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SCHAUDER BASIC MEASURES IN BANACH AND HILBERT 
SPACES 

BY Jost LUIS ABREU (*) AND HABIB SALEHI 

Summary 

Schauder basic measures are defined as a natural generalization of orthog­
onally scattered measures. It is shown that Schauder basic measures with 
values in a Hilbert space are precisely those measures that can be transformed, 
via a bounded linear operator with bounded inverse, into orthogonally scattered 
measures. As a consequence it is shown that sequences lxn: n E Z) in Hilbert 
space, which have a uniformly bounded shift operator group, are precisely 
those which are Fourier series of Schauder basic measures on the circle. In 
order to prove these theorems, two basic results are established. The first one 
is that the space of integrable functions with respect to a Banach space valued 
measure becomes a Banach space when endowed with certain natural norm. 
The second one is an inequality that gives upper and lower bounds for the 
sum of the squared norms of a finite set of vectors in Hilbert space, in terms 
of some of their linear combinations. 

§ 1. Introduction 

Unconditional Schauder bases (see [8] §1.c) in Banach spaces play an 
analogous role as orthogonal bases do in Hilbert spaces. On the other hand, 
in Hilbert space, an orthogonally scattered measure (see [9]) is something like 
a "continuously distributed" orthogonal basis. It seems natural to introduce 
an analogous concept of "continuously distributed" unconditional Schauder 
basis. We define such a concept in §3 and name it Schauder basic measure. 

Our motivation to study such measures (and their Fourier transforms) comes 
from the work of Tjostheim and Thomas [14], Niemi [10], Abreu and Fetter 
[1] on second order nonstationary processes with shift operator groups. It 
became apparent from the mentioned articles that the existence of a shift 
operator group is closely related to the process being the image, under an 
injective linear map, of a stationary process. This in turn is equivalent to the 
process being the Fourier transform (or Fourier series in the discrete case) of 
a vector valued measure which is the image, under an injective linear map, of 
an orthogonally scattered measure. Thus the need to characterize such meas­
ures arises. 

Let ~ be a sigma algebra of subsets of a set n and ~ a countably additive 
orthogonally scattered measure on ~ with values in a Hilbert space H. Let X 
be a Banach space and T: H _,. X a bounded linear map with a bounded 
inverse. Define µ = T • ~- Then µ is an X-valued measure on ~ with the 
following properties: 

(*) Visiting Professor at Michigan State University, 1983-1984. 
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(a) If IEnl is a sequence of disjoint elements of ~ then lµ(En) l is an 
unconditional Schauder basic sequence in X. 

(b) There exists a positive constant K such that for every pair /, g of 
µ-integrable functions with I/ I ~ I g I, 

II LJ dµ II ~ K II J 11 g dµ II . 
A Banach space valued measure satisfying (a) is called basically scattered. 

Such measures were introduced by Kalton, Turett and Uhl in [7]. A Banach 
space valued measure satisfying (b) will be called a Schauder basic measure in 
this paper (see Definition 3.1 and Propositions 3.3 and 3.5). 

It turns out that some basically scattered measures, those having bounded 
basis constant according to the definition given in §2 of [7], are precisely the 
Schauder basic measures introduced in this paper (see Proposition 3.6). 

In §2 we study some properties of the space of integrable functions (in the 
sense of Bartle, Dunford and Schwartz [2] with respect to a vector measure. 
In particular we show that this space is complete (see Theorem 2.7). The 
completeness was proved first by E. Thomas [13] for Radon measures. It can 
also be deduced from the extensive work of Brooks and Dinculeanu (see [3], 
in particular Theorem 4.6) on operator valued measures. Our approach is an 
adaptation of Thomas's approach to measures which are set functions. We 
include it for the benefit of the reader unfamiliar with Radon measures and to 
make our exposition self contained. 

In §3 we define Schauder basic measures and use the completeness of the 
space of integrable functions with respect to one such measure to establish 
the existence of a constant K such that II J f dµ II ~ K II J g dµ II whenever I / I 
~ I g I . This constant K is analogous to the unconditional constant of an 
unconditional Schauder basic sequence (see [8] l.c). The equivalence between 
basically scattered measures with bounded basis constant as defined in [7] 
and Schauder basic measures is also established. 

In §4 we prove the elementary inequality: 

inf1 cj 1 = 1 II ~ Cj Xj II 2 ~ ~ II Xj II 2 ~ sup I cj 1 = 1 II ~ Cj Xj II 2 

for an arbitrary finite set of vectors x1, ... , Xn in a Hilbert space (Theorem 
4.2), which is crucial for our work. This inequality together with the existence 
of the constant K established in §3 and an important result due to Niemi [11], 
allows us to prove that a Schauder basic measure with values in Hilbert space 
is similar (via a bounded linear operator with a bounded inverse) to an 
orthogonally scattered measure (Theorem 4.2). Tjostheim and Thomas in [14] 
and Niemi in [10] studied a class of second order nonstationary stochastic 
processes called uniformly bounded linearly stationary (U.B.L.S.). U.B.L.S. 
processes are those which have a uniformly bounded shift operator group. 
Using a theorem of Sz. Nagy [12] on uniformly bounded linear operators in 
Hilbert space it can be proved, as was done by Tjostheim and Thomas, that a 
U.B.L.S. process is the image under a bounded linear operator with a bounded 
inverse of a stationary process. Using this characterization of U.B.L.S. proc-
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esses and Theorem 4.2 one obtains that U.B.L.S. processes in Hilbert space 
are precisely the Fourier transforms ( or Fourier series in the discrete parameter 
case) of Schauder basic measures (Theorem 4.3). An example is given to show 
that this result is false for U.B.L.S. processes in Banach space. 

§2. The space of integrable functions with respect to a Banach space 
valued measure 

Throughout this section X is a Banach space with norm II II , X* denotes its 
dual space, Q is a set, ~ a sigma algebra of subsets of Q and M(Q, ~; X) the 
linear space of countably additive X-valued measures on (Q, ~).For eachµ E 
M(Q, ~; X) and E E ~. IIµ II (E) denotes the semivariation and Iµ I (E) the 
total variation of µ on E. II µ II ( •) is bounded and subadditive while I µ I ( • ) is 
additive but may be unbounded. For the definition and properties of the 
semi variation and other aspects of the theory of integration of complex valued 
functions with respect to vector measures we refer to Dunford and Schwartz 
[6] §IV. 10. The semivariation IIµ II (Q) on the whole space Q is a norm in 
M(Q, ~; X). 

PROPOSITION (2.1). M(Q, ~; X) with the normµ - IIµ II (Q) is a Banach 
space. 

Proof. Let lµnl be a Cauchy sequence in M(Q, ~; X), i.e. II µm - µn II (Q) -
0 and m, n - 00 • Since for every EE ~. II µm(E) - µn(E) II :s. II µm - µn II (Q), 
it follows that µ (E) = lim µn (E) as n - oo exists. Thus by a generalization of 
Nikodym's theorem (see [6], theorem IV.10.6), µ is a countably additive 
measure. It only remains to show that II µn - µ II (Q) - 0 as n - oo. Lett> 0. 
Choose N such that II µn - µm II ( Q) < t/ 4 for every m, n ~ N. Let </> be a simple 
complex valued function such that I <J> I :s. 1 and 

II µN - µ II (Q) < t/4 + II Ill</> d(µN - µ) 11. 

Finally choose m ~ N such that II JO </> d(µ - µm) II < t/4. This can be done 

because there are only finitely many sets involved due to the fact that </> is 
simple. Then for n ~ N 

f 
< 2 + II JO </> d(µN - µm)II 

+ II In </> d (µm - µ) II 

3 
< 4 f + II µN - µm II (Q) < f. 

Q.E.D. 
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Throughout the remainder of this section µ will be a fixed countably additive 
measure on (Q, ~) with values in X. A set EE~ is µ-null if IIµ II (E) = 0. If 
two measurable functions f andg agree everywhere except on a µ-null set, then 
we say that f = g µ-almost everywhere (abbreviatedµ a.e.). A complex valued 
measurable function f on (Q, ~) is said to be µ-integrable if there exists a 
sequence of simple functions { <f>n I that converges pointwise to f, except perhaps 
on a µ-null set, and for each E E ~, { J E <f>n dµ l is a Cauchy sequence in X. Of 
course J E f dµ is defined to be the limit of J E <l>n dµ as n - oo. In [6] §IV.10 it 
is proved that J E f dµ is well defined and is linear as a function of /, and 
countably additive as a function of E. Also it is proved that every bounded 
measurable function is µ-integrable and if I f I ~ M µ a.e. then II J E f dµ II 
~M llµll(E). 

Our purpose in this section is to make a Banach space out of the space of 
equivalence classes of µ-integrable functions (two functions belonging to the 
same class if they agree µ a.e.). In order to do this we require the following 
elementary results. 

PROPOSITION (2.2). For every E E ~, II µ II (E) = sup1 t 1 .. 1 II J E f dµ II where 
the sup is taken over all measurable functions bounded by l. 

Proof. Define for each E E ~ 
c(E) = sup{ II JE f dµ II :f is measurable and If I ~ lj. From the definition of 

semi variation it is clear that II µ II (E) ~ c (E). Since for I f I ~ 1, II J E f dµ II ~ 
II µ II (E) (c.f. paragraph following the proof of Proposition 2.1) it follows that 
c(E) ~ IIµ II (E). This completes the proof. 

PROPOSITION (2.3). Let f be µ-integrable. Then II f dµ II (Q) = 0 if and only if 
f = 0 µ a.e. ( f dµ denotes the measure E - f E f dµ ). 

Proof. Let En= {w E Q: 0 < If (w) I < 1/nJ. {Enl is a decreasing sequence 
of measurable sets with an empty intersection. Let A be a finite positive 
measure on ( Q, ~) such that II µ II (E) - 0 as A (E) - 0. The existence of such 
A is granted by Lemma IV.10.5 in [6]. Thus ">-.(En) - 0 and hence IIµ II (En) -
0 as n - oo. Let N = {w E Q: f (w) =fi OI. Then, using Proposition 2.2, 

IIµ II (N\En) = SUP1 hl,a;l II f N\En h dµ II ~ SUPw 1,,;1 II f N\En h'nf dµ II 

~ n II f dµ II (N\En), since 

{hlN\En: I h IE. ll C {h'nf: I h' I~ 11. 

This shows that if II f dµ II (Q) = 0 then IIµ II (N) ~ IIµ II (N\En) + IIµ II (En) ~ 
0 + IIµ II (En) - 0 as n - oo and hence IIµ II (N) = 0, i.e., f = 0 µ a.e. Conversely 
if f = 0µ a.e. then the constant sequence {Ol converges to f dµ a.e. and hence 
f E f dµ = 0 for every E E :i, thus showing that II f dµ II ( Q) = 0. This completes 
the proof. 

Definition (2.4). Let J(µ) be the linear space of equivalence classes of 
complex valued µ-integrable functions f (two functions being in the same class 
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if they are equal µ almost everywhere), equipped with the norm Ill f Ill = 
II f dµ II (!.1). It is easy to see, using Proposition 2.3 and the subadditivity of 
the semivariation, that I(µ) is a normed linear space. Our objective now is to 
show that I(µ) is actually a Banach space. We need two lemmas. 

LEMMA (2.5). Let f, g, EI(µ) and EE~- If If I ~ I g I on Ethen II/ dµ II (E) 
~ 11 g dµ 11 (E). If I / I = I g I on n then 111 / Ill = Ill g Ill . 

Proof. Using Proposition 2.2 we see that II g dµ II (E) = suplhl..,1 II JE hg dµ II 
~SUP1h1 ... 1 II JEh(f/g)gdµII = llfdµll(E). 

This proves the first part. The second part is an immediate consequence of 
the first. 

Q.E.D. 
LEMMA (2.6). The simple functions are dense in I(µ), i.e. given f EI(µ) and 

f > 0 there is a simple function </> such that Ill </> - f Ill < t. 

Proof. Let f E I(µ). Let X be a finite positive measure on ( !.1, ~) such that 
limll f dµ II (E) = 0 as X(E) - 0. For each positive integer n define En = 
lw E !.1: I f(w) I> nj. Then X(En) - 0 and hence II/ dµ II (En) - 0. Let f > 0. 
Choose n such that II f dµ II (En)< t/2 and choose</> simple such that</>= 0 on 
En and I</> - f I < t/211 µ II (!.1 \En) on !.1 \En. Then by Lemma 2.5, 

II(</> - f)dµ II (!.1) ~ II(</> - f)dµ II (!.1\En) + II/ dµ II (En)< E. 

Thus Ill </> - f Ill < f. 

Q.E.D. 

THEOREM (2.7). I(µ) is a Banach space. 

Proof. The fact that I(µ) is a normed space was observed in 2.4. It only 
remains to prove that I(µ) is complete. Let I fnl be a Cauchy sequence in I(µ). 
Using Lemma 2.6 we can construct a sequence of simple functions <l>n such 
that Ill <l>n - fn Ill - 0 as n - oo. In particular {<l>nl is also a Cauchy sequence 
in I(µ). Now we extract a subsequence { <l>nk I such that 

L k=l Ill </>nk+I ~ </>nk Ill < OO, 

Define 

N = {w E !.1: Lk=l I </>nk+Jw) - </>nk(w) I = ooj. 

We will show that II µ II (N) = 0. Suppose II µ II (N) = f > 0. Let M be any 
positive real number such that 

Lk=l II </>nk+l - </>nk II < M. 

Define for every positive integer m, 

Nm= { w E !.1: L~l I <l>nk+/w) - <l>nk(w) I > 2~}. and N' = u:=1 Nm, 
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Then IIµ II (N' \Nm) - 0 as m - oo. (This is a consequence of Lemma IV.10.5 
in [6]). Since 

E = llµll(N) ~ llµll(N') ~ llµll(Nm) + llµll(N'\Nm) 

. E 
there exists mo such that II µ II (Nm,) > 2. Hence 

Lk=l Ill </>nk+l - </>nk Ill ~ L~l II (</>nk+l - </>nk)dµ II (Nmo) 

~ II L~l I </>nk+l - </>nk Idµ II (Nmo) 

~ 112~ dµII (Nmo) = 2~ IIµ II (Nmo) >M 

which contradicts our choice of M. We conclude that IIµ II (N) = 0. Now define 

{ 

</>n1 (w) + Lk=l (</>nk+l(w) - </>nk(w)) if WE f!\N 

f(w) = 
0 if wEN. 

Then <l>nk - f pointwise µ a.e. as k - oo. Also, for every E E ~. { J E <l>nk dµ I is 
a Cauchy sequence in X since for every pair of positive integers k, j 

II f E </>nk+i dµ - JE </>nk dµ II ~ II (</>nk+i - </>nk)dµ II (0) 

~ L 1:k Ill </>n1+1 - </>n1 Ill 
which goes to zero ask - oo. This proves f E /(µ). From the completeness of 
M(O, ~; X) (Proposition 2.1) it follows that there exists av E M(O, ~; X) 
such that <l>nk dµ- dv in the norm of M(O, ~; X). But then for every EE~ 

fE <l>nk dµ - v(E) as k - oo 

and hence dv = f dµ. This shows that II (</>nk - f)dµ II (O) - 0 as k - oo, i.e. 
Ill <l>nk - f Ill - 0 as k - oo. This implies, by the way we chose <l>nk, that 
Ill f n - f Ill - 0, and completes the proof of Theorem 2. 7. 

COROLLARY (2.8). If dµ: f E J(µ)} is a closed linear subspace of M(O, ~; X). 

§3. Schauder basic measures in Banach space 

Throughout this section X is a complex Banach space with norm II II , X* 
denotes its dual space, 0 is a set, ~ is a sigma algebra of subsets of O and µ is 
an X-valued countably additive measure on (O, ~). I(µ) and M(O, ~; X) are 
as defined in §2. 

Definition (3.1). µ is called a Schauder basic measure if the map T: I(µ) -
X given by Tf = f n f dµ is one to one and its range is closed. 

An unconditional Schauder basic sequence {xn} (see [8] §1.c) can be viewed 
as a Schauder basic measure on a discrete space, provided ~Xn converges. Also 
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a bounded countably additive orthogonally scattered measure (with values in 
a Hilbert space) is a Schauder basic measure. 

PROPOSITION (3.2). Letµ be a Schauder basic measure on (O, ~) with values 
in X and /,et Q be a bounded linear operator on X with a bounded inverse. Then 
Qµ is a Schauder basic measure too. Also µ and Qµ have the same integrable 
functions. 

Proof. Let 71(E) = Qµ(E) for every EE~- It is clear that 71 is an X-valued 
countably additive measure on (f!, ~). It is clear too thatµ and 71 have the 
same null sets, and it is not difficult to see that f E J ( 71) if and only if f E J (µ). 
Suppose f E [(71) and f 11 f d71 = 0. Then Q- 1 f 11 f d71 = f 11 f dµ = 0 and therefore 
f = 0 µ-almost everywhere and hence also 71-almost everywhere. This shows 
that the map f- f 11 f d71 from [(71) into Xis one to one. Now let x EX~, the 
closed linear space generated by {71 (E) :E E ~ }. Since X~ = QXµ and µ is a 
Schauder basic measure, there exists f EI(µ) such that Q- 1x = f 11 f dµ. Hence 
f E [(71) and x = Q f 11f dµ = f 11 f d71, thus proving that the range off- f 11 f d71 
is closed. This completes the proof. 

PROPOSITION (3.3). Let µ be a Schauder basic measure. Then there exists a 
constant K > 0 such that whenever f, g E [(µ) and If I =e. I g I on Q then II J 11 f 
dµ II === K II J ll g dµ II . 

Proof. Let Xµ denote the closed, linear subspace generated by {µ (E): E E 
~ } . From the hypothesis that µ is a Schauder basic measure it follows that the 
map T of Definition 3.1 has Xµ as its range. Since II Tf II =e. Ill f Ill for every f 
EI(µ), and since[(µ) is a Banach space (see Theorem 2.7), T has a bounded 
inverse T- 1 : Xµ - [(µ). Let K be the norm of T- 1. Let c = f/g where g #:-0 
and c = 0 if g = 0. Then I c I =e. 1 and II J 11 f dµ II = II J 11 cg dµ II =e. II g dµ II ( f!) = 
Ill g Ill = Ill T- 1Tg Ill === K II Tg II = K II J 11 g dµ II. 

Q.E.D. 

The constant K obtained in the previous proposition plays a similar role as 
the unconditional constant of the unconditional Schauder basic sequences (see 
[8], §Le). For example the following corollary, which is clearly equivalent to 
Proposition l.c.7 in [8], can be deduced from Proposition 3.3. 

COROLLARY (3.4). Let {xn} be an unconditional Schauder basic sequence in 
X. Then there exists a constant K > 0 such that whenever I an I =e. I bn I for every 
nand 

L:=1 bnXn converges then II L:=1 anXn II =e. K II L:=1 bnXn II, 
Proof. Let f! be the set of positive integers and ~ the sigma algebra of all 

Xn 
subsets off!. Define µ(E) = ~neE II Xn II n 2 for every EE ~- The rest of the 

proof is a straightforward application of Proposition 3.3. 
The converse of Proposition 3.3 is also true and may be used as an alternative 

definition of basic Schauder measures. Here we state it as a proposition. 
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PROPOSITION (3.5). Suppose µ is an X-valued measure and K a positive 
constant such that whenever f, g E I(µ) and If I ~ I g I then II J fl f dµ II ~ K 
II J fl g dµ 11-Then µ is a basic Schauder measure. 

The proof is straight forward and is omitted. 
The measureµ is called basically scattered (see [7]) if for any sequence {En) 

of disjoint sets in ~, {µ(En)) is a Schauder basic sequence ({µ(En)) is then 
necessarily an unconditional basic sequence). 

The following definition is given in [7] for real Banach spaces. Here we 
extend it to complex Banach spaces. 

Definition. A basically scattered measure µ is said to have bounded basic 
constant on a set E E ~ if there is a constant K such that for any sequence 
{En) C ~ of disjoint subsets of E, for any sequence {an) of complex numbers 
and for any pair m, p of positive integers, 

II L:=1 anµ(En) II ~ K II L;:'~"f anµ(En) 11. 

We say µ has bounded basis constant if it has bounded basis constant on n. 
PROPOSITION (3.6). µ is a Schauder basic measure if and only if it is basically 

scattered and has bounded basis constant. 

Proof. Suppose µ is a Schauder basic measure and let K be the constant 
from Proposition 3.3. Let {En) be a sequence of disjoint elements of~- Clearly 
the elements of {µ(En)) are linearly independent. Suppose x E c.l.s. {µ(En)}. 
Then x = limk___.oo f f k dµ where { f k) is a Cauchy sequence of simple functions 
of the form fk = ~ a~IEn. Thus fk - fin I(µ) and f = ~ anIEn. Therefore 

X = J f dµ = ~ anµ(En). 

This representation of Xis unique and the series is unconditionally convergent. 
Thus {µ(En)) is an unconditional Schauder basic sequence. This provesµ is 
basically scattered. Also: 

II L :=1 anµ (En) II = II J fl L :::=1 anhm dµ II ~ K II J fl L ::f llnlE. dµ II 

= KIi L ::f anµ (En) II 

for every sequence {an) of real (or complex) numbers. This proves µ has 
bounded basis constant on n. 

Conversely, suppose µ is basically scattered and has bounded basis constant 
on n, more specifically, let M > 0 be such that for every sequence {an) of 
complex numbers, any positive integers m and p, and any disjoint sequence 
{En) in~. 

II L:=1 anµ(En) II ~ M II L::f anµ(En) 11. 

Now, suppose {an} and {bn) are sequences of complex numbers such that I an I 
~ I bn 1- Let m be any positive integer an = anbn with an real and I <Xn I ~ 1. 
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Let C be the convex hull of the set { L:=1 onbnµ(En):on = ±llThen 

sup{ II XII :x E C} = sup{ II I:=1 Onbnµ(En) II :on = ±1, n = 1, ... ' m }. 

Now, for any choice of o1 , ... , om, 

II L:=1 Onbnµ(En) II ~ II ~on=l bnµ(En) II + II ~on=-1 bnµ(En) II 

~ 2M II L:=1 bnµ(En) II 
and since L:= 1 a,.µ(Em) EC, we have 

II r:=1 anµ(En) II ~ 2M II L:=1 bnµ(En) II-

79 

Now suppose only I an I ~ I bn 1-Write an= (an+ if3n)bn with an, f3n real. Then 
I an I , I f3n I ==: 1 and 

II L:=1 anµ(En) 11 === II r:=1 anbnµ(En) II + 11 L:=1 f3nbnµ(E") 11 

==, 4M II L:=1 bnµ(En) II 
This proves that for any pair of simple functions f, g such that I / I ~ I g I , we 
have 

II JO I dµ II === 4M IIJ O g dµ II 
and this in turn extends to all pairs of µ-integrable functions f, g such that 
I f I ==: I g I, thus proving µ is a Schauder basic measure. 

Q.E.D. 

§4. Schauder basic measures in Hilbert space 

Throughout this section H is a complex Hilbert space with norm II II and 
inner product ( , ) . 

THEOREM (4.1). Let x1 , ... , Xn be vectors in a complex Hilbert space. Then 

inf II L k=l CkXk II 2 ==: L k=l II xd 2 ~ sup L k=l ckxk II 2 

where the inf and the sup are taken over all collections of numbers c1, ... , Cn 
such that ck = ±1 for k = 1, ... , n. 

Proof Let c1, ... , Cn be independent, identically distributed random vari­
ables with values ±1. Then 

E II Lk=l CkXkll2 = E Lk=l CkCj(Xk, Xj) 

= Lk=l Li=l E(ckci)(xk, Xj) = Lk=l llxkll2• 

The inequalities follow from this equality. Q.E.D. 
(The authors wish to thank Prof. S. D. Chatterji for providing this proof.) 

Throughout the remainder of this section Q is a set, 2; is a sigma algebra of 
subsets of Q and µ is an H-valued countably additive measure on ( n, ~ ) . 
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THEOREM (4.2). The following statements are equivalent: 
(a) µ is a Schauder basic measure. 
(b) There exists a bounded linear operator Q on H with a bounded inverse 

such that Qµ is orthogonally scattered. 

Proof. That (b) implies (a) follows from Proposition 3.2. Suppose (a) holds. 
Let k be as in Proposition 3.3. Let {E1, E2, .•. , En) C ~ be a partition of Q 

and let a1, a2, ••• , an be complex numbers. From Theorem 4.1. we have 

inf1ci1=ill Li=l Cjlljµ(Ej) II 2 ::;;; Li=l I Uj I 2 II (Ej) II 2 

,s;; SUPlcjl=l Li=l Cjlljµ(Ej) 112• 

The property of the constant K in Proposition 3.3 shows that 

1 
K SUPlcjl=l II Li=l Cjlljµ(Ej) II ,s;; II Li=l Ujµ(Ej) II 

,s;; K inf1ci1=1 II Li=l Cjlljµ(Ej) II­

Combining these inequalities we obtain 

; 2 Li=l lail 2llµ(Ei)ll 2 ,s;; II Lf=1 ajµ(Ej)ll 2 ,s;; K 2 Li=l lajl 2 llµ(Ej)ll2-

According to Hannu Niemi ( [11] Theorem 3) that this last inequality holds is 
equivalent to the existence of a bounded orthogonally scattered measure µ 0 on 
(fl, ~) with values in some Hilbert space Ho, and a bounded linear transfor­
mation A: Hll0 - Hll with a bounded inverse (where Hilo and Hll are the closed 
linear subspaces of H0 and H generated by {µ0 (E): EE ~} and {µ(E): EE~}, 
respectively), such that µ = Aµ 0 • Let Ube a unitary transformation from Hll0 

onto Hll and define~= Ullo" Now define Q = UA- 1 on Hll and Q equal to the 
identity on the orthogonal complement H0Hw Then~ is orthogonally scat­
tered, Q is a bounded linear operator on H with a bounded inverse and ~ = Qµ. 

Q.E.D. 

As a corollary we now prove the following results on the spectral represen­
tation of a continuous uniformly bounded linearly stationary (U.B.L.S.) sto­
chastic processes. {xt) CH is said to be a U.B.L.S. process if there exists a 
constant M such that • 

II L7=1 UjXt+tj II ::;;; M II L7=1 UjXtj II 

for all t, tj in IR and all complex numbers ai, j = 1, ... , k. It turns out that 
continuous U.B.L.S. processes admit a spectral representation 

Xt = f lR e21riwt µ(dw) 

where µ is a countably additive H valued measure on IR (see [9]). 

THEOREM (4.3). Let {xt: t E IR} C H. Then the following statements are 
equivalent: 
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(a) lxtl is a continuous uniformly bounded linearly stationary stochastic 
process. 

(b) Xt = f 1H e2"iwt µ(dw) for some Schauder basic measureµ on the Borel sets 

of lR. 
(c) There exists a continuous stationary process IYtl C H and a bounded 

linear operator B with bounded inverse such that Xt = BYt• 

Proof. Let lxi:t E IR} be a continuous U.B.L.S. process. Letµ be a countably 
additive H valued measure on IR such that 

Xt = f lH e2,riwt µ(dw). 

From Theorem 4 in [10] we know that there exists a countably additive 
orthogonally scattered measure ~ on the Borel sets of IR and a bounded linear 
operator B with bounded inverse such that µ = Br Thus by Theorem 4.2 µ is 
a Schauder basic measure. This proves that (a) implies (b). Conversely, if Xt = 
f lR e2rriwt µ(dw) withµ being a Schauder basic measure then by Theorem 4.2 
there exists a countably additive orthogonally scattered H valued measure ~ 
and a bounded linear operator B with bounded inverse such thatµ= B~. Let 
Yt = f lR e 2"iwt ~(dw). Then IYt} is stationary and Xt = Byt. Hence Xt is a 
continuous U.B.L.S. process. This shows (b) implies (a). The fact that (b) and 
(c) are equivalent follows immediately from Theorem 4.2. 

A minor modification of the above proof shows that a sequence {xn: n E Z} 
C H is U.B.L.S. if and only if it is the "Fourier series" of a Schauder basic 
measure and this holds if and only if lxn} is "equivalent" to a stationary 
sequence. 

§5. Notes and comments 

The main result of §4, namely Theorem 4.2, can be specialized to yield the 
following characterization of unconditional Schauder basic sequences in Hil­
bert space. Let {xn: n = 1, 2, ... ) be a sequence in a Hilbert space H. Then 
lxn} is an unconditional Schauder basic sequence if and only if there exists a 
bounded linear operator Q on H with a bounded inverse such that Qxn .l Qxk 
for n ¥- k, n, k = 1, 2, .... 

The proof follows applying Theorem 4.2 to the measure 

defined on all subsets E of the positive integers. A more direct proof may be 
given using Theorem 4.1 to show that if {xn} is a Schauder basic sequence in 
Hand !en} is an orthonormal basis of c.l.s. {xn} then Q ~ anxn = ~ an II Xn II en 
defines a bounded linear operator with a bounded inverse on c.l.s. {xnl-

This characterization of unconditional Schauder basic sequences in a Hilbert 
space is actually equivalent to the well known result that all unconditional 



82 J. L. ABREU AND H. SALEHI 

Schauder bases in a Hilbert space, which are bounded (above and below), are 
equivalent. [See 15, Notes and Comments to Chapter 1, Section 9 in p. 208]. 

Combining Theorem 3 of Niemi [11] and our Theorem 4.3 one obtains that 
the following statements (a) through (d) are equivalent for a Hilbert space 
valued countably additive measureµ on (O, ~ ): 

(a) µ is a Schauder basic measure. 
(b) There exists a bounded linear operator Q with a bounded inverse such 

that Qµ is orthogonally scattered. 
( c) There exists a finite positive measure m on ( 0, ~ ) and a positive constant 

M such that for all simple complex valued functions </> on 0 

1 M f o I </> I 2 dm :!6 II JO </> dµ II 2 :!6 M f O I </> I 2 dm. 

(d) There exists a positive constant K such that for any finite collection 
IE1, ... , En) C ~ of disjoint sets, one has 

for all ai E C, j = 1, 2, ... , n. 

Niemi proved the equivalence of (b), (c), and (d). Our contribution consists 
on the observation that (b) ~ (a) and the proof that (a) ~ (d). Actually 
Niemi's results also contemplate the finitely additive case while ours is 
restricted to the countably additive case since we rely on the Bartle, Dunford 
and Schwartz theory of integration of scalar functions with respect to a 
countably additive Banach space valued measure. 

We would like to emphasize the fact that in many cases of interest the 
measure m in statement (c) above, can be constructed explicitly. Suppose 
there exists a complex valued countably additive measure fJ on ( 0 X 0, ~ X 
~) such that (µ(A), µ(B)) = fJ(A X B) for every A, BE~; and suppose further 
that the diagonal d = I (s, t) E O X O:s = t) of O X O is the countable 
intersection of sets of the form U J=I Ei X Ei, where IEi. • • • , En} is a 
measurable partition of 0. Then the measure m can be taken to be the 
"diagonal" of fJ, i.e., m(E) = fJ(E x En d). Indeed m defined in this way is 
countably additive and finite, and for every E E ~, 

m(E) = lim LJ=1 llµ(E n Ei)ll 2 = lim fJ(E x En ui=1 Ei x Ei), 

where the limit is taken over the sequence of sets U i=1 Ei X Ei whose 
intersection is d. These conditions are satisfied in many cases of interest. In 
particular, they are satisfied when µ is the spectral measure of a strongly 
harmonizable sequence {xn}, i.e., when Xn = H e2..-int µ(dt) and fJ(A X B) = 

(µ(A), µ(B)) extends to a countably additive measure on the Borel sets of the 
unit square. 
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Suppose µ is a Schauder basic measure on the Borel sets of the interval 
[O, 1) with values in a Banach space X. Define Xn = IA e 2.-int µ(dt). It is easy 
to see that {xn} is a U.B.L.S. sequence in X. 

The following example, kindly supplied by Alberto Alonso, shows that not 
every U.B.L.S. sequence in Xis of this form. 

Exampl,e (5.1). Let X be the Banach space P(l) of absolutely summable 
complex sequences on the integers. Let on E X denote the element of Ii (l) 
defined by onU) = 0 if j '¢= n and on(n) = 1. It is easy to see that {on} is a 
U.B.L.S. sequence in x. Actually 11 ~ anOn+k 11 = 11 ~ anon 11 = ~ I an 1. Now 
suppose there exists an X valued Schauder basic measure µ on the Borel sets 
of [O, 1) such that 

On = IA e2.-int µ(dt) 

for every integer n. The map T:l(µ)-+ X given by TF = IA f dµ sends every 
µ-integrable function into the sequence of its Fourier coefficients, but this 
sequence must be absolutely summable and it is known that there are contin­
uous functions on [O, 1) for which the sequences of their Fourier coefficients 
are not absolutely summable. Thus such a Schauder basic measure µ cannot 
exist. 
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