THE FUNCTIONAL PONTRJAGIN COHOMOLOGY OPERATIONS

By Emery THoMAs*

This note is intended as a sequel to the preceding one. Namely, we give an
example of the functional operations associated with a particular set of non-
additive cohomology operations. These are the generalized Pontrjagin coho-
mology operations, defined in [2]. We indicate here the properties of these opera-
tions needed for this note.

Let K be a complex and L. € K a subcomplex. For each prime number p we
have defined a cohomology operation

Bp: H(K, L; J) — H™(K, L; J%),

where H*(K, L; G) denotes the gth cohomology group of K mod L with co-
efficients in the group G. Here the coefficient groups J and J* are defined as
follows: either

@ J=2Z and J*=Z or
Gi) J = Z/pZ and J* = Z/pVZ,

where Z = integers and r is some fixed integer = 1. The properties of P, re-
quired here are: '

(1.1) Let 5 be the natural factor homomorphism Z/ pPZ - Z/pZ (r = 1). Then,
forw e HYK, L; Z/p'Z), ’

1P (u) = uf (p-fold cup-product).
(1.2) Let ¢:Z — Z/pZ (r = 1, 2 --- ) be the natural factor homomorphism.
Then for w e H*(K, L; 7),
(l) %Pfr*(u) = g‘r+1*in(u)7
(i) Pp(w) = u” (p-fold cup-product).

Our aim in this note is to discuss the functional cohomology operation asso-
ciated with each operation P, . We maintain here the general notation of the
preceding paper: that is, 6 is a cohomology operation of type (II, n; G, ¢), X and
Y are spaces, and fis a map ¥ — X. Then, for each class v ¢ H*(X; II) such that

f¥(w) =0 and 6(uw) =0,
we defined a class '
;(w) in H"NY, @)/L(0, f),
where
L, f) = f*H(X; @) + 'oH"(Y; ), (' = suspension of 6).
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Let us now specify the operation 6 to be the operation P, ; then, n = 2k,
g = 2pk, II = J and G = J*. We distinguish two cases as to the nature of the
subgroup L(6, f):

FHEYTX; ) + pEP(Y; ), it 6= P,

13) L@, f) =
( ) ( ) {f*(Hzpk-—l(X, J*)), if ¢ = ‘Bp , P> 2.

This is obtained by using the theorem of the preceding note together with [3],
where it is shown that

1‘132 =D, ISBP =0 (p > 2))

the operation p being the Postnikov square.
The purpose of this note is to give an example where 6 is non-trivial, § = P, .
Namely,

TaEOREM. Let M ,_; be the complex projectivespace of (p — 1) complex dimensions
(p a prime). Let S be the (2p — 1)-sphere, and a: S — M,_, the fibre map.
Let u be a generator of H'(M,_; ; Z), and @ its image wn H*(M 1 ; J). Denote by
6 the Pontrjagin operation B, . Then,

() L(6, @) = 04n HZ(S7; J%)
(i) 0a(@) generates H*(S77; J*).

Proor. The fact that L(6, @) = 0 follows at once from (1.3). For, H'(S*, @) = 0,
as does H* (M, ; @), for all primes p and any coefficient group G. Thus,
0.(%) belongs to H* (S, J*), a cyclic group isomorphic to J*.

The proof of part (ii) is in two steps. We first prove the result for J = J* = Z
using this result, we then prove the case J = Z/p'Z, J* = Z/p""'Z.

Let n be a fixed integer >1. We define a cohomology operation r(=(n)) of
type (Z, 2; Z, 2n) by

r(u) = u" (n-fold cup-product)

for uw e H'(K, L; Z).
Now, let X, Y be spaces and f a map ¥ — X. Suppose that u e H (X Z)is a
class such that

f¥(w) =0 and +(u) = 0.
We then have the functional operation 7,(u) defined, which belongs to
H" N (Y; Z)/L(r, f). In this case,
(1.4) L(r, /) = {H"(X; 2)),

since the suspension of = (i.e. '7) is zero.

Since 7(u) = u” = 0, we immediately have u _ u" " = 0, by the associativity
of the cup-product. Set v = »" . Then, following Steenrod’s original treatment
of functional operations (see [1]), we have a functional cup-product defined:
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namely,
u s v e H"N(Y; Z)/L( v, f),
where - |
L(ww, f) = fYH"(X; Z)) + o(H(Y; Z)).
Denote by ¢ the natural factor homomorphism
H"NY; 2)/L(r, f) — H"(Y; Z)/L( v, ).
We then assert:
(1.5) LEMMA ori(u) = u <y v.
(1.6) CoroLLARY. If HI(Y; Z) = 0, then
rf(u). = U s

Proor. Using the mapping cylinder technique, we may assume that ¥ € X
and that f is the inclusion map. Let ¢ be the inclusion X < (X, Y). Let w e H** ™
(Y; Z) be a representative for r,(u). That is, there is a class z in H*(X, Y; Z)
such that

w = 7(x), g¥(x) = u.

But,
@) =2" =z o2 =z ogie) =z o (@) =z cu
=z o -
Hence,
w =2z <, g¥(x) = u.

Thus, w may also be taken as a representative for v ; v, which completes the
proof.

Let us now return to the hypotheses of the theorem: that is, set X = M,_,,
Y = 8% and f = a:8%" — M, ; again, let u denote a generator of
H*M,_, ; Z). Then, by (1.2) (ii) we have

B, = (); (n =)
hence, by (1.6),
(1.7) 0. (u) = u <o,

where 8 = 3, . : v

We proceed to show that 8,(u) in fact is a generator for H**7(8*7'; Z).
By hypothesis, u generates H(M,_, ; Z); hence, »(=u"") generates
H”*(M,_1 ; Z). Using (7.3" in [1], but restated in terms of the sphere-bundle
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situation of [1; §11], we have:

H (M, ; Z) and H? (M, ; Z) are paired in a completely orthogonal fashion
to H'" (S, Z) by uy o s, for uy e H(M,_y ; Z), s e H* (M, ; Z).

Since u and v are each generators of their respective cohomology groups, this
says that u . v is a generator for H*?~' (™% Z); but by (1.7), u wa v =0,(w),
where § = P,. Thus, the theorem is proved for the case J = J* = Z.

In order to prove the case J = Z/p'Z, J* = Z/p""'Z, we must digress to
make some general remarks about functional cohomology operations. Suppose
that 6 is a cohomology operation of type (I, n; G, q). Let II’, G’ be abelian groups
and let

villl - 10, wd@—-

each be homomorphisms. Denote by us«, v« the homomorphisms of cohomology
groups induced by u and ». Then, we have the composite cohomology operations:

usx6 of type (I, n; G, q)
and,
O of type ', n; G, q).
For any cohomology operation 6, continue to denote by ‘6 the suspension of 6.
(1.8) LemMMA. (ux8) = us'0; '(0v%) = (O)ws .

The proof follows at once from the fact that us and v, commute with the rela-
tive coboundary operator.

Now, let X, Y be spaces and f a map ¥ — X. Suppose that v e H"(X; II) is
a class such that

ff(w) =0 and 6(u) = 0.
Then, clearly u«6(u) = 0. Thus, we have defined functional operations
0r(w) and  (ux6);(u).
These are defined relative to two subgroups:
(1.9) L(6, ) = FHHETX; @) + (™ (V; D)
(1.10) L(ps6, ) = F*HT(X; G)) + (ux6)(H"(Y, ).
Since ux commutes with f*, using Lemma 1.8 we have:
(L6, f)) C L(us9, )

Denote by gz the factor homomorphism of H*(Y; G)/L(6, f) to H"(Y; G')/
L{u«6, f) induced by u+« . We assert:

(1.11) LemMma. 30,(u) = (us8);(u).

The proof follows at once from the definitions involved.
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Similarly, let ' ¢ H*(X; I') be a class such that
@) =0 and (Ov) (W) = 0.
Then, 6(v«(u')) = 0 also. Hence, we have defined functional operations
(6vs);(w’) and  6;(vsu’).
By Lemma 1.8 we see that
Wow)(H™(Y; ) < '9(H™(Y, I0)).

Thus, we may define a factor homomorphism » mapping H* (Y; G)/L(8vx, f)
to H*(Y; G)/L(6, f). Thus, corresponding to Lemma 1.11 we have:

(1.12) LumMA. 7[(0vs);(u)] = 0(vstt)).
We now apply Lemmas 1.11 and 1.12 to conclude the proof of our theorem.

Recall the factor map ¢,:Z — Z/p'Z (r = 1, 2, - - -) defined initially. Then, by
1.2, we have

(1.13) 0 = Craxd (6 = Bp).

Now, let u be a generator for H(M,_; ; Z); then %@ = {,+(u) is a generator for
H*(M,_, ; Z/p'Z). Our aim is to show that

6.(7) generates HZY(S*™; Z/p 1'Z),
where a:S*”*~! — M, is the factor map. Now by Lemma 1.12,

0a(’LZ) = oa(,(r*u) = Er[(og‘r*)a(u)]’

where we set II' = Z, Il = Z/p'Z, §, = v:Z — Z/p'Z. But {, = identity, since
L(0¢ , a) = 0. Hence

02(@) = (05ra)a() = (Cr11x0)a(t) = {riaba(u),

by Lemma 1.11 and (1.13). Now L({,11x0, a) = 0; hence, {r10.(1) = &rpaxba(u).
Therefore,

0o() = §ryaxba(u).

But, we have already shown that 6,(u) is a generator for H*~'(S*™"; Z). Hence,
Cri140a(u) is a generator for H**(S*~'; Z/p"*'Z), which concludes the proof of
the theorem.

Although the theorem shows the non-triviality of the operation 6; (8 = B,),
it does not really give us any new information; since the results obtained can all
be expressed in terms of the functional cup-product. However, it is easy to alter
the above example to produce one where the operation 6; (6§ = B,) does yield
new information.

Let a again be the fibre map S — M,_,, and let o denote the homotopy
class of a. That is, a belongs to ws,—1(M,-1), a cyelic infinite group. Let p be a
prime and r an integer =1. Let f: 8~ — M,_; be a map which represents pa.
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As is well known M,_; can be given a (CW) cell-decomposition
My,=8veéu- . ue™?

where each cell ¢** has dimension 2¢. Let M :_1 be the complex obtained from M,
by attaching a 3-cell to S* by a map of degree p". Let g be the inclusion map
M, C M,_;,and set

h=gofi8®™* > Mi,.

Let 6 be the Pontrjagin operation P, and 7 the p-fold cup-product, with
Z/p'Z as coefficients. Let @ be a generator of H*(Ma_y; Z/p'Z) (notice that
HYM3_, ;Z) = 0). Then, o

@) =0 in HZNS* Z/p'Z);

(1.14)
: 6.(@) # 0 in H™YS*7; Z/p12).

Thus, the operation 6, shows that the map A is essential, whereas the operation
m, fails to do so. We omit the proof; it is a simple consequence of the naturality
of the functional operations.
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