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SOME NOTES ABOUT THE RANDOM MOTION OF A 
PARTICLE 

BY WOJCIECH SZATZSCHNEIDER 

1. Models and theorems 
In 1968 Frank Spitzer [9] constructed the following model. In R we have a 

Poisson system with parameter 1, which is equivalent to two independent 
Poisson processes on the left and on the right of the origin. In order to have a 
realization { xk) k=-«> +«> of the model, the points Xk, k = 0, ±1, • • • , with x0 = 0, 
will represent the initial positions of particles, all having equal mass. For every 
realization • • • < X-1 < xo < X1 < • • • of the initial point process the model 
evolves according to a deterministic interaction of the form 

dxk = Xk+1(t) + Xk-1(t) _ Xk(t) 
dt 2 

This model represents bilateral repulsions. Following Spitzer it is very easy 
tq solve this system of differential equations explicitly. Writing x(t) = 
{xk(t))-oo +"", the system becomes 

dx 
- = (F- I)x 
dt ' 

where Fis the operator (Fxh = ½(xk+I - Xk-i) and I is the identity operator. 
Therefore the solution can be expressed as 

x(t) = ernx, x = x(O), n = F - I. 

Thus Q is the infinitesimal operator for the randomized random walk S(t) (cf. 
Feller [4]), where 

P[S(t) = k] = e-th(t), k E Z, t ==:: 0, 

I k being the Bessel function of order k, i.e. 

1 (t)2j+k 

Ik(t) = Lj=o j!r(j + k + 1) 2 ' 
We have 

(1) t ==:: 0, 

and in particular 

xo(t) = Lk=-«> e-tJk(t)xk(0). 

In fact, the solution (1) is independent of whether we start from a Poisson 
system or from another point process (we only need to have the natural order). 
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To be able to prove a limit theorem for x0(t) we need some assumption 
about the initial positions Xk• We put 

Xo = 0, Xk = I"1 + · · · + I°k, X-k = I"-1 + · · · + I°-k, k > 0, I°k > 0, I°-k < 0. 

THEOREM (1). If I I°k I = I Xk - Xk-1 I , k = 1, 2, • • • are independent random 
variables with mean 1, variance u 2 and 

(2) 

then 

YA(t) = A- 114x0(At) ~ Y(t) as A - oo, 

where~ means weak convergence on C([0, 1], R) (cf. Billingsley [l]), and Y(t) 
is a Gaussian process with mean O and covariance 

0'2 
E(Y(s) Y(t)) = r;:;- ( ./i; + ✓s - ../t+s). 

v21r . 

If we are interested only in convergence of the finite-dimensional distributions 
(proved by Gisselquist [5] in a little bit less general situation), instead of (2) 
it suffices to assume that the t/ are uniformly integrable, which is satisfied if 
supkE I I°k 12+• < oo for some e > 0, and obviously if the I°k have the same 
distribution. 

Spitzer and Gisselquist considered also the model where the evolution of 
the system is caused by unilateral. repulsions: 

J 

" • dxk dt = Xk+l - Xk - 1, E I Xk - Xk-1 I = 1 

Gisselquist proved that if the I I°k I have the same distribution and are 
independent, with Efk 6 < oo; I°k > 0, k > 0; I°k < 0, k < 0, then 

-ttk 

xo(t) = Lk=o e k! [xk(0) - k], 

and the finite-dimensional distributions of A- 112x0(At) converge to those of 
Brownian motion. A little observation allows us to show the following result. 

THEOREM (2). Under the same assumption above, A- 112x0(At) converges 
weakly to Brownian motion on C([0, 1], R). 

Now we pass to models where the dynamics is due to elastic collisions. In R 
we described some models starting either from the equilibrium state (Poisson 
system) or away from equilibrium (cf. Szatzschneider [10], Major, Szasz [6]). 
In the multidimensional case there appears a serious problem, namely, how to 
construct the collisions. A discrete model in R2 has been constructed by Dao
Quang-Tuyen and Szasz [2]; they prove weak convergence to a two-dimen-
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sional Brownian motion. Another model in Rn represents a large particle in a 
system of smaller colliding particles (cf. Diir, Goldstein and Lebowitz [3]). 
They prove weak convergence of the motion of the particle to the Ornstein
Uhlenbeck process. Now we will construct the "jump-continuous" model. This 
class of models originated from a conversation with Professor Dobrushin. So 
far we have not obtained any results concerning "rich" models, and the only 
theorem we have covers a simple situation. 

In R2 = {(x,y)I, on each of the linesy = k (integer) we construct independent 
Poisson systems with parameter 1. We put a distinguished particle black say, 
at the origin. We endow the particles with independent random horizontal 
velocities: + 1, -1 with probability ½ each. The collisions of particles ~gainst 
the black particle produce the exchange of their velocities and also a jump of 
the black particle to each one of the neighbouring lines with probability ½ each. 
The remaining particles continue on their original lines. Let .Yo(•) denote the 
two-dimensional motion of the black particle. Then we have 

THEOREM (3). 

YA(t)=A- 112y0(At)~B(t), as A-oo, 

where B (.) is the two-dimensional Brownian motion. Here ~ means weak 
convergence in the space of functions (x(t), y(t)) from [0, 1] to R 2, such that, 
x E C([0, 1], R) and y E D([0, 1], R) (cf. Billingsley [l]). 

Another model on R which poses similar problems is the following. We start 
from the equilibrium state (Poisson system). The particles collide with prob
ability a, 0 < a < 1 and penetrate each other with probability 1 - a. In the 
simple case, i.e. the velocities Vk of the particles are independent and vk = ±1 
with probability ½, it is almost obvious that this holds. 

THEOREM (4). 

A- 112y 0(At) ~ ✓a B(t) as A - a, 

where y0 ( •) is the motion on R of the 0-th particle, where ~ is, as before, weak 
convergence on C([0, 1], R), and B( •) is Brownian motion. 

In all models constructed above in R we have assumed that E[vk] = 0, where 
vk is the velocity of the k-th particle. 

Now we suppose that the velocities vk are independent and identically 
distributed random variables and E[vk] > 0. It is easy to see that in both 
models: (i) initial equilibrium state (Poisson system), (ii) initial positions on 
the integers, the following result holds. 

THEOREM (5). YA(t) = A- 112y 0(At) tends to +oo with probability 1 as A - . 
oo, where y0 ( •) is, as before, the motion of 0-th particl.e on R. (If vk = ±-y in case 
(ii), this fact follows from the theory of random walks). 
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2. Proofs of the theorems 

Proof of theorem (1). 

(a) Convergence of the finite-dimensional distributions. 
Ifwe put 11i = fi + f-i,j = 1, 2, •••we obtain 

YA(t) = A-l/ 4 LJ=O 1)j+1P(S(At) > j). 

First we will calculate limA_,ooE ( YA ( t) YA ( s)). 

S(At) can be represented as a sum of independent random variables, [At] 
of them with the distribution of S(l) and one distributed like S(At - [At]) 
([ •] is the integer part}. For t E [O, 1] we have 

-ttk 

EIS(t)l 3 = Lk=o e k! E[1Skl 3] 

where S k is the simple symmetric random walk. Therefore we can use the 
Berry-Essen theorem (cf. Feller [4]) to obtain 

IP(S(At) >j) - Jilm(l/h;)exp(-x 2/2) dxl < c( ✓.Af)-1 • 

Therefore 

limA.,....00 Lfa=oA- 112IP(S(At) >j) - Ji/m(l/h;)exp(- x2/2) dxl 

< IJ~fttl+l A-1/2C(2✓.4t)-1 

~oo r: ,-.;) 1 { [S(At) j ] + ~j=[BvAt]+2 Yt (-vAt - p Kt > Kt 

+ fi!5t (1/~)exp(-x 2/2) dx} 

Choosing B so that Ji (x2)- 1 dx < t, and using Tchebyshev's inequality we 
obtain 

limA_,oo LJ=oA- 112IP(S(At) >j) - fi!5t (1/~)exp(-x 2/2) dxl = 0. 

Hence 

limA_,ooE( YA (t) YA (s)) 

= 2<12limA-+00 L.1=0 A- 112 film (1/ h;)exp(-x 2/2) dx fi!JAs (1/ h;) 

-exp(-y 2/2) dy 

= 2<12 f~ J:1..fi (1/h;)exp(-x 2/2) dx f:1.r. (1/~)exp(-y 2/2) dy dv 

since this is a Riemann sum converging to the corresponding integral. 
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After integration by parts three times we obtain 

0'2 
limA_ .. E(YA(t)YA(s)) = r,::- (✓t + ..fs - ./t+s). 

v21r 
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Now we use one of the classical formulations of the multidimensional central 
limit theorem, namely: Let for every n, 

X• (n,k) _ (X (n,k) X (n,kl) 
- 1 , • • ·, m 

be independent random vectors for k = 1, 2, • • •, in. If 

(i) 3b = (/ji, • • ·, /jm) v'l <j < m Li,. E(X/n,kl) - {ji - 0 as n - oo, k=l 

(ii) 3[ujp] Vl sj,p s m L;= 1 

-E{(X/n,k) _ E(X/n,kl)) (Xp(n,k) _ E(X/n,kl))} - O'jp 

as n-00. 

(iii) VE> O Vl sj s m Li.. k-1 

as n-00. 

then 

. EI (X/n,k) - EX/n,k) )2x ( I x/n,k) - EX/n,k) I > E) l - 0 

L;=l (x<n,k) - b) (EJ N(O, [O'jp]) 

h (D) • di t "b t· w ere - means convergence m s ri u 10n. 

Let 

x/n.k) = An- 114 1/kP[S(Antj) > k]. 

We choose in such that for every j = 1, • • •, m 

Lk>in An- 114P[S(Antj) > k] < 1/An• 

We have YA,.(ti) - L;= 1 'Xj<n.k> - 0 with probability 1, and also 

E[(L;._1 x/n,k)HL;_l x/n,kl)] 

- (u 2/../2;)( ~ + ✓t,, - .Jti + tp) as n - oo. 

Then we only rteed to check (iii). It suffices to see that for every E > 0. 

Lk=o A- 112P 2 (S(At) > k) f:"A.11• x2P,,,(dx) - 0, 

but this results from the uniform integrability of 1/k2• 

(b) Weak convergence. 
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According to Billingsley [1] (theorem (12.3) ), it suffices to show that there 
exist 'Y > 0, a > 1, such that for every A and t > s 

E{I YA(t) - YA(s)l'YI < C(t- s)a, 

where C is a constant. 

First we will prove 

LEMMA. 

Li=o (P[S(At) > j] - P[S(As) > j]) 

s El S(A(t - s))I s [A(t - s)]112, t > s. 

Proof of the lemma. 

Li=o {P[S(At) > j] - P[S(As) > j]I 

S Li=o P[SUPs<TstS (AT) > j, S (As) S j] 
= Li=o Li=-oo P[SUPs<T:StS(AT) > j, S(As) = k] 
= Li=o Li= ...... P(sups<TstS(AT) > j I S(As) = k)P(S(As) = k) 
= Li=o Li=-oo P(SUPo<T:St-sS(AT) > j - k)P(S(As) = k) 

Because the process S(t) has the strong Markov property and symmetrically 
distributed incre:qients, it satisfies a reflection principle, i.e. 

P[supo<TstS(T) > j] S 2P[S(t) > j). 

Next'we have 
Li=o (P[S(At) > j] - P[S(As) > j]) 

s 2 Li=o Li=-oo P[S(A(t - s)) > j - k]P[S(As) = k] 
< 2 L;;'=o P[S(A(t - s)) > n] 
= 2}E IS(A(t - s)) I s (E[S(A(t - s))]2)112 = [A(t - s)]lf2, 

where we have used the Schwarz inequality. Now we will apply the following 
theorem of Marcinkiewicz-Zygmund [7]: 

Let t; be independent random variables such that E S"i =· 0, E I S"i IP < oo, p > 1, 
then 

BpE(LZ=l S°k2)P12 SE I LZ=1 S°k Ip S CpE(LZ=1 f/)P 12, 

where BP and Cp are positive constants which depend only on p. 

We put n = oo ( the series converge) and p = 6. Then 

E[YA(t) - YA(s)]6 S A- 3f2 CsEILi=o 11/[P(S(At) > j) - P(S(As) > j)Jl3 

s A- 312C[LJ'=o {P(S(At) > j) - P(S(As) > j)IJ 3 s C(t - s)312, 

as was to be shown. 

Proof of theorem (2). 
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We have 

Consequently, using the inequality of Marcinkiewicz-Zygmund for p = 4, 

~Xo(At) ~ Xo(As)r = A- 2EILk=l [f1 + """ + rk - k]} 

. [[exp(-At)](At)k ;, [exp(-As)](As)kr 
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< cA- 2E[Lk=O (fk+l - 1)2 {P[S(At) > k] - P[S(As) > k]}2]2 
where S ( •) is the Poisson process with parameter 1. Therefore 

E[ Xo(At) ~ Xo(As) r < const A- 2 (Lk=O (P[S(At) > k] - P[S(As) > k]))2 

= const A- 2 (Lk=O P[S(At) > k, S(As) s k])2 

= const A- 2 (l:,;'=o l:J=0 (P[S(A(t - s)) > k - j]P[S(As) = j])) 2 

= const A- 2 (l::=o P[S(A(t - s)) > n])2 = const(t - s)2• 

Proof of theorem (3). 

To begin with, it is convenient to mention some additional facts about 
Spitzer's model [8] and to give another proof of the weak convergence of the 
real normalized motion of the 0-th particle to Brownian motion in th~ "simple 
case", i.e., vk = ±1 with probability½. Spitzer's model in the "simple case" is 
the following. Initially the particles form a Poisson system with parameter 1 
in Rand have independent velocities vk = ±1 with probability½ independent 
by of the positions. If two particles meet they simply exchange velocities. The 
real motion of the 0-th particle is denoted Yo(t). 

Note 1. 

The times of the consecutive collisions, r 1, r2 , • • • • of the 0-th particle are 
independent exponentially distributed random variables with mean 1. 

Clearly the Tk are finite with probability 1 and we may assume the absence 
of multiple collisions. We conclude this note immediately by using the n1;1ture 
of Poisson system. In fact, at the random time ri. the particles do not form a 
Poisson system. For example set v0 = 1. In (-ri, r 2 ) there does not exist any 
particle with Vk = -1, but such a particle could never influence the motion of 
the 0-th particle in the future. (If we consider the real motion of the 0-th 
particle, the remaining particles can be considered as penetrating each other). 
Therefore 

Yo(At) = '11 + • • • + '1aA, + EAt(w), 

where I 11; I = r; and DAt is the number of collisions in the interval [O, At]. 
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We have three facts: 
(a) 0A 

A;- 1 with probability 1 as A - oo. (oAt has Poisson distribution with 

mean At). 

(b) EAt(W) 
-- - 0 almost everywhere as A - oo. 
✓A 

(c) For each k 

with probabili.tyl ½ 
with probability½. 

Now, to obtain the other proof of Spitzer's result we apply the method of 
random change of time (§17 of Billingsley [1]). 

For obvious reasons we can consider the horizontal coordinate of .Yo(At) as 
if there were no jumps, and it is not worth while to introduce another notation 
for the horizontal motion of .Yo(At) between consecutive collisions. 

Now, 

, Yo(At) = (111 + • • • • • + 71/JA, + EAt, 'Y1 + • • • • • + 'YiA,) 

where 'Yi= ±1 with probability½; Moreover, (71;)/0
, (-y;h"" are independent 

systems <>f independent random .variables, and once more oAtfAt - 1 and 
EAt! ..fA•-:+ 0 almost everywhere. 

Hence, using the random change of time we may prove Theorem 3. 

Note 2. 

The horizontal coordinate converges in C([O, 1), R) and the vertical one in 
D([O, 1), R), but because we work with the product space it is not necessary 
to explain better the type of convergence. The proof shows what problems 
appear in the general case. 

Proof of theorem ( 4). 

The proof is trivial if we notice the absence of repeated collisions and the 
fact that, if two particles penetrate each other, one of them can not influence 
the motion of the other in the future. 

Proof of theorem (5). 

(i) Spitzer's model. 

Because Yo(t) = H v( T) dT we have 

Yo(t) = H (v(T) - E(v)) dT - tE[v], 

(1/t) H (v(T) - E(v)) dT - 0 (See Spitzer [8] ). 
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Therefore, Yo(t) tends to +oo with probability 1. 

(ii) Initial positions on the integers (cf. Szatzschneider [10)). We will show 
that for any integer k > 0, Yo(n) > k, for every n > N., and almost all w. We 
will use Spitzer's lemma, namely 

Yo(n) > k = Lk(n) - Rk(n) > k, 

where Lk(n) (resp. Rk(n)) is the number of lines x + vkt = k (in the plane 
(x, t)) hitting the line x = k from the left (resp. right) before time t. Therefore 
P(yo(n) s k) = P(Lk(n) - Rk(n) s k) = P(Lo(n) - Ro(n) s k) 

= Pl o:J--oo x[j + Vjn > 0] - Li=o x[j + Vjn < 0]) s kl. (3) 
We have 

I Li=o P[vin > j] - Li=o P[vin < -j] - nE[v] I s 2. 
Let on be the difference of the sums in (3). Then 

n 
P(on s k) s P{I on - Eon I> 2 E[v]I 

for large n. We use now Tchebyshev's inequality for the fourth moment. 
We put 

'112i-1 = x[i + Vin < 0] - E(x[i + v;n < O]) 
'112i = -x[..,...i + V-in > 0] + E(x[-i + V-in > 0]) i = l,1 2,· • • • 

The '17i are independent random variables with mean 0. 
E(Lf..o '17i)'' < C(Lf-o E77?)2 

S C{Li==O E(x[i + V;•n < 0]) + Lf=-oo E(x[i + V;•n > oJf ~ n2.(E[v])2. 

Finally we complete the proof by using the Borel-Cantelli lemma, since the 
series L:=1 P(y(n) s k) converges. 
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