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A NOTE ON HYPERPLANE SECTIONS OF REAL 
ALGEBRAIC SETS 

BY J. M. GAMBOA 

It is well known that the set of hyperplanes which meet a non zero
dimensional algebraic set over an algebraically closed ground field contains a 
non-empty Zariski open set. Although a real analogue of this result, changing 
the Zariski topology to the order topology, can be easily proven using [6] and 
[7], many hyperplane sections of a non zero-dimensional algebraic set V over 
a real closed ground field R may well be empty, and the "size" of the set of all 
such hyperplanes reflects the extent of V C Rn. 

We study in this note the size of the set of hyperplanes which meet V in a 
"good way". More precisely, let us denote by Ve the locus of central points of 
V, i.e., the closure, in the order topology of Rn, of the set of regular points of 
V. In [6] it was proven the following: 

THEOREM 1. (Dubois-Recio). There exists a finite number of linear isomor
phisms of Rn such that, given a ''generic" hyperplane, at least one of its 
transforms meets Ve. 

We state here a sharper result: 

THEOREM 2. There exists a linear isomorphism <r of Rn such that for every 
"generic" hyperplane Hof Rn, either H meets Ve or its transform by <r meets Ve. 

Set x = (x1 , • • •, Xn), y = (y 0 , • • •, Yn) indeterminates. Letp C R[x] be the 
ideal of V and q = p • R[x, y] + gR[x, y], where g =Yo+ Y1X1 + · · · + YnXn 
is the equation of a generic hyperplane. We call G C Rn X Rn+i the set of 
zeroes of q and 1r: Rn X Rn+i - Rn+i the standard projection. It is obvious 
that a hyperplane Hy: Yo+ y1x1 + · · · + YnXn = 0 meets V if and only if y = 
(y 0 , • • •, Yn) E 1r(G). Moreover, it was proved in 3.2 of [5] that Hy meets Ve if 
and only if y E 1r(G). So, theorem 2 can be reformulated in the following way: 

THEOREM 2 '. Given a non zero-dimensional algebraic set V C Rn, there exists 
a projective automorphism <r of R(y) such that 1r(Ge) U <1(1r(Ge)) is dense in 
Rn+l. 

We are interested in hyperplanes meeting Ve instead of all hyperplanes 
meeting V because Ve plays a fundamental role in the theory of ordered 
function fields, in case V is irreducible. For instance, it is well known the 
equivalence between: 

1) a E Ve. 
2) There is a real place of the field R ( V) of rational functions of V centered 

at a. 
3) There is an ordering in R(V) which contains all f E R(V) verifying 

f (a)> 0. 
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Moreover, if V is irreducible, and keeping all notations above, p and q are 
prime ideals and it is easy to check that q n R[y] = {0j. Then, let E = R(y), 
F = qf (R[x, y ]/q) and j: E - F the canonical inclusion. We denote by XE the 
space orderings of E. 

3. Definition. A subset A of projective automorphisms of E is said admis
sible if for every a EXE there is a EA such that a(a) extends to F. 

Using theorem 3.2 in [5] and the correspondence introduced in [5] and [8] 
between semialgebraic subsets of V and clopen ( closed and open) subsets in 
the space of orderings of R(V), the theorem 1 quoted above is equivalent to: 

THEOREM 1 '. There exist finite admissible subsets (in fact with cardinality 
:s n + 1). 

In the same paper [ 5] it is defined the number D ( V) = minimum cardinality 
of admissible subsets. In this language our theorem 2' states D ( V) :s 2. 

4. REMARK. This is in fact, the best bound, because D ( V) #- 1 if Vis bounded. 

Proof: Let r be a positive element of R such that 

V C {x E Rn: x/ + · • · + Xn 2 < r 2 j 

Then 

U = IY = (Yo, • • ·, Yn) E Rn+l: Yo2 - r(y1 2 + · · · + y/) > 0j 

is a non empty open subset of Rn+i and Un 1r(G) = 0 so 1r(Gc) is not dense 
in Rn+l or equivalently, D(V) #- 1. 

In the geometrical language that means that a cannot be omitted in theorem 
2 '. We shall see in 5 that bounded sets are not the only ones with D ( V) #- 1. 

Proof of theorem 2 '. If dim V > 1, the central locus of V contains the central 
locus of a curve. So, it is enough to study the case dim V = 1. 

We shall work, first, in case Risa Cantor field, see [2], [3] and [4]. To pass 
to an arbitrary real closed field we shall use a trick which appears in [l]. 

Let us choose a regular point OE V, a neighborhood U of OE Rand analytic 
functions /1, • • •, fn: U - R such that {;(O) = 0 and the image of 

f: U - Rn: t - ({i(t), • • •, fn(t)) 

is contained in Ve. 
Set 

and let us consider, for each 
Y = (Yo, • • ·, Yn) E Rn+l, Fy(t) =Yo+ L~I (L.i=l b;jyj)ti 

From 2.11 in [1] and the usual rules of calculus it is immediate that 
Fy: (-r/n, r/n) - Risa well defined analytic function, r being the minimum 
of the radii of convergence of Ii, • • •, In-
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Choose t0 E (0, r/n) such that p = (Ii (to), • • •, fn(to)) :;c 0, and let M be the 
set of y E Rn+l with Fy(0) • Fy(t 0 ) < 0. Clearly M C 1r(Ge) because Fy(0) 
Fy(t 0 ) < 0 implies the existence oft E (0, t0 ) verifying 

Yo+ LJ=l Yifi(t) = 0 

or, equivalently, (f (t), y) E 1r(Gc). 
So, it is enough to find <J such that 

Mu <I(M) = Rn+1 

But Mis the set of y E Rn+1 such that Hy meets the segment joining the 
origin O with p and, after a linear change of coordinates, we can assume that 
p = (0, 0, • • ·, 0, 1). 

Then 

M = IY E Rn+l: (Yo+ Yn)Yo < 0j U {y E Rn+l: Yo= Yn = 0j, 

and choosing a matrix 

with coefficients in R such that 

b(b + d) < 0 

a(a + c) < 2ab +ad+ be< 0, 

the automorphism <I of R(y) which fixes Yh O :;c j :;c n and sends (Yo, Yn) to 

verifies MU <I(M) = Rn+1• 

Otherwise, there would exist y E Rn+l with (y 0 , Yn) ¢ (0, 0), such that 

(Yo+ Yn)Yn 2:: 0 

(ayo + byn)( (a + c )yo + (b + d) Yn) 2:: 0 

By the choice of A we deduce that y/ + Yn 2 :s 0. Absurd. 
We shall establish now our result for an arbitrary real closed ground field 

R. Obviously, we can assume Vis irreducible. 
Let k be the field obtained adjoining to Q all the coefficients of a set of 

generators of p. Then the real closure K of k with respect to k n R 2 is a Cantor 
field (see [3] and [ 4] ). So, if PK and QK are, respectively, the ideal generated by 
p and q in K[ x] and K[ x, y ], there exists a projective automorphism <TK of K ( y) 
such that 1r ( Ge K) U ( 1r ( Ge K)) = Kn+ 1 ; clearly GK denotes the set of zeroes of qK 
in Kn X Kn+i. Using 3.2 in [5] this implies that, for a given ordering a in 
K(y) = Ei, either a or <TK(a) extends to F 1 = qf(K[x, y]/qK). Let <I be the 
trivial extension of <TK to E = R(y). 
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To prove the density of 1r(Gc) U u(1r(Gc)) it suffices, again by 3.2 in [5], to 
show that either /3 or u(/3) extends to F = qf(R[x, y]/q) for every order /3 in 
E. 

For this, we use Serre's criterion [9]. Let us suppose that a = {3 n Ei ex
tends to Fi. Then, ifpi, ···,Pm E /3 and hi,···, hn E Fverify Pihi 2 + · · · + 
Pnhn 2 = 0, we construct the field L adjoining to K the coefficients of each Pi 
and h;. Since a extends to Fi and Lis a finitely generated extension of K with 
K =Lor tr.d. L/K ~ 1, a extends to an ordering a* in L(y) which extends to 
qf (L[x, y ]/q ). So each hi= 0 and /3 extends to F. 

In case a does not extend to Fi, we know that uK(a) extends to Fi and 
repeating the same argument above we conclude that u(/3) extends to F. 

5. FINAL REMARKS 

(a) As was indicated in 4, we can find unbounded set V with D(V) = 2. 
More precisely, D(V) = 2 for every irreducible conic. In fact it is enough to 
compute D(V) for Vi= {x2 = xi2} and V2: {xi • x2 = 1}. But, in the first case 
1r(Gc) = {y E Rs: Yi - 4y 0y 2 ~ 0}, and in the second one 1r(Gc) = {0} U 
{y E Rs: Y2 = 0, Yo, Yi"# 0} U [{y E Rs: Y2 "# 0, Yo2 - 4YiY2 ~ 0} n ({Yi"# 0} U 
{Yi= 0, Yo"# 0l)]. 

In both cases 1r(Gc) is not dense in Rs. 
(b) D ( V) = 1 if V contains a line. It is enough to consider V: {(xi, x2) 

E R2: x2 = 0}. Then 1r(Gc) = {y E Rs: Yi"# 0} is a dense subset of Rs. 
(c) D(V) is not invariant under ambient algebraic isomorphism. Let us 

consider F: R2 - R2 defined by F(x, y) = (2x + b 2, 2x + y + h 2) whose 
inverse is G: R 2 -R 2: (u, v) - (¼(2u - (v - u) 2, v - u). 

From (b) D(V) = 1 if V: {y = x}. However W = F(V) is the irreducible 
conic (y - x)(4 + y - x) - 2x = 0 and, from (a), D(W) = 2. 

( d) The number D ( V) gives a measure of the extent of the locus of central 
points of V. If we want to know the extent of V we must know Ll = 1r ( G) -
1r(Gc). This is a "thin" set in case Vis a curve, as was pointed out in 3.4 of 
[5]: Ll is contained in a proper algebraic subset of Rn+i_ But the same does not 
hold in higher dimensions: for example, if 

V: {(1 - xs2)xi2 = Xi4 + x24 } 

is the Coste-Coste Roy Balloon, Ll contains 

{y E R4 : Ys "# 0, y/ - 3(yi 2 + y/ + yg2) > 0}. 

A part of this note is contained in the author's dissertation, presented at 
the Universidad Complutense de Madrid, which was written under the super
vision of Dr. Tomas Recio. 
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