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SOME NOTES ABOUT THE RANDOM MOTION OF A
PARTICLE

BY WOJCIECH SZATZSCHNEIDER

1. Models and theorems

In 1968 Frank Spitzer [9] constructed the following model. In R we have a
Poisson system with parameter 1, which is equivalent to two independent
Poisson processes on the left and on the right of the origin. In order to have a
realization {x;} =" of the model, the points x,, k =0, *1, - . ., with x, = 0,
will represent the initial positions of particles, all having equal mass. For every
realization --- < x_; < xp < x; < .- of the initial point process the model
evolves according to a deterministic interaction of the form

dxe _ Xea1(8) + 2pa(t)
dt 2

This model represents bilateral repulsions. Following Spitzer it is very easy
to solve this system of differential equations explicitly. Writing x(t) =

{xr(t)}-"", the system becomes
dx
i (F = Dz,

where F is the operator (Fx). = 1(xp+1 — xx—1) and I is the identity bperator.
Therefore the solution can be expressed as

x(t) = e, x=2x(0), Q=F—1I

Thus Q is the infinitesimal operator for the randomized random walk S (¢) (cf.
Feller [4]), where

P[S(t) =k]=¢e",(t), REZ, t=0,

I, being the Bessel function of order k, i.e.

xx(t)

I3

1 t 2j+k .
L(t) = Eﬁom (5) , k=0, Ip=1I,.
We have
(1) xn(t) = Yk—-w P[S(t) = k]xn+4(0), t=0,

and in particular
%o(t) = Yi=—w € Lp(t)2,(0).

In fact, the solution (1) is independent of whether we start from a Poisson
system or from another point process (we only need to have the natural order).
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To be able to prove a limit theorem for x,(¢t) we need some assumption
about the initial positions x;. We put

%=0,x,=80+ -+ {mrxapg=01+ - +{pk>0,0>0,{<0.

THEOREM (1). If | x| = | X — Xp-1|, B =1, 2, - - - are independent random
variables with mean 1, variance ¢® and
(2) sup.E(:°) < oo,
then

Yai(t) = A V4%(At) = Y(t) as A — oo,

where = means weak convergence on C([0, 1], R) (cf. Billingsley [1]), and Y (t)
is a Gaussian process with mean 0 and covariance

E(Y(s)Y(t) = J—(ﬁ+f ~/ 5).

If we are interested only in convergence of the finite-dimensional distributions
(proved by Gisselquist [5] in a little bit less general situation), instead of (2)
it suffices to assume that the {;? are uniformly integrable, which is satisfied if
sup:E | {x|*"* < o for some ¢ > 0, and obviously if the {, have the same

distribution.

Spitzer and Gisselquist considered also the model where the evolution of
the system is caused by unilateral repulsions:
dx
“c’i?k=xk+1—xk-1, E|xr— x| =1
Gisselquist proved that if the | {x| have the same distribution and are
independent, with E{,.8 < 00; {1, >0, k> 0; {. <0, k<0, then
—ttk
xo(t) = Yieo 77~ [%£(0) — E],
and the finite-dimensional distributions of A~ 2xo(At) converge to those of
Brownian motion. A little observation allows us to show the following result.

THEOREM (2). Under the same assumption above, A™/%x,(At) converges
weakly to Brownian motion on C([0, 1], R).

Now we pass to models where the dynamics is due to elastic collisions. In R
we described some models starting either from the equilibrium state (Poisson
system) or away from equilibrium (cf. Szatzschneider [10], Major, Szasz [6]).
In the multidimensional case there appears a serious problem, namely, how to
construct the collisions. A discrete model in R? has been constructed by Dao-
Quang-Tuyen and Szasz [2]; they prove weak convergence to a two-dimen-
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sional Brownian motion. Another model in R" represents a large particle in a
system of smaller colliding particles (cf. Dir, Goldstein and Lebowitz [3]).
They prove weak convergence of the motion of the particle to the Ornstein-
Uhlenbeck process. Now we will construct the “jump-continuous” model. This
class of models originated from a conversation with Professor Dobrushin. So
far we have not obtained any results concerning “rich” models, and the only
theorem we have covers a simple situation.

In R? = {(x,y)}, on each of the lines y = k (integer) we construct independent
Poisson systems with parameter 1. We put a distinguished particle black say,
at the origin. We endow the particles with independent random horizontal
velocities: +1, —1 with probability 3 each. The collisions of particles against
the black particle produce the exchange of their velocities and also a jump of
the black particle to each one of the neighbouring lines with probability 3 each.
The remaining particles continue on their original lines. Let yo(-) denote the
two-dimensional motion of the black particle. Then we have

THEOREM (3).
Ya(t) = A™%y(At) = B(t), as A — o,

where B(-) is the two-dimensional Brownian motion. Here = ‘means weak
convergence in the space of functions (x(t), y(t)) from [0, 1] to R?, such that,
x € C([0, 1], R) and y € D([0, 1], R) (cf. Billingsley [1]).

Another model on R which poses similar problems is the following. We start
from the equilibrium state (Poisson system). The particles collide with prob-
ability o, 0 < a < 1 and penetrate each other with probability 1 — «. In the
simple case, i.e. the velocities v, of the particles are independent and v, = +1
with probability 3, it is almost obvious that this holds.

THEOREM (4).
A™V%yy(At) = Va B(t) as A — a,

where yo(-) is the motion on R of the 0-th particle, where = is, as before, weak
convergence on C([0, 1], R), and B(-) is Brownian motion.

In all models constructed above in R we have assumed that E[v,] = 0, where
vy is the velocity of the k-th particle.

Now we suppose that the velocities v, are independent and identically
distributed random variables and E[v.] > 0. It is easy to see that in both
models: (1) initial equilibrium state (Poisson system), (ii) initial positions on
the integers, the following result holds.

THEOREM (5). Ya(t) = A™Y?y(At) tends to +o with probability 1 as A — .

oo, where yo(-) is, as before, the motion of 0-th particle on R. (If v, = v in case
(it), this fact follows from the theory of random walks).
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2. Proofs of the theorems
Proof of theorem (1).

(a) Convergence of the finite-dimensional distributions.
Ifweputn;=¢+ ¢—;,j=1,2, --- we obtain

Ya(t) = A™V* ¥ 720 1.1 P(S(At) > j).
First we will calculate lim4_,E (Y4 (t) Ya(s)).

S(At) can be represented as a sum of independent random variables, [At]
of them with the distribution of S(1) and one distributed like S(At — [At]) -
([-]1is the integer part). For t € [0, 1] we have

-t k

EIS(t)I3=E?§=oe E[1Sk]7]

-tk
< Yio S (RE|Si|9) = 12 + 1 < 26 = ESQ)Y,

where S; is the simple symmetric random walk. Therefore we can use the
Berry-Essén theorem (cf. Feller [4]) to obtain
| P(S(At) > j) — [z (1/2r)exp(—x?/2) dx| < ¢(VAt)™.
Therefore
lima e X0 A7V2| P(S(At) > j) — [5var (1/v27)exp(— x%/2) dx|
' ' < Y ByAA+1 A-120(2/AL)

+ Y2 e VE wat)-l{ [Sj‘f’ j_]

+ [5 v (1/v2)exp(—x%/2) dx}

Choosing B so that [§ (x%)7™' dx < ¢, and using Tchebyshev s inequality we
obtain

limge Y20 A™2| P(S(At) > j) — [5yz (1/V27)exp(—2%/2) dx| = 0.
Hence
limg o E(Y4(t) Ya(s))
= 20%lima e Nfeo AT [5 a5 (1/V27)exp(—x%/2) dx [z (1/V2T)
\ -exp(—y*/2) dy
=202 3 [ovi (1/V27)exp(—x2/2) dx [ (1/v¥27)exp(—y?/2) dy dv

since this is a Riemann sum converging to the corresponding integral.
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After integration by parts three times we obtain
limy o E(Ya(t) Ya(s)) = J_ (Vt+ Vs — vt +5).

Now we use one of the classical formulations of the multidimensional central
limit theorem, namely: Let for every n,

X = (X0, -, Xy W)
be independent random vectors for k=1, 2, -- -, i,. If
(i) Ib=0B, -, ) VI<j<m T EX ") - >0 as n— o,
(i) 3op] V1=j,p=mEr,
-E{(Xj("’k) _ E(xj(n,k))) (Xp(n,k) —_ E(xp(n,k)))} - gjp
asn — o,
(iii) Ve>0Vli<j<m 22;1
'E{(){j("’k) - EXj("'k))ZX(IXj("’k) — EXj(n’k)‘ > e)} -0

as n— o,
then
. . .. (D) .
i (&% - §) B NG, [0
(D) s
where — means convergence in distribution.
Let

X0 = A,7V* 1, P[S(Ant;) > kI.
We choose i, such that foreveryj=1, ..., m
ki, A /AP[S(ALt) > k] < 1/A,.
We have Y, (¢;) — 2;'::1 X;™¥ — 0 with probability 1, and also

E[(Ei,;l Xj(n,k))(z;'::l Xp(n,k))]
— (e¥/V2m)(Vt; + Vt, — Vit + t,) as n — o

Then we only reed to check (iii). It suffices to see that for every ¢ > 0.
Sho ATV2P%(S(At) > k) [awu x*P, (dx) — O,
but this results from the uniform integrability of 5,2

(b) Weak convergence.
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According to Billingsley [1] (theorem (12.3)), it suffices to show that there
exist ¥ > 0, a > 1, such that for every A and ¢t > s

Ef| Ya(t) — Ya(s)|"} < C(t = 5)%
where C is a constant.
First we will prove
LEMMA.
Yi=o (P[S(A¢) > j] — P[S(As) > j])
<E|SA(t—s))| = [A(t — )] t>s.
Proof of the lemma.
Yi-o {P[S(At) > j] — P[S(As) > jl}

=< ¥ 70 P[sups<,<:S(A7) > j, S(As) = j]

= 27;0 Z‘L=—oo Plsups<,<:S(A7) > j, S(As) = k]

= Yieo Lheroo P(sups<.<S(A7) > j| S(As) = k)P(S(As) = k)
= Y520 Dh=mw P(sUPoc,=-sS(AT) > j — k)P(S(As) = k)

Because the process S(t) has the strong Markov property and symmetrically
distributed increments, it satisfies a reflection principle, i.e.

‘ Plsupo<.<:S(7) > j] = 2P[S(t) > j].
Next we have :
Yo (P[S(At) > j] — P[S(As) >j])

<2 Y70 Th-w PI[S(A(t — s)) > j — E]P[S(As) = K]
<2 Y%, P[S(A(t — s)) > n]
=23E|S(A(t — s))| = (E[S(A@t — $)P)? = [A(t — )],

where we have used the Schwarz inequality. Now we will apply the following
theorem of Marcinkiewicz-Zygmund [7]:

Let ¢; be independent random variables such that E¢; =0, E| ¢ [P <o, p>1,
then

BoE(Xho1 $i°)? = E| Yhr $k|P < GE(Z R §5)P72,
where B, and bp are positive constants which depend only on p.
We put n = o (the series converge) and p = 6. Then
E[Ya(t) — Ya(s)]° = A™*CeE{T %0 nﬁ[P(S(At) > j) — P(S(As) > I
= A2C[X20 {P(S(At) >j) — P(S(As) > j)}PP = C(t — )2,
as was to be shown. '
Proof of theorem (2).
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We have
e—ttk
k!
Consequently, using the inequality of Marcinkiewicz-Zygmund for p = 4,
E[xomt) — xo(4s)

Ja

x0(t) = Tk-o [xx(0) — K.

] =ATE{Zia i+ - + S — R

 [lexp(=40)1(40)* — [exp(=4s)1(As)*[*
| k!

< CAT?E[¥3=0 ($re1 — 1*{P[S(At) > k] — P[S(As) > k]}*J?
where S(-) is the Poisson process with parameter 1. Therefore

E[f"—(f*—t)—\/-_,f'ﬁ% < const A"%(350 (P[S(At) > k] — P[S(4s) > k]))?

= const A"%(Tr-0 P[S(At) > k, S(4s) < k))?
= const A% (¥5=0 Xj=0 (P[S(A(t — 5)) > k — j]P[S(As) = j]))*
= const A7 (-0 P[S(A(t — s)) > n])* = const(t — s).

Proof of theorem (3).

To begin with, it is convenient to mention some additional facts about
Spitzer’s model [8] and to give another proof of the weak convergence of the
real normalized motion of the 0-th particle to Brownian motion in the “simple
case”, i.e., v, = *1 with probability 1. Spitzer’s model in the “simple case” is
the following. Initially the particles form a Poisson system with parameter 1
in R and have independent velocities v, = +1 with probability 1 independent
by of the positions. If two particles meet they simply exchange velocities. The
real motion of the 0-th particle is denoted yo(t).

Note 1.

The times of the consecutive collisions, 7,, 72, - - - - of the 0-th particle are
independent exponentially distributed random variables with mean 1.

Clearly the 7, are finite with probability 1 and we may assume the absence
of multiple collisions. We conclude this note immediately by using the nature
of Poisson system. In fact, at the random time 7, the particles do not form a
Poisson system. For example set vp = 1. In (—7;, 72) there does not exist any
particle with v, = —1, but such a particle could never influence the motion of
the 0-th particle in the future. (If we consider the real motion of the 0-th
particle, the remaining particles can be considered as penetrating each other).
Therefore

Yo(At) =n1 + -+ + n5,, + ear(w),

where | 5;| = 7; and §4, is the number of collisions in the interval [0, At].



50 WOJCIECH SZATZSCHNEIDER

We have three facts:
(a) % — 1 with probability 1 as A — «. (64, has Poisson distribution with
mean At).
(b) earlw) — 0 almost everywhere as A — o,
VA
(c) Foreachk
— o ™™ e e s s e 1 ili l
Mt e b= =79+ + 7 Wfth probab{ITty f
—r T — s + 7, with probability|s.

Now, to obtain the other proof of Spitzer’s result we apply the method of
random change of time (§17 of Billingsley [1]).

For obvious reasons we can consider the horizontal coordinate of yo(At) as
if there were no jumps, and it is not worth while to introduce another notation
for the horizontal motion of y,(At) between consecutive collisions.

Now,
j’O(At) = (7’1 4+ e <+ Ns,, + €Aty Y1 + ... + 'Yﬁm)

where v; = *1 with probability . Moreover, (5;),%, (v;):” are independent
systems of independent random variables, and once more 84,/At — 1 and
€4/ VA = 0 almost everywhere.

Hence, using the random change of time we may prove Theorem 3.
Note 2. '

The horizontal coordinate converges in C([0, 1], R) and the vertical one in
D([0, 1], R), but because we work with the product space it is not necessary
to explain better the type of convergence. The proof shows what problems
appear in the general case.

Proof of thearem (4).

The proof is trivial if we notice the absence of repeated collisions and the
fact that, if two particles penetrate each other, one of them can not influence
the motion of the other in the future.

Proof of theorem (5).
(1) Spitzer’s model.
Because y,(t) = [§ v(r) dr we have
Yo(t) = [6 (v(r) — E(v)) dr — tE[v],
(1/t) f6 (v(r) — E@®)) dr—0 (See Spitzer [8]).
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Therefore, yo(t) tends to +c with probability 1.

(ii) Initial positions on the integers (cf. Szatzschneider [10]). We will show
that for any integer k > 0, yo(n) > k, for every n > N, and almost all w. We
will use Spitzer’s lemma, namely

Yo(n) >k = Li(n) — Ru(n) >k,

where Ly(n) (resp. Ri(n)) is the number of lines x + vyt = k (in the plane
(x, t)) hitting the line x = k from the left (resp. right) before time ¢. Therefore
P(yo(n) =< k) = P(Lp(n) — Ri(n) =< k) = P(Lo(n) — Ro(n) < k)
= P{(X}—= x[J + vjn > 0] — X720 x[j + vjn <0]) < k}. (3)
We have
| Zj=o Plujn>j] — Ej=o Pluin < —j] — nE[] | = 2.
Let 4, be the difference of the sums in (3). Then

P(s, < k) < P{| 5, — Eb,| >gE[v]}

for large n. We use now Tchebyshev’s inequality for the fourth moment.
We put
n2i-1 = x[1 + vin < 0] — E(x[i + v;in < 0]) \
N = —x[-l+vn >0+ E(x[-i+vn>0))i=12,-...
The #; are independent random variables with mean 0.
E(TZom)* < C(TiZo En?)?

< C{3%0 E(x[i + v;-n < 0]) + X% E(x[i + vi-n > 0]} ~ n*(E[v])>

Finally we complete the proof by using the Borel-Cantelli lemma, since the
series Y n-1 P(y(n) < k) converges.
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