THE **FUNCTIONAL PONTRJAGIN COHOMOLOGY OPERATIONS**

BY EMERY THOMAS*

This note is intended as a sequel to the preceding one. Namely, we give an example of the functional operations associated with a particular set of nonadditive cohomology operations. These are the generalized Pontrjagin cohomology operations, defined in [2]. We indicate here the properties of these operations needed for this note.

Let *K* be a complex and $L \subset K$ a subcomplex. For each prime number p we have defined a cohomology operation

$$
\mathfrak{P}_p:H^{2k}(K,\,L;\,J)\to H^{2pk}(K,\,L;\,J^*),
$$

where $H^q(K, L; G)$ denotes the qth cohomology group of K mod L with coefficients in the group G . Here the coefficient groups J and J^* are defined as follows: either

(i) $J = Z$ and $J^* = Z$, or

(ii)
$$
J = Z/p^r Z
$$
 and $J^* = Z/p^{r+1} Z$,

where $Z =$ integers and r is some fixed integer ≥ 1 . The properties of \mathfrak{P}_p required here are:

(1.1) *Let* η *be the natural factor homomorphism* $Z/p^{r+1}Z \rightarrow Z/p^rZ$ ($r \geq 1$). *Then, for u* ϵ *H*^{2k}(*K*, *L*; *Z*/*p^rZ*),

$$
\eta_*\mathfrak{P}_p(u) = u^p \qquad \qquad (p\text{-fold cup-product}).
$$

- (1.2) Let $\zeta_r:Z\to Z/p^rZ$ $(r=1, 2 \cdots)$ be the natural factor homomorphism. *Then for u* ϵ *H*^{2k}(*K*, *L*; *Z*),
	- (i) $\mathfrak{P}_p \zeta_{r*}(u) = \zeta_{r+1*} \mathfrak{P}_p(u),$
	- (ii) $\mathfrak{P}_p(u) = u^p$ (*p*-fold cup-product).

Our aim in this note is to discuss the functional cohomology operation associated with each operation \mathfrak{P}_p . We maintain here the general notation of the preceding paper: that is, θ is a cohomology operation of type $(\Pi, n; G, q)$, X and *Y* are spaces, and *f* is a map $Y \to X$. Then, for each class $u \in H^{n}(X; \Pi)$ such that

$$
f^*(u) = 0 \quad \text{and} \quad \theta(u) = 0,
$$

we defined a class

$$
\theta_f(u)
$$
 in $H^{q-1}(Y, G)/L(\theta, f)$,

where

$$
L(\theta, f) = f^*(H^{q-1}(X; G)) + {}^1\theta(H^{n-1}(Y; \Pi)), \qquad ({}^1\theta = \text{supension of } \theta).
$$

* This research has been partly supported by Air Force Contract AF 49(638)-79.

20 EMERY THOMAS

Let us now specify the operation θ to be the operation \mathfrak{P}_p ; then, $n = 2k$, $q = 2pk$, $\Pi = J$ and $G = J^*$. We distinguish two cases as to the nature of the subgroup $L(\theta, f)$:

(1.3)
$$
L(\theta, f) = \begin{cases} f^*(H^{4k-1}(X; J^*)) + \mathfrak{p}(H^{2k-1}(Y; J), & \text{if } \theta = \mathfrak{P}_2 \\ f^*(H^{2pk-1}(X; J^*)), & \text{if } \theta = \mathfrak{P}_p, p > 2. \end{cases}
$$

This is obtained by using the theorem of the preceding note together with [3], where it is shown that

$$
{}^{1}\mathfrak{P}_{2} = \mathfrak{p}, \qquad {}^{1}\mathfrak{P}_{p} = 0 \qquad \qquad (p > 2),
$$

the operation p being the Postnikov square.

The purpose of this note is to give an example where θ_f is non-trivial, $\theta = \mathfrak{P}_p$. Namely,

 $\operatorname{THEOREM.}$ Let \pmb{M}_{p-1} be the complex projective space of $(p-1)$ complex dimensions $(p \text{ a prime}).$ Let S^{2p-1} be the $(2p-1)$ -sphere, and $a: S^{2p-1} \to M_{p-1}$ the fibre map. Let u be a generator of $H^2(M_{p-1}; Z)$, and \bar{u} its image in $H^2(M_{p-1}; J)$. Denote by θ the Pontrjagin operation \mathfrak{P}_p . Then,

- (i) $L(\theta, a) = 0$ *in* $H^{2p-1}(S^{2p-1}; J^*)$
- (ii) $\theta_a(\bar{u})$ generates $H^{2p-1}(S^{2p-1}; J^*)$.

PROOF. The fact that $L(\theta, a) = 0$ follows at once from (1.3). For, $H^1(S^3, G) = 0$, as does $H^{2p-1}(M_{p-1}; G)$, for all primes p and any coefficient group G. Thus, $\theta_a(\bar{u})$ belongs to $H^{2p-1}(S^{2p-1}; J^*)$, a cyclic group isomorphic to J^* .

The proof of part (ii) is in two steps. We first prove the result for $J = J^* = Z$; using this result, we then prove the case $J = Z/p^rZ$, $J^* = Z/p^{r+1}Z$.

Let *n* be a fixed integer >1. We define a cohomology operation $\tau(\equiv \tau(n))$ of type *(Z,* 2; *Z, 2n)* by

$$
\tau(u) = u^n \qquad \qquad (n\text{-fold cup-product})
$$

for $u \in H^2(K, L; Z)$.

Now, let X, Y be spaces and f a map $Y \to X$. Suppose that $u \in H^2(X, Z)$ is a class such that

$$
f^*(u) = 0 \quad \text{and} \quad \tau(u) = 0.
$$

We then have the functional operation $\tau_i(u)$ defined, which belongs to $H^{2n-1}(Y; Z)/L(\tau, f)$. In this case,

(1.4)
$$
L(\tau, f) = f^*(H^{2n-1}(X; Z)),
$$

since the suspension of τ (i.e. $^{1}\tau$) is zero.

Since $\tau(u) = u^n = 0$, we immediately have $u \circ u^{n-1} = 0$, by the associativity of the cup-product. Set $v = u^{n-1}$. Then, following Steenrod's original treatment of functional operations (see [1]), we have a functional cup-product defined:

namely,

$$
u \smile_f v \epsilon H^{2n-1}(Y;Z)/L(\smile v,f),
$$

where

$$
L(\sim v, f) = f^*(H^{2n-1}(X; Z)) + \sim v(H^1(Y; Z)).
$$

Denote by $\bar{\phi}$ the natural factor homomorphism

$$
H^{2n-1}(Y;Z)/L(\tau,f)\rightarrow H^{2n-1}(Y;Z)/L(\infty,f).
$$

We then assert:

- (1.5) LEMMA $\bar{\phi}\tau_f(u) = u \cup_f v.$
- (1.6) COROLLARY. *If* $H^1(Y; Z) = 0$, then

 $\tau_f(u) = u \cup_f v.$

PROOF. Using the mapping cylinder technique, we may assume that $Y \subset X$ and that f is the inclusion map. Let g be the inclusion $X \subset (X, Y)$. Let $w \in H^{2n-1}$ (*Y*; *Z*) be a representative for $\tau_f(u)$. That is, there is a class *x* in $H^2(X, Y; Z)$ such that

$$
\delta w = \tau(x), \qquad g^*(x) = u.
$$

But,

$$
\tau(x) = x^{n} = x \cup x^{n-1} = x \cup g^{*}(x^{n-1}) = x \cup (g^{*}x)^{n-1} = x \cup u^{n-1}
$$

$$
= x \cup v.
$$

Hence,

$$
\delta w = x \cup v, \qquad g^*(x) = u.
$$

Thus, *w* may also be taken as a representative for $u \sim_f v$, which completes the proof.

Let us now return to the hypotheses of the theorem: that is, set $X = M_{p-1}$, $Y = S^{2p-1}$, and $f = a : S^{2p-1} \rightarrow M_{p-1}$; again, let *u* denote a generator of $H^2(M_{p-1}; Z)$. Then, by (1.2) (ii) we have

$$
\mathfrak{P}_p(u) = \tau(u); \qquad (n = p)
$$

hence, by (1.6) ,

(1.7) *ea(u)* = *u ..._,av,*

where $\theta = \mathfrak{P}_p$.

We proceed to show that $\theta_a(u)$ in fact is a generator for $H^{2p-1}(S^{2p-1}; Z)$. By hypothesis, *u* generates $H^2(M_{p-1}; Z)$; hence, $v(=u^{p-1})$ generates $H^{2p-2}(M_{p-1};Z)$. Using (7.3⁾ in [1], but restated in terms of the sphere-bundle situation of [1; §11], we have:

 $H^2(M_{\,p-1}\ ;Z)$ and $H^{2p-2}(M_{\,p-1}\ ;Z)$ are paired in a completely orthogonal fashion *to* $H^{2p-1}(S^{2p-1}; Z)$ *by* $u_1 \cup_a u_2$, for $u_1 \in H^2(M_{p-1}; Z)$, $u_2 \in H^{2p-2}(M_{p-1}; Z)$.

Since *u* and *v* are each generators of their respective cohomology groups, this says that $u \rightharpoonup_a v$ is a generator for $H^{2p-1}(S^{2p-1}, \mathbb{Z})$; but by (1.7), $u \rightharpoonup_a v = \theta_a(u)$, where $\theta = \mathfrak{P}_p$. Thus, the theorem is proved for the case $J = J^* = Z$.

In order to prove the case $J = Z/p^rZ$, $J^* = Z/p^{r+1}Z$, we must digress to make some general remarks about functional cohomology operations. Suppose that θ is a cohomology operation of type $(\Pi, n; G, q)$. Let Π', G' be abelian groups and let

$$
\nu: \Pi' \to \Pi, \qquad \mu: G \to G'
$$

each be homomorphisms. Denote by μ_* , ν_* the homomorphisms of cohomology groups induced by μ and ν . Then, we have the composite cohomology operations:

$$
\mu_*\theta
$$
 of type $(\Pi, n; G', q)$

and,

$$
\theta \nu_*
$$
 of type (II', n; G, q).

For any cohomology operation θ , continue to denote by θ the *suspension* of θ .

(1.8) LEMMA. $^{1}(\mu_{*}\theta) = \mu_{*}^{1}\theta$; $^{1}(\theta\nu_{*}) = {^{1}\theta}\nu_{*}$.

The proof follows at once from the fact that μ_* and ν_* commute with the relative coboundary operator.

Now, let *X*, *Y* be spaces and *f* a map $Y \to X$. Suppose that $u \in H^n(X; \Pi)$ is a class such that

$$
f^*(u) = 0 \quad \text{and} \quad \theta(u) = 0.
$$

Then, clearly $\mu_*\theta(u) = 0$. Thus, we have defined functional operations

 $\theta_f(u)$ and $(\mu_* \theta)_f(u)$.

These are defined relative to two subgroups:

(1.9)
$$
L(\theta, f) = f^*(H^{q-1}(X; G)) + {}^1\theta(H^{n-1}(Y; \Pi))
$$

(1.10)
$$
L(\mu_*\theta, f) = f^*(H^{q-1}(X; G')) + {}^1(\mu_*\theta)(H^{n-1}(Y, \Pi)).
$$

Since μ_* commutes with f^* , using Lemma 1.8 we have:

$$
\mu_*(L(\theta, f)) \subset L(\mu_*\theta, f)
$$

Denote by $\bar{\mu}$ the factor homomorphism of $H^{q-1}(Y; G)/L(\theta, f)$ to $H^{q-1}(Y; G')/L(\theta, f')$ $L(\mu_*\theta, f)$ induced by μ_* . We assert:

(1.11) LEMMA. $\bar{\mu}\theta_f(u) = (\mu_*\theta)_f(u)$.

The proof follows at once from the definitions involved.

Similarly, let $u' \in H^n(X; \Pi')$ be a class such that

$$
f^*(u') = 0
$$
 and $(\theta \nu_*)(u') = 0$.

Then, $\theta(\nu_*(u')) = 0$ also. Hence, we have defined functional operations

 $(\theta v_*)_f(u')$ and $\theta_f(v_*u').$

By Lemma 1.8 we see that

$$
^{1}(\theta \nu _{*})(H^{n-1}(Y;\Pi'))\subset {}^{1}\theta (H^{n-1}(Y,\Pi)).
$$

Thus, we may define a factor homomorphism $\bar{\nu}$ mapping $H^{q-1}(Y; G)/L(\theta \nu_*, f)$ to $H^{q-1}(Y; G)/L(\theta, f)$. Thus, corresponding to Lemma 1.11 we have:

(1.12) LEMMA. $\bar{\nu}[(\theta \nu_*)_f(u')] = \theta_f(\nu_* u').$

We now apply Lemmas 1.11 and 1.12 to conclude the proof of our theorem. Recall the factor map $\zeta_r:Z\to Z/p^rZ$ $(r=1, 2, \cdots)$ defined initially. Then, by 1.2, we have

$$
\theta_{\zeta_{r*}} = \zeta_{r+1*}\theta \qquad (\theta = \mathfrak{P}_p).
$$

Now, let u be a generator for $H^2(M_{p-1}; Z)$; then $\bar{u} = \zeta_{r*}(u)$ is a generator for $H^2(M_{p-1}; Z/p^rZ)$. Our aim is to show that

$$
\theta_a(\bar{u})
$$
 generates $H^{2p-1}(S^{2p-1}; Z/p^{r+1}Z)$,

where $a: S^{2p-1} \to M_{p-1}$ is the factor map. Now by Lemma 1.12,

$$
\theta_a(\bar{u}) = \theta_a(\zeta_{r*}u) = \bar{\zeta}_r[(\theta\zeta_{r*})_a(u)],
$$

where we set $\Pi' = Z$, $\Pi = Z/p^rZ$, $\zeta_r = v:Z \to Z/p^rZ$. But $\bar{\zeta}_r =$ identity, since $L(\theta \zeta_{r*}, a) = 0$. Hence

$$
\theta_a(\bar{u}) = (\theta \zeta_{r*})_a(u) = (\zeta_{r+1*}\theta)_a(u) = \overline{\zeta}_{r+1}\theta_a(u),
$$

by Lemma 1.11 and (1.13). Now $L(\zeta_{r+1} \neq \theta, a) = 0$; hence, $\bar{\zeta}_{r+1} \theta_a(u) = \zeta_{r+1} \neq \theta_a(u)$. Therefore,

$$
\theta_a(\bar{u}) = \zeta_{r+1*}\theta_a(u).
$$

But, we have already shown that $\theta_a(u)$ is a generator for $H^{2p-1}(S^{2p-1}; Z)$. Hence, $\zeta_{r+1*}\theta_a(u)$ is a generator for $H^{2p-1}(S^{2p-1}; Z/p^{r+1}Z)$, which concludes the proof of the theorem.

Although the theorem shows the non-triviality of the operation θ_f ($\theta = \mathfrak{P}_p$), it does not really give us any new information; since the results obtained can all be expressed in terms of the functional cup-product. However, it is easy to alter the above example to produce one where the operation θ_f ($\theta = \mathfrak{P}_p$) does yield new information.

Let a again be the fibre map $S^{2p-1} \to M_{p-1}$, and let α denote the homotopy class of a. That is, α belongs to $\pi_{2p-1}(M_{p-1})$, a cyclic infinite group. Let p be a prime and r an integer ≥ 1 . Let $f: \tilde{S}^{2p-1} \to M_{p-1}$ be a map which represents $p^r \alpha$.

24 EMERY THOMAS

As is well known M_{p-1} can be given a (CW) cell-decomposition

$$
M_{p-1} = S^2 \cup e^4 \cup \cdots \cup e^{2p-2},
$$

where each cell e^{2i} has dimension 2*i*. Let M_{p-1}^* be the complex obtained from M_{p-1} by attaching a 3-cell to S^2 by a map of degree p^r . Let g be the inclusion map $M_{p-1} \subset M_{p-1}^*$, and set

$$
h = g \circ f : S^{2p-1} \longrightarrow M_{p-1}^*.
$$

Let θ be the Pontriagin operation \mathfrak{P}_p and τ the p-fold cup-product, with Z/p^rZ as coefficients. Let *u* be a generator of $H^2(M_{p-1}^*; Z/p^rZ)$ (notice that $H^2(M_{p-1}^*;Z) = 0$). Then,

(1.14)
$$
\tau_h(\bar{u}) = 0 \text{ in } H^{2p-1}(S^{2p-1}; Z/p^r Z);
$$

$$
\theta_h(\bar{u}) \neq 0 \text{ in } H^{2p-1}(S^{2p-1}; Z/p^{r+1} Z).
$$

Thus, the operation θ_h shows that the map h is essential, whereas the operation τ_h fails to do so. We omit the proof; it is a simple consequence of the naturality of the functional operations.

UNIVERSITY OF CALIFORNIA (BERKELEY)

BIBLIOGRAPHY

- [1] N. E. STEENROD, *Cohomology invariants of mappings,* Ann. of Math., 50(1949), pp. 954-988.
- [2] E. THOMAS, *The generalized Pontrjagin cohomology operations and rings with divided powers,* Amer. Math. Soc.; Memoir number *Zl,* (1957).
- [3] E. THOMAS, *The suspension of the generalized Pontrjagin cohomology operations,* Pacific Journal, to appear. .
- [4] F. P. PETERSON AND E. THOMAS, *A note on non-additive cohomology operations,* Bol. Soc. Mat. Mexicana, 2 ser. 3(1958), pp. 13.