A NOTE ON NON-STABLE COHOMOLOGY OPERATIONS

 $\sim 10^{-10}$ k $^{-1}$

BY FRANKLIN P. PETERSON AND EMERY THOMAS*

1. Introduction

Let θ be a primary cohomology operation of type $(\Pi, n; G, q)$. Let X and Y be spaces and f a continuous map $Y \to X$. Consider classes $u \in H^{n}(X; \Pi)$ such that

$$
f^*(u) = 0 \quad \text{and} \quad \theta(u) = 0.
$$

For such elements Steenrod [2] has defined a *functional cohomology operation,* θ_f , such that $\theta_f(u)$ is a subset of $H^{q-1}(Y; G)$. If θ is an additive cohomology operation (i.e., a homomorphism), this subset is in fact a coset of the subgroup

$$
L(\theta, f) = f^*(H^{q-1}(X; G)) + {}^1\theta(H^{n-1}(Y; \Pi)),
$$

where ¹ θ denotes the *suspension* of θ ; that is, an operation of type $(\Pi, n-1; G, q-1)$. Thus, if θ is additive, we may regard $\theta_i(u)$ as an element of the quotient group $H^{q-1}(Y; G)/L(\theta, f)$.

When θ is an arbitrary operation, the nature of the subset $\theta_i(u)$ is not immediately clear. In this note we show that for *all* operations θ , the subset $\theta_i(u)$ is in fact a coset of the subgroup $L(\theta, f)$ defined above. Therefore, in all cases we may regard $\theta_i(u)$ as an element of the quotient group $H^{q-1}(Y; G)/L(\theta, f)$.

We give two proofs of this result; these are based upon two different ways of defining functional operations, and hence employ quite different techniques. **We** include both proofs, since the techniques involved may be useful in further studies of non-stable cohomology operations.

2 .. The first proof

Let us recall the definition of functional cohomology operations given by Steenrod (see [2]). Let θ again be a cohomology operation of type $(\Pi, n; G, q)$. Let X, Y be spaces and f a map $Y \to X$ (f may be assumed to be an inclusion, using the mapping cylinder technique). Denote by $\frac{1}{\theta}$ the suspension of θ , and by g the inclusion map $X \subset (X, Y)$. Then the following diagram is commutative:

$$
H^{n-1}(Y; \Pi) \xrightarrow{\delta} H^n(X, Y; \Pi) \xrightarrow{g^*} H^n(X; \Pi) \xrightarrow{f^*} H^n(Y; \Pi)
$$

\n
$$
\downarrow \theta \qquad \qquad \downarrow \theta
$$

\n
$$
H^{q-1}(X; G) \xrightarrow{f^*} H^{q-1}(Y; G) \xrightarrow{\delta} H^q(X, Y; G) \xrightarrow{g^*} H^q(X; G)
$$

Let u be an element of $H^n(X; \Pi)$ such that $f^*(u) = 0$ and $\theta(u) = 0$. Then, by exactness, there is an element $v \in H^{n}(X, Y; \Pi)$ such that $g^{*}(v) = u$. Since $g^{*}\theta(v) =$

^{*} Part of this research was supported by U.S. Air Force Contract AF 49(638)-79.

 $\theta g^*(v) = \theta(u) = 0$, again by exactness there is an element $x \in H^{q-1}(Y; G)$ such that $\delta(x) = \theta(v)$. Consider all such pairs of the form (x, v) where $\delta(x) = \theta(v)$ and $g^*(v) = u$, for a fixed u. The totality of the elements x which occur in such pairs we denote by $\theta_f(u)$. Consider two pairs (x, v) , (x', v') satisfying the above conditions. Since $g^*(v'-v) = u - u = 0$, there is an element $w \in H^{n-1}(Y; \Pi)$ such that $v' = v + \delta w$. If θ is additive, then,

$$
\theta(v') = \theta(v) + \theta(\delta w) = \theta(v) + \delta^{1} \theta(w).
$$

Thus,

$$
\delta(x'-x) = \theta(v') - \theta(v) = \delta^{1}\theta(w).
$$

That is, $\delta(x'-x-\sqrt{1-\theta(w)})=0$. Therefore, because of exactness, there is a class $y \in H^{q-1}(X; G)$ such that

$$
x' - x = {}^{1}\theta(w) + f^{*}(y).
$$

Therefore, $x' - x$ belongs to $L(\theta, f)$, and it is easily seen that $\theta_f(u)$ is a coset of $L(\theta,f).$

In general θ is not additive. In the above characterization of $\theta_t(u)$, we only used the additivity of θ to assert that $\theta(v + \delta w) = \theta(v) + \theta(\delta w)$. However, by the following lemma, this is true for any operation θ ; hence, the subset $\theta_t(u)$ will continue to be a coset of the subgroup $L(\theta, f)$ as was asserted.

LEMMA. Let θ be a cohomology operation of type $(\Pi, n; G, q)$. Let X be a space and $Y \subset X$ a subspace. Let $v \in H^{n}(X, Y; \Pi)$ and $w \in H^{n-1}(Y; \Pi)$. Then

$$
\theta(v + \delta w) = \theta(v) + \theta(\delta w).
$$

PROOF. Let K be an Eilenberg-MacLane complex of type (Π, n) , and let $e \in K$ be a base point. Denote by, t the fundamental class of $H^n(K, e; \Pi)$. Then, to θ there corresponds an element y_{θ} in $H^q(K, e; G)$ given by $y_{\theta} = \theta(t)$. Let (X_1, Y_1) be any pair and let $u_1 \in H^n(X_1, Y_1; \Pi)$. Using the notation of Eilenberg-MacLane in (7.1') of [3], we have

$$
\theta(u_1) = y_\theta + (u_1).
$$

Let (X_1, Y_2) be a second pair, and let $u_2 \in H^n(X_1, Y_2; \Pi)$. Eilenberg-MacLane denote by y_{θ} | (u_1, u_2) the function of two variables obtained from y_{θ} . If $Y_1 = Y_2$, then by 10.2 of [3], we have:

$$
y_{\theta} + (u_1, u_2) = \theta(u_1 + u_2) - \theta(u_1) - \theta(u_2).
$$

In particular, if $u_2 = 0$, then

$$
y_{\theta} \ \mid \ (u_1 \, , \, 0) \ = \ \theta(u_1) \ - \ \theta(u_1) \ - \ \theta(0) \ = \ 0,
$$

since $\theta(0) = 0$ for any cohomology operation θ .

To prove the lemma, set $X_1 = X$, $Y_1 = Y$, $u_1 = v$, and $u_2 = \delta w$. Let g denote the inclusion map $X \subset (X, Y)$. Then, using (7.6) of [3], we have:

$$
y_{\theta} + (v, \delta w) = y_{\theta} + (v, g^* \delta w) = y_{\theta} + (v, 0) = 0,
$$

$$
\theta(v + \delta w) - \theta(v) - \theta(\delta w) = 0,
$$

as was asserted.

3. The second proof

Peterson [1] has given an alternative definition of functional cohomology operations. We now prove our result using this definition. As before let θ be a cohomology operation of type $(\Pi, n; G, q)$ now regarded as an element of $H^q(\Pi, n; G)$. Let Z be a space with two non-vanishing homotopy groups-II in dimension n and G in dimension $(q - 1)$ —with θ as its Eilenberg-MacLane invariant. In particular we may construct Z as a fibre space over $K(\Pi, n)$ with fibre $K(G, q - 1)$; denote by ρ the projection $Z \to K(\Pi, n)$.

For any two spaces A and B let $\pi(A; B)$ denote the set of homotopy classes of maps from A to B . In particular, suppose that B is an Eilenberg-MacLane space of type (Λ, r) . Then, $\pi(A; B)$ may be identified in a natural fashion with $H^r(A; \Lambda)$. In what follows we always assume this identification has been made.

Let X and Y be spaces and f a continuous map $Y \to X$. Consider the following commutative diagram:

$$
H^{q-1}(X; G) \xrightarrow{\omega_{\#}} \pi(X; Z) \xrightarrow{\rho_{\#}} H^{n}(X; \Pi) \xrightarrow{\theta} H^{q}(X; G)
$$
\n
$$
\downarrow f^{*} \qquad \qquad \downarrow f^{*} \qquad \qquad f^{*}
$$
\n
$$
H^{n-1}(Y; \Pi) \xrightarrow{\iota_{\theta}} H^{q-1}(Y; G) \xrightarrow{\omega_{\#}} \pi(Y; Z) \xrightarrow{\rho_{\#}} H^{n}(Y; \Pi)
$$

The rows are exact as sets with distinguished elements (see [1] for details).

Again let *u* be an element of $H^n(X; \Pi)$ such that

$$
f^*(u) = 0 \text{ and } \theta(u) = 0.
$$

Then, by exactness, there exists an element $v \in \pi(X; Z)$ such that $\rho_{\mathscr{G}}(v) = u$. Further, by commutativity and exactness, there is an element $x \in H^{q-1}(Y; G)$ such that $\omega_{\mathscr{B}}(x) = f^{\mathscr{B}}(v)$. The collection of all x such that

$$
\omega_{\#}(x) = f^{\#}(v) \quad \text{and} \quad \rho_{\#}(v) = u,
$$

for a fixed u, is defined to be $\theta_i(u)$. If θ is a suspension—that is, $\theta = \frac{1}{\psi}$, where $\psi \in H^{q+1}(\Pi, n+1; G)$ —then Z may be considered to be a space of loops. Thus, in the above diagram, all the sets are groups and all the functions are group homomorphisms. In this case the same proof as before shows that $\theta_i(u)$ is a coset of $L(\theta, f) = \operatorname{Im}^1 \theta + \operatorname{Im} f^*$.

When θ is not a suspension, Z is not a space of loops and $\pi(X; Z)$ is not necessarily a group. However, we do have the following algebraic structure. The fibre space $\rho: Z \to K(\Pi, n)$ is a principal fibre space with the monoide $K(G, q - 1)$ as fibre (see §4 for details). Hence, there is a map $\phi: K(G, q - 1) \times Z \to Z$, and

thus a natural map $\phi_{\mathcal{S}}: H^{q-1}(X; G) \times \pi(X; Z) \to \pi(X; Z)$. In §4, we prove that if v, $v' \in \pi(X; Z)$, then

$$
\rho_{\#}(v) = \rho_{\#}(v')
$$

if and only if there exists an element $w \in H^{q-1}(X; G)$ such that

 $\phi_{\#}(w, v) = v'.$

Notice that ¹ θ is a homomorphism; thus $H^{q-1}(Y; G)/\text{Im}$ ¹ $\theta \approx \text{Im } \omega_{\mathscr{G}} \subset \pi(Y; Z)$ can be given a group structure such that $\omega_{\mathscr{G}}$ is a homomorphism. Property (1) in the definition of a principal fibre space (see §4) shows that

$$
\phi_{\mathscr{G}}(y,\,\omega_{\mathscr{G}}(y')) = \omega_{\mathscr{G}}(y+y'),
$$

for $y, y' \in H^{q-1}(Y; G)$.

Now, let v, $v' \in \pi(X; Z)$ be elements such that $\rho_{\#}(v') = \rho_{\#}(v) = u$. Then, by (3.1), there is a class $w \in H^{q-1}(X; G)$ such that $\phi_{\mathcal{S}}(w, v) = v'$. Let $x, x' \in H^{q-1}$ $(Y; G)$ be elements such that $\omega_{\mathscr{G}}(x) = f^*(v)$ and $\omega_{\mathscr{G}}(x') = f^*(v')$. Then

$$
\omega_{\mathscr{G}}(x') = f^{\mathscr{G}}(v') = f^{\mathscr{G}}\phi_{\mathscr{G}}(w, v) = \phi_{\mathscr{G}}(f^*w, f^{\mathscr{G}}v) = \phi_{\mathscr{G}}(f^*w, \omega_{\mathscr{G}}(x)).
$$

But by (3.2),

$$
\phi_* (f^* w, \, \omega_* (x)) = \omega_* (f^* w + x).
$$

Hence,

 $\omega_*(x' - x - f^*w) = 0.$

Thus, by exactness,

 $x' - x = f^*w + {}^1\theta(v)$,

for some class $y \in H^{n-1}(Y; \Pi)$, which completes the proof.

4. Principal fibre spaces

In this section we give a definition of principal fibre spaces and prove the results needed in §3.

Let $p: E \to B$ be a fibre space (in the sense of Serre) with fibre $F = p^{-1}(b_0)$, $b_0 \in B$. Let $i: F \to E$ be the inclusion, and set

$$
E^* = \{ (e_1, e_2) \mid e_i \in E \ (i = 1, 2), \ p(e_1) = p(e_2) \}.
$$

Let $p_j: E^* \to E$, $(j = 1, 2)$, be the projection maps. Then, (E, p, B) is called a *principal fibre space* if F is a monoide (i.e., space with a multiplication) with unit and homotopy inverse, and if there exist maps

 $\phi: F \times E \to E$ and $h: E^* \to F$

subject to the following conditions:

(1) The following diagram is commutative, where ψ is the multiplication in F,

(2) The following diagram is commutative, where the map $F \times B \to B$ is the natural projection;

(3) $\phi(h, p_1) : E^* \to E$ is homotopic to p_2 .

LEMMA 4.1: Let (E, p, B) be a principal fibre space. Let X be a space, and let $v, v' \in \pi(X; E)$. *Then,*

$$
p_{\#}(v) = p_{\#}(v')
$$

if and only if there exists a map w $\epsilon \pi(X; F)$ *such that*

$$
\phi_{\#}(w, v) = v'.
$$

PROOF. Suppose that $\phi_{\mathcal{S}}(w, v) = v'$. Then, by condition (2) above,

$$
p_{\#}(v') = p_{\#}\phi_{\#}(w, v) = p_{\#}(v).
$$

Suppose conversely that $p_{\mathcal{S}}(v) = p_{\mathcal{S}}(v')$. Let \tilde{v} , \tilde{v}' represent *v* and *v'*. We may assume that $p\tilde{v} = p\tilde{v}'$ by the covering homotopy theorem. Let $w = [h(\tilde{v}, \tilde{v}')] \epsilon$ $\pi(X; F)$. Then, by condition (3),

$$
\phi_{\#}(w, v) = \phi_{\#}([h \circ (\tilde{v}, \tilde{v}')], v) = v'.
$$

This completes the proof.

We now must show that the fibre space considered in §3 is a principal fibre space. We first show that the space of paths on B is a principal fibre space over B .

Let $b_0 \in B$. Let *E* be the space of all paths (f, r) , where $f:[0, r] \to B$, $r \ge 0$, and $f(0) = b_0$. Let $p: E \to B$ be defined by $p(f, r) = f(r)$. Then $F = p^{-1}(b_0)$ is the space of loops on B. Define $\phi: F \times E \to E$ by

$$
\phi[(f, r), (g, s)](t) = \begin{cases} f(t), & 0 \leq t \leq r \\ g(t - r), & r \leq t \leq r + s. \end{cases}
$$

Define $h: E^* \to F$ by

18 FRANKLIN P. PETERSON AND EMERY THOMAS

$$
h[(f, r), (g, s)](t) = \begin{cases} g(t), & 0 \leq t \leq s \\ f(r + s - t), & s \leq t \leq r + s. \end{cases}
$$

This makes (E, p, B) into a principal fibre space.

LEMMA 4.2. Let (E, p, B) be a principal fibre space. Let $(\tilde{E}, \tilde{p}, \tilde{B})$ be the fibre space induced by a map $\tilde{B} \to B$. Then, $(\tilde{E}, \tilde{p}, \tilde{B})$ *is a principal fibre space.*

The proof is entirely straightforward and is left to the reader.

Now the fibre space considered in §3 can be obtained as an induced fibre space from $\theta: K(\Pi, n) \to K(G, q)$ and the path space over $K(G, q)$. Hence, it is a principal fibre space by Lemma 4.2, and thus Lemma 4.1 may be used.

PRINCETON UNIVERSITY UNIVERSITY OF CALIFORNIA (BERKELEY)

BIBLIOGRAPHY

[1] F. P. PETERSON, *Functional Cohomology Operations,* Trans. A. M. S., 86(1957), 197-211. [2] N. E. STEENROD, *Cohomology invariants of mappings,* Ann. Math., 50(1949), 954--988. [3] S. EILENBERG ANDS. MAcLANE, *On the groups H(Il, n)* III, ibid., 60(1954), 513-557.