A NOTE ON NON-STABLE COHOMOLOGY OPERATIONS

By FrankLIN P. PETERSON AND EMERY THOMAS™

1. Introduction

Let 6 be a primary cohomology operation of type (II, n; G, q). Let X and Y be
spaces and f a continuous map ¥ — X. Consider classes v e H"(X; II) such that

f*(u) = 0 and 6(u) = 0.

For such elements Steenrod [2] has defined a functional cohomology operation,
8; , such that 8;(u) is a subset of H*(Y; @). If 6 is an additive cohomology
operation (i.e., a homomorphism), this subset is in fact a coset of the subgroup

L(o,f) = fFET(X; @) + oH(Y; D)),

where '6 denotes the suspension of 6; that is, an operation of type
(M, n — 1; G, g — 1). Thus, if 6 is additive, we may regard 6;(u) as an element
of the quotlent group H‘H(Y G)/L(8, f).

When @ is an arbitrary operation, the nature of the subset 6;(u) is not im-
mediately clear. In this note we show that for all operations 6, the subset Hf(u) is
in fact a coset of the subgroup L(6, f) defined above. Therefore, in all cases we
may regard 6,(u) as an element of the quotient group H*™(Y'; @)/L(8, f).

We give two proofs of this result; these are based upon two different ways of
defining functional operations, and hence employ quite different techniques. We
include both proofs, since the techniques involved may be useful in fmther
studies of non-stable cohomology operations.

2.. The ﬁrst proof

Let us recall the definition of functional cohomology operations given by
Steenrod (see [2]). Let 6 again be a cohomology operation of type (I, n; G, ¢).
Let X, Y be spaces and f a map ¥ — X (f may be assumed to be an inclusion,
using the mapping cylinder technique). Denote by '6 the suspension of 6, and by
g the inclusion map X < (X, Y). Then the following diagram is commutative:

) * %k
HY(Y; 0) — H*(X, Y; ) 7, H*(X; ) AN H™(Y; 1)

19 ] | 6
H™(X;Q) — HH(Y Q) — HQ(X Y; Q) ———>H‘-‘(X Q)

Let u be an element of H*(X; II) such that f*(w) = 0 and 6(w) = 0. Then, by
exactness, there is an element v ¢ H*(X, ¥'; IT) such that g*(v) = u. Since g*6(v) =
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6g*(v) = 6(u) = 0, again by exactness there is an element 2 ¢ H*(Y; @) such
that é(z) = 6(v). Consider all such pairs of the form (z, v) where 8(z) = 6(v) and
g*(v) = wu, for a fixed u. The totality of the elements x which occur in such pairs
we denote by 6;(w). Consider two pairs (z, v), (2, v') satisfying the above con-
ditions. Since g*(v' — v) = u — u = 0, there is an element w ¢ H**(¥; II) such
that ' = v + sw. If 0 is additive, then,

0(") = 6(v) + 6(5w) = 6(v) + 5 '6(w).

Thus,
8z’ — z) = 0(v') — 6(v) = 8 '0(w).

That is, 6(z' — = — '6(w)) = 0. Therefore, because of exactness, there is a class
y e H(X; G) such that

¥ =z ="6w) + f*y).

Therefore, 2’ — x belongs to L(6, f), and it is easily seen that 6;(u) is a coset of
L(6, f).

In general 6 is not additive. In the above characterization of 6;(u), we only
used the additivity of 6 to assert that 8(v + éw) = 6(v) + 6(dw). However, by the
following lemma, this is true for any operation 6; hence, the subset 6y(u) will
continue to be a coset of the subgroup L(6, f) as was asserted.

LemmMA. Let 6 be a cohomology operation of type (I, n; G, q). Let X be a space and
Y c X a subspace. Let v e HY(X, Y; II) and w e H*(Y; I). Then

(v 4+ dw) = 6(v) + 6(ow).

Proor. Let K be an Eilenberg-MacLane complex of type (II, n), and let
¢ ¢ K be a base point. Denote by « the fundamental class of H*(K, e; II). Then,
to 6 there corresponds an element ys in HY(K, ¢; ) given by ys = 6(.). Let
(X1, Y1) be any pair and let u; e H"(X;, ¥ ; II). Using the notation of Eilen-
berg-MacLane in (7.1°) of [3], we have

0(ur) = yo | (w).

Let (X, Y3) be a second pair, and let u; e H*(X1, Y5 ; II). Eilenberg-MacLane
denote by ys | (u1, us) the function of two variables obtained from s . If
Y, = Y,, then by 10.2 of [3], we have:

Yo F (U, us) = 0(ur + u) — 0(us) — 0(us).
In particular, if u, = 0, then
Yo F (wa,0) = 6(w) — 6(w) — 6(0) = 0,

since 6(0) = 0 for any cohomology operation 4.
To prove the lemma, set X; = X, Y, = ¥, u; = v, and uz = dw. Let g denote
the inclusion map X C (X, Y). Then, using (7.6) of [3], we have:

Yo I" (7)7 3’(0) = Yo I_ (1), g*&w) =Y I' (1), 0) = 07
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since g*6 = 0 by the exactness of the cohomology sequence of (X, V). Hence,
6@ + dw) — 8(v) — 6(dw) = 0,
as was asserted.

3. The second proof

Peterson [1] has given an alternative definition of functional cohomology
operations. We now prove our result using this definition. As before let 6 be
a cohomology operation of type (II, n; @, ¢) now regarded as an element of
HY(1II, n; @). Let Z be a space with two non-vanishing homotopy groups—II
in dimension » and @ in dimension (¢ — 1)—with 6 as its Eilenberg-MacLane
invariant. In particular we may construct Z as a fibre space over K(II, n) with
fibre K(G, ¢ — 1); denote by p the projection Z — K(II, n).

For any two spaces A and B let w(4; B) denote the set of homotopy classes
of maps from A to B. In particular, suppose that B is an Eilenberg-MacLane
space of type (A, 7). Then, (4 ; B) may be identified in a natural fashion with
Hr(A; A). In what follows we always assume this identification has been made.

Let X and Y be spaces and f a continuous map ¥ — X. Consider the following
commutative diagram:

HNXG @) =25 2(X; 2) —25 BXG D) —— HA(X; @)
r* Jf’“ ' jf*
H\(Y; ) — g(Y; 6) —2 ~(¥; Z) 25 gy

The rows are exact as sets with distinguished elements (see [1] for details).
Again let u be an element of H"(X; II) such that

f¥(w) =0 and 6(uw) = 0.

Then, by exactness, there exists an element » e #(X; Z) such that pg(v) = w.
Further, by commutativity and exactness, there is an element = ¢ H* Y(Y; G)
such that wg(@) = f*(v). The collection of all z such that

wy(@) = fF@) and pg@) = u,

for a fixed u, is defined to be 6,(u). If @ is a suspension—that is, § = W, where
¢ e H*'(I1, n + 1; G)—then Z may be considered to be a space of loops. Thus,
in the above diagram, all the sets are groups and all the functions are group
homomorphisms. In this case the same proof as before shows that 6,(u) is a coset
of L(6, f) = Im ‘0 + Im f*.

When 6 is not a suspension, Z is not a space of loops and (X ; Z) is not neces-
sarily a group. However, we do have the following algebraic structure. The fibre
space p:Z — K(II, n) is a principal fibre space with the monoide K(@, ¢ — 1)
as fibre (see §4 for details). Hence, there is a map ¢:K(G@, ¢ — 1) X Z — Z, and
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thus a natural map ¢x: H*'(X; @) X 7(X; Z) — «(X; Z). In §4, we prove that
if v, v ew(X; Z), then

(3.1) p(v) = px(v')
if and only if there exists an element w ¢ H* (X ; G) such that
dx(w, v) =0

Notice that 19 is 2 homomorphism; thus H*(Y; @)/Im ‘60 ~ Im wyx C =(Y; Z)
can be given a group structure such that wg is a homomorphism. Property (1)
in the definition of a principal fibre space (see §4) shows that

(3.2)  oxy, wx®)) = wx(y + ¥),

fory, v’ e HY(Y; @).

Now, let v, v’ e #(X; Z) be elements such that px(v') = pg(») = u. Then, by
(8.1), there is a class w e H(X; G) such that ¢g(w, v) = o'. Let z, 2’ e H*
(Y; G) be elements such that wg(z) = f*(») and wg(z’) = f*@’). Then

ws@) = FR0) = Foa(w, ) = ¢5(Fw, %) = dy(Pw, w(a)).
But by (3.2),
ox(f*w, wy()) = wy(f*w + 2).

Hence,

wg(@’ — x — ffw) = 0.
Thus, by exactness,

¥ =z = frw+6y),
for some class y e H"'(Y; II), which completes the proof.

4. Principal fibre spaces

In this section we give a definition of principal fibre spaces and prove the re-

sults needed in §3. _
Let p:E — B be a fibre space (in the sense of Serre) with fibre F = p~(bo),
bo € B. Let ¢:F — E be the inclusion, and set

E* = {(61 ) 62) I €; el (7’ = 17 2)7 p(el) = p(e2)}

Let p;j:E* — E, (j = 1, 2), be the projection maps. Then, (E, p, B) is called a
principal fibre space if F is a monoide (i.e., space with a multiplication) with unit
and homotopy inverse, and if there exist maps

¢:F X E—-E and h:E*—F

subject to the following conditions: -
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(1) The following diagram is commutative, where ¢ is the multiplication in F,

FxFr-—YF

llx: l

FXE—E

(2) The following diagram is commutative, where the map ¥ X B — B is the
natural projection;

FxE—2g

ll Xp JP
FXB——B
(3) #(h, p1): E* — E is homotopic to p; .
Lemma 4.1: Let (E, p, B) be a principal fibre space. Let X be a space, and let
v, v ew(X; E). Then,
p(v) = px()
if and only if there exists a map w e w(X; F) such that
ox(w, v) = v,

Proor. Suppose that ¢gx(w, v) = . Then, by condition (2) above,

ps(v') = pudg(w, v) = px(v).

Suppose conversely that pg(v) = pg(v’). Let 5, ¥ represent v and v'. We may as-
sume that p# = p¥ by the covering homotopy theorem. Let w = [h(5, 7')] ¢
w(X; F). Then, by condition (3),

¢#(’w1 1)) = (ﬁ#([ho(l’), 6,)]3 7)) =

This completes the proof.
We now must show that the fibre space considered in §3 is a principal fibre
space. We first show that the space of paths on B is a principal fibre space over B.
Let by € B. Let E be the space of all paths (f, ), where f:[0, r] — B, r = 0,
and f(0) = by. Let p:E — B be defined by p(f, r) = f(r). Then F = p~(by) is
the space of loops on B. Define ¢:F X E — E by

f&, 0=t<
amm@mm=@) ’

IIA
A

g(t — 1), r <r+s

Define h: E* — F by
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git)y, O0=<t=<s

A ) =
[(f; 7‘)7 (g: S)](t) f(T + s — t)’ ) é i é r + S.

This makes (¥, p, B) into a principal fibre space.

Lremma 4.2. Let (E, p, B) be a principal fibre space. Let (E, p, B) be the fibre
space induced by a map B — B. Then, (K, p, B) s a principal fibre space.

The proof is entirely straightforward and is left to the reader.

Now the fibre space considered in §3 can be obtained as an induced fibre space
from 6: K(II, n) — K(G, q) and the path space over K(G, ¢). Hence, it is a prin-
cipal fibre space by Lemma 4.2, and thus Lemma 4.1 may be used.
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