA XI, (Tht)x:TAx- TR\<x> is an isomorphism, so we define 
~by: 

(Tht)AHx, t)) = -TH(:) + (:) 
t (x,t) S H(x,t) 

where we have identified TAx with the kernel of T1r' in T(A X l)<x,tl• As 
defined, ~ has compact support and vanishes identically on E X I. 

Thus we can integrate ~ as in the proof of the theorem cited above to give 
the required diffeotopy Vlt of A for all t E I. □ 

Note: The Lemma is obviously false without the constancy of ht on the 
boundary of A. For example just slide a disc around in the plane. 

2.2. Lifting M to R4 

Having lifted T: W - R2 tog: W - R4, we now give a sufficient condition 
for the existence of a lifting off :M - R2 to an immersion F of Minto R4. It 
is a really interesting result, in the same direction of [H0], even if unnecessarily 
strong conditions are assumed, objectifying the simplicity of its proof. The 
problem will be considered with more generality in a future work. 

Sufficient Condition C 

C1. Except for circle components of -1f1, the nbhds N(c) can be embedded 
in R3 c R4 in the lifting of T. The arms of the ¥-fibres are not interchanged 
as we go around a N (~)-loop, except if the loop is N ( c) for c a circle component. 
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C2, The arcs of S1 - I (i. 2. 2 -1)-points} can be labelled e or i so that: 

(i) The label changes as you travel through a (l • 2 • 2 -1)-point 
(ii) at the q-image of a (l • 2 • 2, 1)-point the labelling is: 

e2~i 

e~i 

THEOREM. If f:M ➔ R2 is a stable map which satisfies condition C (above), 
then there is an immersion F:M-+ R.4 which lifts f. 

Proof: The lifting of M to R4 is analogous to that ,of W in §2.1. Here, 
however, we follow a different sequence; First we lift B(R) about the g-images 
of R, then B(c) for c E S&o, then for c E ~. and finally B(v ). We do the first 
two steps; these make no use of our assumptions. Since B (R) n B (R ' ) = 0 
for R 'F' R ', we work with bne RE !JR at a time. Let <J,R:R X S 1 -+ B(R) be a 
diffeomorphisrii such that q0 <J,R(X, z) = x. Here we think of S 1 C R 2, the unit 
circle. 

Define if>R,r:R x S 1 x R-+ R4. (x, z, r) ➔g(x) + (O, r, z) choose an r small 
enough, say r0 so that 4>R,ro I (R n (U N(i;) u U N(c)) X S 1 is an embedding for 
all RE !JR. Call 4>.n C:::: 4>R,ro and let FR,:,::, 4>R0 'PR - 1 :B(R)-+ R4• Instead of trying 
to extend this map to B(c), c E ~ we cut the sets N(c) down in case c is not 
a closed curve; Recall that for each v E V, N' (v) C N ( v) is such that (Uu 
N'(v)) u (Uce.'t'rN(c)) = N(''2) has a smooth boundary, and iJR C N("2). If c 
has end .point Vo and V1, let C I be 8 compact. arc of C such that if N ( C 1 ) = 
rr-1(c' ), c.i n Ni'(vi) is a non-empty arc for i = 0, 1 and N(c') n N' (vi)= 
rr-1 (c' n N' (vi)). 

N(c) 

N(c') 
N(c') nN' (v} 

C 

Notice that for each v EV, N(v) -N' (v) CUR andN(c) n (UR):::> cJN(c) 
for c closed, so F is already defined on those sets. 
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To avoid too much notation, c ' = c if c is a circle component of 5:t and c ' 
will be the compact subarc just described if c begins and ends at elements of 
V. For c E .'Go, there is a homeomorphism Oe:c' X [O, 1] X N(c' ). We may 
assume if N(c') n R # 0 that the Oe pre-image of N(c') n R is c' x [s, 1] and 
that the diffeomorphism <f>e:c' x D - B(c') and <f>R:R x S 1 - B(R) are 
compatible in B(R) n B(c' ); that is: 

<PR-10 <f>e:c' x D - Ds0 - Rn N(c') x S1, (t, z) -(oe(t, I z I), 1:J 

Choose a smooth function o: [O, 1] - [O, ro] whose graph is 

l 

Define Fe= <Pe~<Pe-1 where <I>e:c' x D- R 4 and 

To see that Fe and FR agree on B(c') n B(R) it suffices to show that <I>e and 
4>R0 <f>R - 10 </>e agree on c' X (D - D.°). Evaluating 

4>R0 <PR-10 </>e<t, z) = 4>R(oe(t, I z I),~) 

= g(Oe(t, I Z I)) + ( 0, ro ~) = <Pe(t, z). 
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Thus we have defined Fon all of (URe~ B(R)) u (Uce.sr0 B(c')). Before 
extending F to B (c ' ) for c ' E ~ and to B (v) we recall our notation B ( c ' ) 

.~ c' is a bundle with fibre $3 , a disc with two holes and N (c') ..!!. c' is a Y 
bundle. We consider two maps, Ae, A; an embedding and an immersion of $3 

into Ra. 

~ i ( the imnersion) 

Both maps set over the embedding µ of Y, as indicated in the figures 
X 

$a----...Ra 

ql /. 

y 

For each point x E $a, X(x) = µ(q(x)) + v.(x) where v.:$a-+ (0, R2 ). We 
assume that I v. (x) I = ro for all x in a collar nbhd of all the boundary 
components. For c' for which there are diffeomorphisms (compatible as before 

. with 'PR,. etc). 

'Pc 
c' X $a~B(c') 

l lq o. 
c' X y_,_.N(c') 

we define 4>.:c' X $a-+ R4, (t, x)-+ g(O.(t, q(x))) + v.(x) and define F. = 
4>c0 ef>.-1. In the expression for o., the term V. is Ve if C is labelled with an e, and 
is v; if c is labelled with an i. If c is a closed component such that N(c) is the 
non-trivial Y-bundle, we pull back both B(c) and N(c) over an interval, I: 

'Pc 
I>.< Sa-+ B(c) 

! o. ! q 
IX y--+ N(c) 

We suppose that g(O.(t X Y)) C l(O.(t X Y)) X Lt where Lt is the line in R2 

through the origin making an angle t7r with the first axis. Define 

4>c:I X $a-+ R4, (t, x)-+ g(O.(t, q(x)) + a(t)(ve(x)), 
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where a(t):R 2 -+ R2 rotates the plane counter-clockwise through an angle hr. 
It is no restriction to assume that tPc0 <Pc-1 is a well defined embedding Fc:B(c) 
-+ R4 and that these new maps are compatible with those already defined. So 
we have our immersion F defined on ( Uce Sf B ( c ' )) u ( URe~ B (R )). To 
complete our lifting to all of M we need only define it on our product nbhds 
B(v). For this we use specific models, there being no difficulty at either the 
cusps or the (l • 2-2-3)-points, what a nbhd of a (l • 2-2-1)-point must look 
like is guaranteed by our condition C2. We examine our local models in the 
figures, F is already defined above the shaded region in T (N (v)) 

cusp-models 

For the (1-2-2-3)-points there are several models depending on the labeling, 
for example: 
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Finally, f9r the (1·2·2• l)~points our model is: 

0 

The extensions we are looking for are obvious. □ 

COROl.LAit'Y. Atty stable map f :M -i> R2 which has no crossings of type (l • 
2 • 2 -1) can be lifted to an immersion in R4, 
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