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INFINITESIMAL MODELS FOR CALCULUS 

BY CARLOS IMAZ 

Introduction 

The purpose of the present paper is to show how to construct, in explicit 
form, models that structure calculus in the manner it was, apparently, con
ceived by Leibniz, Euler and others. From a strict theoretical point of view 
this might be of little interest (if one is not a constructivist), since we have 
the so called non-standard model, due to A. Robinson [8]. Nevertheless, it is 
interesting, even from the mathematical point of view, that it is possible to 
validate infinitesimal calculus in a constructible way, and by methods far more 
elementary than those of Robinson or others (see [3], [4] and [11]). 

To be sure, the idea of constructing infinitesimal models for calculus, in a 
way similar to the one we present here, is not a new idea. Previous efforts 
have been made as in [2], [9], [10] and [12], but they have not prospered. The 
main reason for it has been either the impossibility of actual manipulation or 
the lack of something to play the part that the extension or transfer principle 
plays in the non-standard theory. In our presentation this role is, so to speak, 
played by the concept of faithfulness of extensions, to be defined later. This 
concept is not necessary in the construction of the model, but it is the key for 
validation, i.e., to prove that the model is equivalent to the ·standard. (e, o) 
model of Calculus. 

The SetR* 

Briefly, the construction of an infinitesimal model for calculus requires a 
numerical structure R* (extension of the reals) and then extensions of real 
domains and real functions to R*, in order to define calculus concepts through 
manipulation of these extensions (we refer to these concepts as *-concepts). 

There are different options for R*. To be specific, we mention one due to 
Levi-Civita (see [6] or [7]), which consists of elements r* of the form 

* ~IX) ex.· r = £..i=I a;w ' 

where w is a symbol, a;, a; are reals, a 1 > a 2 > a3 > •••,unbounded. With 
natural definitions R* is a non-archimedian ordered field extension of the 
reals, R, and R* contains infinitesimals and infinite numbers. The details will 
be omitted, since they can be found in the above mentioned literature. To be 
sure, elements r* ER* will be called positive (negative) infinite numbers if a 1 

> 0 and a1 > 0 (a1 < O). They will be called finite if a1 = 0 (in particular reals 
are those elements for which a 1 = 0 and a;= 0, i = 2, 3, •••).Finally, they are 
called positive (negative) infinitesimals if a1 < 0 and a1 > 0 (a1 < O). 

For any fixed real a1 the set of numbers of the form 
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constitute the atom (or monad) around the real a1, that is, they are the non 
reals infinitely close to a1, in particular they belong to the left (right) part of 
the atom if a2 < 0 (a2 > O). 

The way to extend sets is quite natural and simple. Given a set A k R, its 
extension A* k R* will consist of the following elements. First, all of A is 
included in A*. Second, if the real p is an accumulation point of A by the left 
and/or by the right, then we include in A* the left and/or right portion of the 
atom of p (exclusion made of p, unless p E A). Finally, if A is positively 
(negatively) unbounded, we include in A the positive (negative) infinite num
bers. 

Faithful Extensions 
We now come to the problem of extending real functions f: A - R into 

functions f *:A* - R*. For this we introduce the concept of faithfulness. 

Definition. An extension/* of a real function/ is said to be faithful if the 
following condit1.ons are fulfilled: 

1. f*(A *) k [/(A)]* 
2. Whenever there exists a sequence Xn (xn "# p) in A converging by the 

right and/ or the left to a real p, such that the sequence f (xn) converges by the 
right and/or the left to a real q, then part from the right and/or left of the 
atom of p goes under f* to the corresponding part of the atom of q, and 
conversely. Obvious modifications have to be made for the cases in which 
either p or q or both are ±oo. . 

The idea of the above definition is that the behavior of the extension f * at 
the atom of a real point is, in a manner, comparable to the local behavior of/ 
at the same real point, in such a way that one can define *-concepts using f * 
and these concepts will coincide with the standard '=, o, counterparts. To 
illustrate the situation, let us define one of the fundamental concepts Qf 
calculus, that of limit of a function, in the frame of our infinitesimal model 
(from now on, extension of function will mean faithful extension). 

Definition. The *-limit of a real function /(x), when x tends to a realp, is 
the real q(*-limx-+pf(x) = q) if, for every P* "#pin the atom ofp (and in the 
domain of some extension/*), we have that /*(p*) belongs to the atom of q. 

Take now the case of a function / (x) that is standard continuous in its 
domain (i.e., limx-+pf (x) = f (p) ). Then clearly, if we define, for example/* (x 
+ i) = f (x) + i where i represents an infinitesimal), this extension is faithful 
and, o(course, *-limx-+pf(x) = f(p), so that/(x) is *-continuous. To be sure, 
one can not always take just any faithful extension of the function involved. 
For example, in the case of the derivative, it is not the limit off (x) but that 

of F(h) = / (x + h l -f (x) , that is to be considered, so that the extension f* 

off should be such that F*(i) = f*(x + i! - f (x) is faithful with respect to 
i 

F(h) around h = 0. 
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As a further illustration consider Dirichlet's function (d(x) = 1 is x is 
rational, d(x) = 0 otherwise). Then a faithful extension of d* is given by: 

d*(x +.i) = 1 

d*(x + i) = O 

if i is "rational" 

otherwise, 

where i being "rational" means that the first non zero coefficient of the 
representation of i is rational. If now one defines (in the obvious way) the 
concepts of *-lim and *-lim, they will be 1 and 0, respectively, and coincide 
with the standard counterparts. 

"Canonical" Extensions 

If f (x) is continuous, certainly the extension f*(x + i) = f (x) + i is faithful, 
but also is rather arbitrarily related to f (x). We mention here a more canonical 
way to extend functions. Consider a function f: A - R. In order to extend f to 
A*, we need to say what values f * will take at the atom of any point p that is 
an accumulation point of A. Now, assume that at a certain neighborhood V of 
p (relative to A), the values off (p + h), h ¢ 0, p + h E V, are given by a 
certain explicit "formula" g(p, h). We will then define f* for all elements p + 
i (in the relevant part of the atom of p) by computing g (p, i) whenever that 
makes sense directly, or can be adequate to make sense and render f* faithful. 
So, in the case of algebraic functions, it is clear that g (p, i) will make sense, 
since R* is a field. In the case of analytic functions, that is when 

g(p, h) = L~=O lin(p)hn, 

then we can adequate g(p, i) by taking it to mean: 

g(p, i) = L~=O CXn(p)in, 

where m is chosen so that the extension is adequate for the problem at hand. 
For example, in the computation of limits it may happen, because of cancel
lations, that one has to take a relatively big min order to get the right answer. 
To illustrate, consider the simple example of computing *-limh_o(cos h - 1)/ 
h2, in this case, 

h2 h4 
g(p, h) = g(o, h) = 1 - 2! + 4! - • • ·, 

taking m = 1 would mean taking g(0, i) = 1 and rendering the wrong result 
that the limit is zero. The square in the demoninator warns us to make m ;;!!: 

2. In fact, if we make m = 2 we get the right result that the limit is -½, taking 
m greater does not change things. 

In the preceding section we saw another example of adequation of g(p, h), 
for the case of Dirichlet's function. 

As a matter of fact, we can prove the following. 

THEOREM. Let f: A - R be any given function and p be an accumulation 
point of A. Then there exists a "canonical" faithful extension f* to the atom of 
p. 
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Proof. Let V be a neighborhood of p (relative to A) and let L be the set of 
all limit points of sequences f (xn), where Xn E V, Xn - p. Separate the non
reals of the atom of p in as many disjoint subsets as elements are in L, now 
we define f * on every subset in such a way that its image goes to the atom of 
the corresponding limit point in L. This extension is certainly faithful. 

The Equivalence Theorem 
In this section we will simply state the result that, on the basis of the 

faithfulness concept, validates this infinitesimal model of calculus in relation 
to the standard E, o model. 

The definition of *-concepts of calculus can be worded in the same way as 
is done in non-standard analysis, see [8] or (11], so we will not give these 
definitions here. 

THEOREM. For any real function f: A - R that has an adequate faithful 
extension f *: A* - R*, the *-concepts of calculus are equivalent to their 
corresponding standard E, o concepts. 

The adjective "adequate" is to remind that in some cases we need more than 
just faithfulness off*, as illustrated before. 

The proof of this theorem follows from a straight forward manipulation of 
correlated definitions and the faithfulness condition, and will therefore be 
omitted. 

Final Comments 

On the basis of models like the one we have described here, one can structure 
a more plausible introduction to calculus, than those structured on the basis 
of the so called, non-standard models, see [1] and [4]. It also seems simpler to 
program calculus into a computer. 

The author wants to express his gratefulness to his graduate students at the 
Educational Mathematics Section for using and developing some of the con
cepts presented in this paper. Also to professors Javier Gonzalez and Alejandro 
Salcido for past cooperation that resulted in a first prototype model [5] and 
to professor Vicente Carrion for some fruitful discussions. 
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