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ON YUZVINSKY'S THEOREM CONCERNING ADMISSIBLE 
TRIPLES OVER AN ARBITRARY FIELD 

BY Jost ADEM 

1. Notation and Intention 

For any field F of characteristic not 2 (as always will be supposed here), let 
(Fn, q) be a quadratic space, where pn is the usual n-dimensional vector space 
over F, whose elements are column vectors x = (x1 , • • •, xnY (where tis the 
transpose operation) and q: pn - F is the standard quadratic map given by 
q(x) = x/ + • • • + Xn

2
. Now, if B: pn X pn - Fis the symmetric bilinear 

pairing determined by q, then B (x, y) = xty is the inner product of x and y, 
and it can be regarded as the product of the row vector xt by the column vector 
y. Trivially, (Fn, q) constructed in this form, is a regular (nonsingular) 
quadratic space (see [3; Chap I]). 

Let (F', qi), (F•, q2 ) and (Fn, q) be quadratic spaces as above, where q1 , q2 

and q are the standard quadratic maps, respectively, for the values r, s, and n. 
A bilinear map 0: F' X F• - pn is a normed map if 

(1.1) 

for all x E F' and y E F•. Any map 0 of this type is called a normed pairing of 
size [r, s, n ], and we say that a triple [r, s, n] is admissible over F if there exists 
such a normed map 0. 

The problem to determine if a given triple [r, s, n] is admissible over an 
arbitrary field F, seems to be a difficult one, even for low values of r. The 
cases r :;;;;; 4 have been decided. For r = 3 this is done using some results 
established by the author in [2]. Later, D. B. Shapiro presented in [5] an 
elegant new approach and an extension of the author's results. The case r = 4 • 
was recently solved by S. Yuzvinsky in [6], using some clever geometric 
arguments. The information needed to settle this case is contained in the 
following. 

THEOREM (1.2) (Yuzvinsky). No triple [4, 4h + 1, 4h + 3] (h = 1, 2, · · ·) is 
admissible over any field F. 

In this note we will reproduce almost verbatim the proof given by Yuzvinsky 
of his theorem. The only novelty presented here is the form how it is 
established the regularity, dimension and invariance of some subspaces re
quired in the proof. This is accomplished using canonical forms for pairs of 
matrices through orthogonal equivalence, as it has already been done by the 
author in [1] and [2]. This approach seems to make more transparent certain 
parts of the proof and perhaps it can be used to study other cases. 

For a complete account of results and bibliography on the subject, the reader 
is referred to the superb expository paper [4] by Shapiro. 
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2. Dimension and invariance of certain subspaces 

In terms of matrices, the existence of a normed map, as the one in (1.1), is 
equivalent to the existence of a set N 1 , • • • , Nr of r rectangular n X s matrices 
over F, such that 

(2.1) 

(2.2) 

N/N; = Is if 1 :s;; i :s;;; r, 

N/Nj + N/N; = 0, if i ¥= j, 1 :s;; i, j :s;;; r. 

The relations (2.1) and (2.2) are called the Hurwitz equations. They are as 
in [2; (2.5)] with a slight difference: the n X s matrices N; here are the 
transpose of the s X n matrices M; there (i.e., N; = M/). 

As before, regard V = ps and W = pn as quadratic spaces, and consider each 
N; as a linear transformation N;: V - W. 

Remark: Any quotation here to a statement in [1] or [2] about matrices, 
should be understood as a reference to the equivalent result obtained under 
the transpose operation. This departure from [1] and [2] adopted here, is 
necessary in order to have a matrix N; as above, operating to the right on 
column vectors. 

Let V; = image (N;), then V; is a regular subspace of Wand dim V; = s. In 
fact, Vis isometric with V; through the linear transformation N;: V - V; 
obtained from N; by restricting its range to its image. Also, it follows that the 
composition Nj (N/ I V;): V; - Vj is an isometry. 

To establish certain properties of the subspaces V; n Vj and V; + Vj of W, 
some restrictions on s and n need to be made. Set s = 2k + 1 and n = 2k + 3. 
For i ¥= j, let N; and Nj be any two n X s matrices over F satisfying the Hurwitz 
equations. We may suppose that F is algebraically closed since this is no 
restriction when we are verifying nonexistence of a set of matrices over F (see 
[1; p 35] ). If P and Q are orthogonal matrices over F, or orders n and s, 
respectively, then it readily follows that the matrices E 1 = PN;Q and E2 = 
PNj Q, also satisfy the Hurwitz equations. As will be shown, a convenient 
choice of P and Q will bring E 1 and E2 to two very simple canonical forms. 

Consider the matrices A and B, respectively, of orders s X s and s X 2, 
defined by 

A = diag[O, C, · . . C] where C = [ O 1] and B = 
ktimes -1 0 [

0
o'.: ~o.: l 

Now, set E 1 and E2 as the n X s matrices defined below 

(2.3) 

where O in the expression for E 1 represents the s X 2 matrix of zeros. 
We have the following 
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LEMMA (2.4). Sets = 2k + 1 and with i ¢ j, let Ni and Ni be two (s + 2) X s 
matrices over an algebraically closed field. Moreover, suppose that the matrices 
Ni and Ni satisfy the Hurwitz equations. Then, there exist orthogonal matrices 
P and Q, such that 

(2.5) 

where Ei and E2 are the matrices of (2.3). 

Proof. The work for the proof was already done elsewhere. Here, as a reference 
we may say that it readily follows by combining in a single pair the orthogonal 
matrices used to obtain, first [1; (3.2) ], and then [2; (2.8)]. 

Let uh= Eh(V) for h = l, 2, and then regard vi n Vj, V; + v'j, Ui n U2 and 
Ui + U2 as quadratic subspaces of W. The following isometries ( ~) hold. 

(2.6) Vi n v'j ~ Ui n U2 and Vi + v'j ~ Ui + Uz. 

More precise is the next 

LEMMA (2.7). Let P: W - W be the transformation induced by then X n 
orthogonal matrix P of (2.4). Then, the linear maps 

T: V; n v'j - Ui n U2 and 0: V; + v'j - Ui + U2, 

defined by T(u) = Pu and B(v + w) = P(v + w), where u E Vin v'j and v E 
Vi, w E Vi, are isometries. 

Proof. It is omitted since it follows directly from (2.5) and the definition of 
the terms used in the arguments. 

To write explicitly Ui and U2 as subspaces of W, let x E V, so that x = 
(xi, • • •, x.)t. Then, it follows from (2.3) that, 

(2.8) 

(2.9) 

Therefore, 

Ei(x) = (xi, • • •, x., 0, 0)t and 

E2(x) = (0, -x3, X2, •• ·, -x., Xs-i, Xi, 0)1. 

Ui = Ix Ix= (xi, • • ·, x., 0, 0)tj and 

U2 = {y I y = (0, Yi, • • ·, Ys, 0)tl, 

where Xi and y; for 1 ==,; i ::;;; s, are arbitrary elements of F. 

Consequently, 

(2.10) Ui n U2 = lu I u = (0, Ui, ••• ' Us-i, 0, 0Yl and 

(2.11) Ui + U2 = {v IV= (vi, • • ·, Vs+i, 0)1}, 

where ui and vi in their respective range of indices, are also arbitrary elements 
ofF. 

Hence, from (2.6) it follows that Vi n v'j and Vi + Vi are regular subspaces 
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of W, and that 

(2.12) dim(V; n V;) = s - 1 and dim(V; + Vi) = s + l. 

LEMMA (2.13). (Yuzvinsky (see [4; p 247])). Let N; and Ni be as in (2.4) 
and set fo = N;N/: W - W. Then, the subspace V; n V; k Wis invariant under 
each of the maps fo and fi;. Furthermore, for N;, Ni: V - W it foUows that 

(2.14) N;- 1 (V;n V;) =Ni- 1 (V;n Vi)-

Proof. Let g12 = E 1E/ and g21 = E 2E/. From (2.5) it follows that fo = ptg 12P 
and that fi; = ptg 21P. Now, if u E U1 n U2 , using the explicit expressions given 
by (2.8), (2.9) and (2.10), it follows directly that g12 (u) and g21 (u) are in 
U1 n U2. 

Let 7- 1: U1 n U2 - V; n Vi be the inverse of the isometry 7 defined in (2.7). 
Then, for v E U1 n U2 , T- 1 (v) = ptv where pt is the transpose of the orthogonal 
matrix P. Let u E V; n V; and v = Pu. Then, fo (u) = ptg 12 (v ), and since g12 (v) 
E U1 n U2, it follows that fo (u) E V; n V;. Analogously, the same holds for 
fi; ( u). Actually, fo and fi; are isometries of V; n V;. 

To prove (2.14), suppose x E N;- 1 (V; n V;). Then, N;(x) = u with u EV; n 
V; and, from (2.1), it follows that x = N/(u). Hence, Ni(x) = NiN/(u) = fi;(u) 
EV; n Vi. Therefore, x E Ni- 1 (V; n V;). The argument can be reversed and 
this completes the proof of (2.13). 

3. Proof of theorem (1.2) 

If we use the propositions already established, the proof of (1.2) can be 
formulated in a few lines. This is accomplished in the last paragraph of 
Yuzvinsky's paper [6]. For completeness, it is also presented here, and the 
method already developed will allow us to exhibit explicitly the subspaces 
required in this part of the proof. 

Assume that theorem (1.2) is false. Then, there exists an admissible triple 
[ 4, 4h + 1, 4h + 3] over some field F and, ifs = 4h + 1 and n = 4h + 3, this is 
equivalent to have four n X s matrices M;, for 1 ~ i ~ 4, over F, fulfilling the 
Hurwitz equations. We will show that this is not possible. 

Clearly, if P and Q are orthogonal matrices over F, of orders n and s, 
respectively, then the new set of matrices PM;Q, for 1 ~ i ~ 4, also satisfy the 
Hurwitz equations and they can be used to replace the original set. Now, in 
accordance with (2.4), choose P and Q such that PM 1 Q = E 1 and PM 2 Q = E 2 . 

Then, set N; = PM;Q for 1 ~ i ~ 4. Hence, the assumption that (1.2) is false, 
is equivalent to have the above four matrices as follows: N 1 = E 1 , N 2 = E 2 , N 3 

andN 4 . 

As before, regard V = F' and W = pn as quadratic spaces, and consider each 
N; as a linear transformation N;: V - W. Consider the four subspaces V; k 
W, defined as the images of N; and observe that V1 = U1 and Vi = U2 • 

If i ¥- j, we have [see (2.6), (2.12)] that V; + Vi is a regular subspace of 
dimension 4h + 2. If Vk k V; + V; for some k ¥- i, j, then, restricting the range 
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of Ni, Nj and Nk, will give transformations V - Vi + ½ that would show the 
existence of a normed pairing of size [3, 4h + 1, 4h + 2]. But this contradicts 
[2; (3.1)]. Therefore, vk i vi+ ½ and, this implies that vi+ ½ + vk = w. 
Now, let D1 =vi+ vk and D2 = vj + vk. Then, W = D1 + D2 and, using the 
well known formula 

dim(D1 n D2) = dim D1 + dimD2 - dim(D1 + D2), 

it follows that dim(D 1 n D2) = 4h + l. Hence, from the inclusions 

vk s (Vin vj + Vk) s D1 n D2, 

we conclude that dim( vi n ½ + Vk) = 4h + l. Then, vi n ½ s vk and 
consequently, V0 = Vin ½ is the same subspace for all i ¥-j. Hence, V0 = U1 
n U2 is the subspace of Wexplicitly given in (2.10). Now, from (2.14) it follows 
that U = Ni- 1 (V0 ) is independent of i. Thus, U = E1 - 1(V0) and, from (2.8) 
and (2.10), it follows that 

U = {x IX= (O, X2, • • ·, Xs)tl. 

The fact that Ni(U) s V0 , for 1,:;;; i,;;;; 4, implies that the maps Ni do restrict 
to N;': U - V0 , and this gives a normed pairing of size [4, 4h, 4h]. Now, let 
us consider the orthogonal complements u1- and Vo1-, respectively, of U in V 
and of V0 in W. They are, 

u1- = {x IX = (x1, 0, .. ·, 0)tl and 

Vol_= {y I Y = (Yi, 0, • • ·, 0, Ys+I, Ys+2)tj. 

Since the maps Ni preserve inner products, it follows that Ni(U1-) s v01-, 
for 1 ,:;;; i ,;;;; 4. So, their restriction to N;": u1- - Vo1-sets [ 4, 1, 3] as an 
admissible triple, which is obviously false. This contradiction ends the proof 
of (1.2). 
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