
A NOTE ON NON-STABLE COHOMOLOGY OPERATIONS 

BY FRANKLIN P. PETERSON AND EMERY THOMAS* 

1. Introduction 

Let O be a primary cohomology operation of type (II, n; G, q). Let X and Y be 
spaces and fa continuous map Y - X. Consider classes u £ Hn(X; II) such that 

f*(u) = 0 and O(u) = 0. 

For such elements Steenrod [2] has defined a functional cohomology operation, 
01 , such that OJ(u) is a subset of Hq- 1(Y; G). If (} is an additive cohomology 
operation (i.e., a homomorphism), this subset is in fact a coset of the subgroup 

where 10 denotes the suspension of O; that is, an operation of type 
(IT, n - I; G, q - I). Thus, if(} is additive, we may regard OJ(u) as an element 
of the quotient group Hq- 1(Y; G)/L(O, f). 

When (} is an arbitrary operation, the nature of the subset 01(u) is not im
mediately clear. In this note we show that for all operations 0, the subset 01(u) is 
in fact a coset of the subgroup L(O, f) defined above. Therefore, in all cases we 
may regard OJ(u) as an element of the quotient group Hq- 1(Y; G)/L(O, f). 

We give two proofs of this result; these are based upon two different ways of 
defining functional operations, and hence employ quite different techniques. We 
include both proofs, since the techniques involved may be useful in further 
studies of non-stable cohomology operations. 

2 .. The first proof 

Let us recall the definition of functional cohomology operations given by 
Steenrod (see [2]). Let (} again be a cohomology operation of type (II, n; G, q). 
Let X, Y be spaces and f a map Y - X (f may be assumed to be an inclusion, 
using the mapping cylinder technique). Denote by 10 the suspension of 0, and by 
g the inclusion map X C (X, Y). Then the following diagram is commutative: 

B * f* 
F- 1

1

(:; II) ~H"(X,

1
~; II) ___J}____. H"(Xi.: II)~ H"(Y; II) 

f* B • g* 
Hq-1(x; G) ~ w- 1(Y; G) - Hq(x, Y; G)--"--) Hq(x; G) 

Let u be an element of Hn(X; II) such thatj*(u) = 0 and O(u) = 0. Then, by 
exactness, there is an element v £ Hn(X, Y; II) such that g*(v) = u. Since g*O(v) = 
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fJg*(v) = fJ(u) = 0, again by exactness there is an element x E Hq- 1(Y; G) such 
that a(x) = fJ(v). Consider all such pairs of the form (x, v) where a(x) = fJ(v) and 
g*(v) = u, for a fixed u. The totality of the elements x which occur in such pairs 
we denote by fJt(u). Consider two pairs (x, v), (x', v') satisfying the above con
ditions. Since g*(v' - v) = u - u = 0, there is an element w E nn- 1(Y; II) such 
that v' = v + aw. If fJ is additive, then, 

fJ(v') = fJ(v) + O(aw) = fJ(v) + a 1fJ(w). 

Thus, 
a(x' - x) = fJ(v') - fJ(v) = a 1fJ(w). 

That is, a(x' - x - 1fJ(w)) = 0. Therefore, because of exactness, there is a class 
y E Hq- 1(X; G) such that 

x' - x = 1fJ(w) + f*(y). 

Therefore, x' - x belongs to L(fJ, f), and it is easily seen that fJt(u) is a coset of 
L(fJ,f). 

In general fJ is not additive. In the above characterization of fJt(u), we only 
used the additivity of fJ to assert that fJ(v + aw) = fJ(v) + O(aw). However, by the 
following lemma, this is true for any operation fJ; hence, the subset fJt(u) will 
continue to be a coset of the subgroup L(fJ, f) as was asserted. 

LEMMA. Let fJ be a cohomolpgy operation of type (II, n; G, q). Let X be a space and 
y C X a subspace. Let VE Hn(x, Y; II) and w E nn-l(Y; II). Then 

fJ(v + aw) = fJ(v) + o(aw). 

PR90F. Let K be an Eilenberg-MacLane complex of type (II, n), and let 
e EK be a base point. Denote by, the fundamental class of Hn(K, e; II). Then, 
to fJ there corresponds an element Yo in Hq(K, e; G) given by Yo = fJ(,). Let 
(X1, Y1) be any pair and let u1 E Hn(X 1 , Y1 ; II). Using the notation of Eilen
berg-MacLane in (7.1') of [3], we have 

fJ(u1) = Yo r (u1). 

Let (X1 , Y2) be a second pair, and let u2 E Hn(X1, Y2 ; II). Eilenberg-MacLane 
denote by Yo r ( u1 , U2) the function of two variables obtained from Yo . If 
Y1 = Y2 , then by 10.2 of [3], we have: 

Yo r (u1, U2) = fJ(u1 + U2) - fJ(u1) - fJ(U2). 

In particular, if u2 = 0, then 

Yo r (u1, 0) = fJ(u1) - fJ(u1) - fJ(0) = 0, 

since fJ(0) = 0 for any cohomology operation fJ. 
To prove the lemma, set X1 = X, Y1 = Y, u1 = v, and U2 = aw. Let g denote 

the inclusion map X c (X, Y). Then, using (7.6) of [3], we have: 

Yo r (v, 8w) = Yo r (v, g*aw) = Yo r (v, 0) = 0, 
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since g*o 0 by the exactness of the cohomology sequence of (X, Y). Hence, 

IJ(v + ow) - IJ(v) - IJ(ow) = 0, 

as was asserted. 

3. The second proof 

Peterson [1] has given an alternative definition of functional cohomology 
operations. We now prove our result using this definition. As before let IJ be 
a cohomology operation of type (IT, n; G, q) now regarded as an element of 
Hq(IT, n; G). Let Z be a space with two non-vanishing homotopy groups-IT 
in dimension n and Gin dimension (q - 1)-with IJ as its Eilenberg-MacLane 
invariant. In particular we may construct Z as a fibre space over K(IT, n) with 
fibre K(G, q - 1); denote by p the projection Z - K(IT, n). 

For any two spaces A and B let 11'(A; B) denote the set of homotopy classes 
of maps from A to B. In particular, suppose that B is an Eilenberg-MacLane 
space of type (A, r). Then, 11'(A; B) may be identified in a natural fashion with 
Hr(A; A). In what follows we always assume this identification has been made. 

Let X and Y be spaces andf a continuous map Y - X. Consider the following 
commutative diagram: 

,. w-•(1~G) ~ ·l:) --'4 H"r / ~ H'(X; G) 

Hn-l(Y; IT) - Hq-l(Y; G) _fL, 11'(Y; Z) ~ F(Y; IT) 

The rows are exact as sets with distinguished elements (see [1] for details). 
Again let u be an element of Hn(X; IT) such that 

f*(u) = 0 and IJ(u) = 0. 

Then, by exactness, there exists an element v 1: 11'(X; Z) such that p,;(v) = u. 
Further, by commutativity and exactness, there is an element x E Hq- 1(Y; G) 
such that w,ii(x) = fiii(v). The collection of all x such that 

w,;(x) = fiii(v) and p,;(v) = u, 

for a fixed u, is defined to be IJ1(u). If IJ is a suspension-that is, IJ = 1if,,, where 
if,, 1: Hq+1(IT, n + 1; G)-then Z may be considered to be a space of loops. Thus, 
in the above diagram, all the sets are groups and all the functions are group 
homomorphisms. In this case the same proof as before shows that IJJ(u) is a coset 
of L(IJ, f) = Im 1/J + Imf*. 

When IJ is not a suspension, Z is not a space of loops and 1r(X; Z) is not neces
sarily a group. However, we do have the following algebraic structure. The fibre 
space p:Z - K(IT, n) is a principal fibre space with the monoide K(G, q - 1) 
as fibre (see §4 for details). Hence, there is a map cp:K(G, q - 1) X Z - Z, and 
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thus a natural map 'Pfl::Hq-1(X; G) X 7r(X; Z) - 7r(X; Z). In §4, we prove that 
if v, v' e 7r(X; Z), then 

(3.1) 

if and only if there exists an element w e Hq- 1(X; G) such that 

'Pfl:(w, v) = v'. 

Notice that 18 is a homomorphism; thus Hq-1(Y; G)/lm 18 ~ Im CoJfl: C 7r(Y; Z) 
can be given a group structure such that CoJfl: is a homomorphism. Property (1) 
in the definition of a principal fibre space (see §4) shows that 

(3.2) 

for y, y' e Hq- 1(Y; G). 
Now, let v, v' e 7r(X; Z) be elements such that Pfl:(v') = Pfl:(v) = u. Then, by 

(3.1), there is a class w eHq- 1(X; G) such that 'Pfl:(w, v) = v'. Let x, x' eHq-l 
(Y; G) be elements such that CoJfl:(x) = J*(v) and CoJfl:(x') = J*(v'). Then 

CoJfl:(x') = J*(v') = J*<J,ft:(W, v) = <J,,j(j*w, J*v) = </,ft:(f*w, CoJfl:(x)). 

But by (3.2), 

Hence, 

CoJf!(x' - x - f*w) = 0. 

Thus, by exactness, 

x' - x = f*w + 18(y), 

for some class ye Hn- 1(Y; II), which completes the proof. 

4. Principal fibre sp~ces 

In this section we give a definition of principal fibre spaces and prove the re
sults needed in §3. 

Let p:E - B be a fibre space (in the sense of Serre) with fibre F = p- 1(bo), 
bo e B. Let i:F - Ebe the inclusion, and set 

E* = {(e1, e2) I ei eE (i = 1, 2), p(e1) = p(e2)}. 

Let p;:E* - E, (j = l, 2), be the projection maps. Then, (E, p, B) is called a 
principal fibre space if Fis a monoide (i.e., space with a multiplication) with unit 
and homotopy inverse, and if there exist maps 

<t,:F X E-E and h:E*-F 

subject to the following conditions: 
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(1) The following diagram is commutative, where if; is the multiplication in F, 

FXF__i__,F 

l 1 X i li 
FXE~E 

(2) The following diagram is commutative, where the map F X B -----* B is the 
natµral projection; 

FXE~E 

l 1 X p lp 

F X B-----+ B 

(3) cf>(h, Pi) :E*-----* Eis homotopic to P2. 

LEMMA 4.1: Let (E, p, B) be a principal fibre space. Let X be a space, and let 
v, v' e 1r(X; E). Then, 

Pi,i(v) = Pth') 

if and only if there exists a map w e 1r(X; F) such that 

c/>i,i(w, v) = v'. 

PROOF. Suppose that c/>i,i(w, v) = v'. Then, by condition (2) above, 

Pi,i(v') = Pi,ic/>g(w, v) = pg(v). 

Suppose conversely that pr1,(v) = pr1,(v'). Let v, v' represent v and v'. We may as-
sume that pv = pv' by the covering homotopy theorem. Let w = [h(v, v')] e 
1r(X; F). Then, by condition (3), 

</>r1,(w, v) = </>r1,([ho(v, v')], v) = v'. 

This completes the proof. 
We now must show that the fibre space considered in §3 is a principal fibre 

space. We first show that the space of paths on B is a principal fibre space over B. 
Let b 0 e B. Let Ebe the space of all paths (f, r), where f: [O, r] -----* B, r ~ 0, 

and f(O) = bo. Let p:E - B be defined by p(f, r) = f(r). Then F = p-\bo) is 
the space of loops on B. Define rp: F X E - E by 

\
f(t), 0 ~ t ~ r 

rp[(f, r), (g, s)](t) = ( ) 
g t - r , r ~ t ~ r + s. 

Define h:E* - F by 
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h[(f, r), (g, s)](t) = ig(t), 0 ~ t ~ 8 

f(r + s - t), s ~ t ~ r + s. 

This makes (E, p, B) into a principal fibre space. 

LEMMA 4.2. Let (E, p, B) be a principal fibre space. Let (E, p, B) be the fibre 
space induced by a map B - B. Then, (E, '[J, B) is a principal fibre space. 

The proof is entirely straightforward and is left to the reader. 
Now the fibre space considered in §3 can be obtained as an induced fibre space 

from 8:K(II, n) - K(G, q) and the path space over K(G, q). Hence, it is a prin
cipal fibre space by Lemma 4.2, and thus Lemma 4.1 may be used. 
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