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I. INTRODUCTORY CONCEPTS. STABILITY. LIAPUNOV'S SECOND METHOD 

1. The concept of stability is one of those which reach beyond the general 
domain of mathematics. In the commonly understood sense, a system is stable 
if, upon applying to it a small disturbance, it tends to return to its initial situ­
ation. In dynamics this concept acquires fundamental importance and has been 
made the object of profound investigations initiated by Poincare and Liapunov 
and pursued with especial vigor in the Soviet Union. Above all there are certain 
related theorems of Liapunov which will mainly concern us here. We shall first 
deal with them in the context in which they were initiated by him, then broaden 
our point of view to what has aptly been called we believe first by G. D. Birk­
hoff, "topological dynamics." 

2. In an Euclidean n-space En referred to coordinates Xi denote by x the 
vector with coordinates x; and consider the real differential equation 

(2.1) x = X(x, t), ( · = d/dt). 

where X is likewise an n-vector. A distance is defined in En by means of a norm 
II x II, and we generally choose 

II x II = sup { I x; I ) . 
Let I denote the time range - oo < t < oo. Suppose that O is a region (connected 
open set) of the product space En X I in which Xis continuous and satisfies a 
Lipschitz condition in every subregion 01 of O whose closure D1_ c 0. There is 
then a standard existence theorem, proved in. the texts on the subject, assert­
ing that if P(x 0, to) is a point of O there is a unique solution or motion x(t, x0, to) 
of (2.1) with the initial point P at time to , that is such that x(to , x0, t0) = xo . 
Ast varies as much as possible the set x(t, x0, to) generates an arc, called a trajec­
tory in 0. No two trajectories meet. The function x(t, x°, to) is a continuous func­
tion of (t, x0, to) in the space E" X I X I. These are the basic facts which we re­
quire. It may happen that x(t, x0, to) = x0 for all t in a certain range. The point 
x0 is then referred to as a critical point of the system (2.1). In the product space 
En X I we have then a critical interval of line (an arc). 

25 
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Of particular interest are the autonomous systems, or those su.ch that X does 
not contain the .time t: 

(2.2) x = X(x). 

The region n assumes then the form iI> X I, where iI> is a region of E". The locus 
of the points x(t, x0, to) in iI> is then called a path and shown to depend solely upon 
x0 and not upon to . For this reason, in such a case, one often takes the initial 
time to = 0 and denotes the solution by x(t, x0). Here then x(t, x0) and x(t - t0 , x0) 
represent the same path, merely differently parametrized. 

3. So much for generalities. Suppose that the system (2.1) has a critical point 
0. At the cost of changing coordinates we may take O as the origin. For our pur­
pose it is sufficient to confine our attention to a certain closed neighborhood of 
the origin whose precise size is quite immaterial. We introduce then the sets 

n(A, r):11 XII~ A, t ~ T 

il>(A): II X II ~ A 

(the time has thus an.infinite range) and assume that in O(A, r) the conditions 
for existence and uniqueness of solutions are fulfilled. At the cost of shifting the 
time origin we may assume that the basic set is 

O(A): II x II ~ A, t ~ 0. 

We assume then explicitly that 

X(0, t) = 0 for t ~ 0. 

As a matter of notation we shall denote by d(x, x') the distance II x - x' II, 
by S(e) the spheroid II x II < e and by H(e) its boundary sphere II x II = e. With­
out any further remark we shall always assume below that e ~ A, so that S(e), 
H(e) c il>(A). 

4. The question that now arises is this: If a motion starts at time to(~ O) not 
too far from the origin, will it remain near the origin, perhaps even tend to it, or 
else tend to leave the origin? In the first two cases we have stability, in the third 
instability. With Liapunov these concepts are given precision in the following: 

DEFINITIONS. Given any e ~ A and to ~ 0, suppose that there corresponds 
to them an 71(e, to) > 0 such that whenever the initial point x0, at time to of a 
solution x(t, t0 , x0) is not as far as .,, from the origin then II x II < e for t ~ to. 
Then the origin is stable. If .,, may be chosen independently of to the origin is 
uniformly stable. 

The origin is asymptotically stable whep.ever it is stable and in addition x(t) - 0 
as t - + oo • Finally it is unstable whenever given any O < e < A and no matter 
how small .,, some solution starting within S(71) reaches the boundary H(e) of 
S(e). 

Regarding these various types of stability there are four very general theorems 
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due to Liapunov and which are now generally referred to as constituting Liapu­
nov's second method. His first method refers to establishing the stability of (2.1) 
in certain cases by means of explicit power series solutions given by him. Re­
markably enough the second method has been inverted by a number of savants: 
Persidskii, Massera, Kurzweil, Krasovskii, Zubov. We shall only deal for the 
equation (2.1) with the direct results of Liapunov: sufficiency conditions, and 
shall deal with the inversion: necessary conditions, in connection with the sta-
bility of invariant sets. • 

5. The theorems of Liapunov rest upon the properties of certain functions 
which must first be defined. 

Let a function V(x, t) be defined and of class C1 in a certain region O(A) and 
let V(0, t) = 0. We will say that: 

Vis of fixed sign, positive or negative, whenever V ~ 0 or ~ 0 in O(A): 
Vis positive definite whenever there exists a continuous function W(x) defined 

in <I>(A), zero for x = 0 and only then, positive there otherwise, and such that 
V ~ W under the same conditions; 

V is negative definite whenever - V is positive definite. 
The time derivative 17 as tot along the trajectories of (2.1) is given by 

(5.1) • av "" av 
V = at+ ~i=I axi·Xi. 

A function of the general type of V is called a Liapunov function. 

6. We are now ready for the theorems of Liapunov. They all refer to the 
system (2.1) and the stability of the origin. 

(6.1) STABILITY THEOREM. If there exists a positive definite function V, in a 
suitable !:.!(A), whose Vis of fixed negative sign in!:.! then the origin is stable. 

Let W be the same as in the definition of positive definiteness for V. Take now 
the trajectory 1' with initial point P(x 0, r), r ~ 0, x0 e <I> ~ 0. Upon integrating 

0 • 
V along 1', and setting Vo = V(x, r) > 0, we have 

(6.2) V - Vo = { V dt ~ o. 
T 

Hence V ;£ Vo on 1' beyond the initial point. 
Take now any e positive and ~A. Since H(e) is compact, W has a positive 

lower bound won it. Since V(x, r) is continuous and -0 with x we can find an 
11(e, r) such that V(x, r) < w for II x II < 1/· Hence if II x0 II < 1/, we will have 
Vo < w, and so Yon 1' will never reach w, hence x will never reach H(e) and so 
we have stability. 

To have uniform stability it will be sufficient to have V(x, t) - 0 with x uni­
formly in t for t ~ T. 

(6.3) ASYMPTOTIC STABILITY THEOREM. If there exists a V - 0 with x uni-
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formly in t for t ;;; r, and such that V is positive definite and V negative definite 
then the origiri, is asymptotically stable. 

Let W1 be the W for - V. At all events the origin is stable and so there exists 
an 7/ > 0 such that if 11 x(r) 11 < 7/ then II x II <A.That is, if the initial point P 
is nearer than 7/ to the origin then x does not reach II x II = A. 

Now if V ~ 0 along 'Y so does x. For suppose that II x II ;;; a > 0. Now in 
a ;£ II x II ;£ A, W and hence V has a positive lower bound w, and this contra­
dicts V - 0. Thus all that is necessary is to show that V - 0 along -y. 

Suppose that V ;;; w along -y. Then II x II ~ (3 > 0. Let .1 = inf W1 for (3 ;£ 
II x II ;£ A. Then - V ;;;; .1 in that region and if x along 'Y remains in it, then by 
(6.2) V ;£ Vo - t(t - to), which with increasing time becomes <0. Since this 
contradicts V ;;; 0, sometime II x II < (3, a contradiction which proves that 
V - 0, hence x - 0, along 'Y, and the theorem follows. 

(6.4) FIRST INSTABILITY THEOREM. Suppose that: 

(a) V(x, t) - 0 with x uniformly in t for t ~ r; 
(b) Vis positive definite in !J(A); 
( c) no matter how . small e > 0 the function V assumes the sign + somewhere 

inill x II < e. 
Then the origin is unstable. 

Because of the continuity of V and its - 0 uniformly in x, we may assume A 
and r such that / V / is bounded in !J(A) for t ;;; r. 

Take any small e and an initial point II x0 II < 1: such that Vo > 0. Then by 
(6.2) and since V > 0, V > Vo along -y. Since Vo > 0 the least distance from the 
origin of a point of 'Y beyond P(x 0, r) is positive; for if it were zero we would have 
Vo = 0. Let O < A < µ. Let a = inf W1 for A ;£ II x /I ;£ e, and let S denote that 
region. Now if ,y remained in S we would have V;;;; Vo+ a(t - r) which-+ oo 

with t. Since V - 0 with x uniformly int for t ;;;; r, in S:sup V = {3 is finite. 
Since V crosses {3, 'Y cannot remain in Sand since it cannot leave through H(A) 
it must leave through H(e), and so we have instability. 

(6.5) SECOND INSTABILITY THEOREM. Let there exist a function V with the 
following properties: 

(a) I V I is bounded in Q; 

(b) in Q: V = AV + W, where A is a positive constant and W is of fixed non­
negative sign ( it may be identically zero); 

(c) for r sufficiently large and every t ~ rand in S(e), e sufficiently small, Vas­
sumes somewhere a positive value. 

Then the origin is unstable. • 

If W = 0 the assertion is a consequence of the preceding theorem. Suppose 
then W ~ 0. 

Let the initial point x0 at timer be in S(e) and such that Vo = V(x 0, r) > 0. 
Suppose that the correspondlng trajectory 'Y remains in S(e) so that on it I V / 
remains bounded. Thus along 'Y for t .~ r: 
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and. hence 

which - + co with t. Since this contradicts the boundedness of Vin S(e), X 
reaches the boundary H(e) of S(e) and so we have instability. • 

REMARK. If the basic system (2.1) is autonomous, stability is always uniform 
(since one may always shift the time by any constant amount without changing 
anything). • 

GEOMETRIC INTERPRETATION. To simplify matters take an autonomous system. 
The functions V are then functions of x alone and the loci V = const. represent, 
if V is positive, definite ovals ( or ovaloids) surrounding the origin. Ordinary 
stability means more or less that paths enter arbitrarilJ small ovals and wan­
der within them. When stability is asymptotic the paths actually - 0. For 
"strong" instability the paths emerging from the interior of an oval reach that 
oval. 

7. Some simple examples: (a) Consider the system 

(7.1) x = Px + q(x, t) 

where x, q are n-vectors, P is a constant matrix and q(0, t) = 0 for t ~ 0. 
Thus the origin is a critical point. We suppose q such that, in a certain n, con­
ditions for the existence and uniqueness of solutions of (7.1) are satisfied. Fi­
nally it is assumed that Px is the "principal part'' of the right hand side, i.e., 
that q = o(II x II), uniformly1 inn. 

To discuss the stability of the origin let us limit our attention to the simple 
case where the characteristic roots Ai of P are distinct and have negative real 
parts. Suppose first that they are all real. We may choose a coordinate system 
in which P = diag(A1, • • • , An). Take then 

V(x) = }:Li x!. 

We have then 

V = Lh=1 Ahx! + o(II x !12). 

Thus in a suitably small n the function V is negative definite. Since V is positive 
definite and -0 with x uniformly in t, the origin is asymptotically stable. 

Suppose now that 2m of the Ah are complex, 0 ~ 2m ~ n. For a complex pair 
say Ak, Xk we introduce coordinates in which Xk = Xk+1, and so that Pis still 
diagonal. The Liapunov function is now 

v = I:~71 Xk J2. 
(one term for each complex conjugate pair) and the rest is as before. 

1 Specifically, assume that, for all (x, t) e o, II q II (x, t) II ~ ,p(I/ x II), where [,p(r)/r) -" 0 
as r -> 0. 
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(b) Lagrange's theorem on the stability of static equilibrium. Lagrange stated the 
following property: If the potential energy of a system has a minimum at a posi­
tion P, then Pis a stable position of static equilibrium. We shall derive this result 
from the Liapunov theorem on stability of the origin under very general condi­
tions. 

Generally speaking a dynamical system ~ depends upon n positional coordi­
nates q1 , • • • , q,. and n kinematic coordinates p1 , • • • , Pn. Its potential energy 
is a function V(q) of q (the vector with components qi), Under our assumptions 
we may suppose that the minimum occurs for q = 0 and that V(0) = 0. To 
simplify matters we shall assume that V is analytical and then it is positive defi­
nite near q = 0. 

The kinetic energy on the other hand, again assumed analytical, is a positive 
definite function of the p; for small q, near p = 0. We have then a hamiltonian 
function 

ll=K+V 

and the equations of motion are 

Therefore 

H = t (all all _ all all) = 0. 
•=l aq. ap. ap. aq. 

(s = 1, 2, • · • , n). 

Thus ll satisfies all the conditions for stability of p = 0, q = 0 and Lagrange's 
theorem follows. 

II. TOPOLOGICAL DYNAMICS 

8. In the theory of ordinary differential equations two streams of thought 
are mixed: analytical and geometrical (or rather topological). To this mixture 
one may trace many difficulties of this theory and also much of its attractiveness. 

Now differential equations, more than any other part of mathematics, receive 
their impulsion from physics, understood in the largest sense possible. So often 
therefore, the solution of differential equations must come down to explicit and 
even numerical expressions. However all too often this can only be accomplished 
under very restrictive approximations. The problem therefore arises to obtain at 
least some qualitative, i.e., in the last analysis topological information about elusive 
solutions. Frequently also the requirements of the physicist are not for an exact, 
isolated solution, but for the behavior of a whole family of solutions. And this 
leads again to the topological behavior of the solutions. 

This general point of view has led in recent years to an endeavor to isolate if 
possible the topological from the analytical study of differential equations and 
has given rise to topological d7Jnamics. Its full fledged attack first appeared in 
G. D. Birkhoff's book Dynamical Systems (New York, 1926); then later in 



LIAPUNOV AND STABILITY 31 

Chapter V of Niemitzkii-Stepanov: Qualitative Theory of Differential Equations 
(1st ed. 1!;)47, Russian), which attributes the basic definitions to Birkhoff and 
A. A. Markov (Comptes Rendus 123, (1931), 823-825. The theory has been ex­
tended to include n-parameter flows as well as the 1-parameter flows defined by 
ordinary differential equations and an extremely general treatment has been 
published by Gottschalk and Hedlund (Topological Dynamics, A.M.S. Colloq. 
vol. 36, 1955). This is the subject then that we propose to discuss here, with 
particular emphasis on results described in a very recent and interesting book by 
Zubov: The Methods of A. M. Liapunov and Their Application (Moscow, 1957). 
It is not necessary to emphasize that most of the available literature is in Russian. 
A forthcoming fairly exhaustive. survey on this subject by Henry Antosiewicz 
appears in Contributions to Nonlinear Oscillations, IV, Ann. of Math. Study, 41, 
(1958) 147-166. It may be added that many of the Russian notions concerning 
general stability theory have been found recently, independently, by Robert 
Bass. 

9. Let then R be a metric space and ta real variable whose range is the in­
finite interval I:(- oo, + oo ). Letf(p, t) (p any point of R) be a mapping R XI -
R with the following properties: 

(a) for every fixed t the mapping f(p, t) is a topological mapping 'Pt of R onto 
itself; 

(b) f(p, O) = p (the mapping <po is the identity); 

(c) f[J(p, t1), t2] = f(p, t1 + t2) whatever t1, ~ E /. 

One verifies then the associative law for<pt and sincef[f(p, t), -t] = f(p, 0) = p, 
<p"e1 = f(p, -t), and so 'Pt has all the properties of the basic operation in an 
abelian group. That is, the operation f(p, t) determines a one-parameter group of 
transformations acting upon R. 

The analogy of f(p, t) with the solution of an autonomous system of ordinary 
differential equations is obvious. We will refer therefore to the locus f(p, t) 
(p fixed, all t) as a pa,th, and to the locus parametrized by t as a motion. The col­
lection of all the motions is a dynamical system. 

10. Regarding a definite motion there are three possibilities: 
(a) f(p, t) = p, whatever p. That is, the point p is fixed under the transforma­

tion 'Pt . We refer to p as a critical point of the dynamical system. 
(b) Corresponding to p and for some t there is a T ¢ 0 such that f(p, t + T) = 

f(p, t). Then by (9c) this holds for every t. The number Tis a period of the motion. 
It is not known a priori whether this period is unique. At all events if T1 , • • • , 
Tk are periods then so is every linear combination m1T1 + · · · +· mkTk, where 
them; are integers not all zero. We have now two possibilities. First there is an 
arbitrarily small positive period: given i5 > 0 there is always a period To such that 
0 < To < i5. Because of the continuity of f(p, t), given t: > 0 we may choose 
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o > 0 such that d[j(p, t), p] < e, for t e [O, o] and hence for t e [O, r0]. Given any 
t we may find at' e [O, ro] such that t = mr 0 + t', man integer. Then since ro is 
a periodf(p, t) = f(p, t'), t' e [O, ro] and so d[f(p, t), p] < e. Hence d[f(p, t), p] = 0, 
f(p, t) = p and since t is arbitrary, p is a fixed point. Thus this case is ruled out. 

We have then a least period r (in absolute value), and since -r is also a period 
we may assume that r > 0. Thus r is the least positive period of f(p, t), and it 
is this r which is generally designated as the period of the motion. The latter is 
then said to be periodic. The corresponding path 'Y is then a continuous one-one 
image of a circle, and as the circle is compact, 'Y is the topological image of a 
circle, that is, it is a Jordan curve. 

(c) Corresponding to a given point p and for distinct t, t' we always have 
f(p, t) ,= f(p, t'). In this case the path '}'p is the continuous one-one image2 of the 
line J. 

11. We have now some simple theorems and definitions. 

(II.I) Continuity of f(p, t) in the initial position p. (Consequence of the defini­
tion). 

Explicity, given e, T > 0 there exists a o > 0 such that d(p, q) < o ⇒ d[f(p, t), 
f(q, t)] < e for t e [O, T]. 

(11.2) The path "/p of pis also the path of every point of "/p. Hence if q is not in 
'YP, 'YP and '}'q do not intersect. (Immediate consequence of 10b). 

Let p designate now any point of a path 'Y and let 'Y!, 'Y; denote respectively 
the part of 'Y described beyond p, i.e., for t ;:;; 0, and before p, i.e. for t ~ 0. Then 
the sets D('Y) = nP 'Yt, A('Y) = np 'Y; are known after G. D. Birkhoff as then 
and A (capital a) sets of 'Y, or (more carelessly) of p. An w- (a-) point of 'Y is a 
point of !J('Y) (or of A('Y)). 

From point-set topology we infer at once: 

(11.3) The Q and A sets are closed and if R is compact they are connected. (How­
ever if R is not compact they may not exist). 

An invariant set M is a union of paths. Hence if it contains a point p then it 
contains the whole path of p. 

(11.4) The closure M of an invariant set Mis an invariant set. 

Let p e M and q e "/p . Given e > 0 there is a o > 0 such that if r is not as far 
as o from p then 'Yr has a point nearer than e to q. Since there are points r in M 
and so with 'Yr in M, there are points of M nearer than e to q. Hence q e M and 
so 'YP CM. Hence Mis invariant. 

2 If the inverse mapping is continuous, then (see Definitions in (11.2)) 'Yt does not in­
tersect ·n,, , hence 'Yt is called asymptotic; otherwise 'Yt is contained in !1p and 'Yt is called 
recurrent. 
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The same argument shows that 

(11.5) The boundary of an invariant set is an invariant set. 

(11.6) If M, N are invariant sets so are their union Mu N, intersection Mn N 
and difference M - N. Hence !"l('Y) and A('Y) are invariant sets. (Proof immediate). 

12. Sarne examples. 
(a) An autonomous system in En constitutes a dynamical system, provided 

that the general solution x(t, x0

) exists for - oo < t < + oo, i.e. is defined on 
I X En. This is true if, e.g. (A. Wintner) there are constants a > 0, {3 > 0 such 
that, on En, II X(x) II ~ a + {3 II x 11; or if e.g. (F. Brauer & S. Sternberg; cf. 
American J. Math. vol. 80 (1958), pp. 421-430) the path through the point at 
infinity is unique. 

(b) Consider a non-autonomous system in En 

(12.1) i: = X(x, t), t ~ 0, 

(arbitrary x and t ~ 0), and assume that x(t, x0, t0) is defined and continuous on 
I+ X En X I+, where I+ = [0, + oo ). 

The change of variables t = l replaces (12.1) by 

(12.2) dx = X(x e')e' = X(x t)t dt = t 
dr ' ' 'dr 

which is a dynamical system relative to the space En X 1+ = En X [0, + oo ), 
( - oo < r < + oo ). If we assume that X(O, t) = 0 then (12.2) has for closed in­
variant set the t line: x = 0. 

Thus a non-autonomous system with a critical point may be made into an 
autonomous one with closed invariant line. 

(c) • (example due to Robert Bass). Let the autonomous system ;i; = X(x) on 
En fail to satisfy the condition of (a). (For example, if n = 1 and X(x) = x2, then 
x(t, x0

) = x0 /(I - x0 t), so that no solution x(t, x0

), 0 2 t < I/x 0

, can be extended 
fort ~ I/x 0.) It is well known that no solution x(t, x0), 0 2 t < t,,,, can have (in 
the terminology of L. Markus; cf. Rend. del Sero. Mat., Univ. di Torino, vol. 11 
(1951-2), pp. 271-7) a finite "escape-time" t,,,, unless lim sup II x(t, x0) II = + oo 
as t - t,,,. But if II X(x) II 2 a for all x, then, by (2.2), II x(t, x0) II 2 II x0 II + 
at,,, . Hence if we are willing to reparameterize the paths of the system, we can 
use a modified form of (2.2) to define a dynamical system on En. In fact, consider 

(12.3) 
dx X(x) _ 
ds = I + II X(x) II = Y(x), (-oo<s<+oo). 

Because JI Y(x) II 2 1, x(s, x0) is defined on all of I X En. Hence (12.3) defines 
a dynamical system on En. Moreover, along any path x(s, x0), one may define 

t(s) = f [I + II X(x(s, x0

)) 111-1 ds, and verify easily that t(s) is monotone and 

has an inverse s = s(t), and that x(s(t), x0

) satisfies (2.2). 
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III. STABILITY IN DYNAMICAL SYSTEMS (ZUBOV) GENERALITIES 

13. In all that follows M will designate a closed invariant set of the dynamical 
systemf(p, t). We will also denote by S(e) the spheroid of radius e and center M, 
that is, the set of points not as far as e from M. The boundary of S(e) will be 
denoted by H(e). We now define Mas 

(a) Stable whenever given any e > 0 there is an ,,., > 0 such that if p es(,,.,) 
then fj(p, t) It~ O} c S(e); 

(b) asymptotically stable whenever it is stable and in addition under the pre­
ceding conditions f(p, t) - M as t - + rx:, ; 

(c) unstable whenever for any e > 0 and whatever rJ > 0 (and <e) there is 
a point p e S(rJ) such that for some t > 0, f(p, t) reaches H(e) (obvious negation 
of stability). 

When M is asymptotically stable the set A of points whose paths -M as 
t - + rx:, is called the domain of asymptotic stability of M. 

(13.1) The domain of asymptotic stability A of M is an open invariant set con­
taining a spheroid S(rJ); and A, hence also its boundary, are invariant sets. 

Under the definition s(,,.,(e)) c A and all that one needs to prove is that A is 
open. Let p e A - M. By hypothesis the path 'Y of p crosses S(TJ) before reaching 
M, say at a point q. Given then a > 0 there is a {3 > 0 such that if p' is a point 
nearer than {3 to p then its path y' passes nearer than a to q. Hence if a is small 
enough the path ,y' - M and so q is in A. Thus the points close enough to p are 
are in A and so A is open. 

IV. STABILITY OF CLOSED INVARIANT SETS POSSESSING A 
COMPACT NEIGHBORHOOD 

14. We assume then for the present that the invariant set M has a neighbor­
hood U whose closure V is compact. We shall solely operate within U; that is, 
assume that S(e) c U, so that S(e) is likewise compact. Since Mc V, Mis thus 
also compact. We shall prove several n.a.s.c. for stability theorems for M, whose 
expression is strikingly topological. 

(14.1) THEOREM. A necessary and sufficient condition for the stability of M is 
this: given any e > 0 and p outside S(e) there is a t(e) > 0 such that ,y; remains 
outside sW. 

(14.2) COROLLARY. The negation of the preceding condition is a necessary and 
sufficient condition for the instability of M. 

PROOF OF [14.IJ. NECESSITY. If the condition is violated given e and any 
TJ > 0 for some p outside S(eh; has a point q ins(,,.,). Since 'Y is also the path 
of q, 'Yt leaves S(e) and we have instability, proving necessity. 

SUFFICIENCY. If rJ(e) = He) and q is in S(rJ), 'Yt c S(e) and we have stability. 

(14.3) THEOREM. N.a.s.c. for asymptotic stability of Mis the condition of (14.1) 
and that there exists a neighborhood of M free from complete paths other than those in 
M itself. 
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(a) PROOF OF NECESSITY. Since we have stability the condition of (14.1) is 
fulfilled. Suppose that the other condition does not hold so that every S(e) con­
tains a complete path, say 'Y for e. Because of stability there is an rJ(e) (of sta­
bility) corresponding to e. And because of compactness and asymptotic stability 
there is a time T such that if p e S(e) then f(p, T) eS(71)(proof same as for (19.2)). 
Now we may take 7/ so small that S(71) does not contain a certain point q of 'Y· 
Hence if we trace 'Y back from q for a time T we arrive at a point q' = f(q; -T) 
e S (e) such that f(q', T) = q,; S(rJ). This contradiction proves necessity of the 
conditions. 

(b) PROOF OF SUFFICIENCY. Again if the condition of (14.1) is fulfilled we have 
stability. Take e, rJ as for stability. Thus every path 'Y issued from a point p of 
S(71) remains in S(e) (beyond p). Suppose that some such path 'Y does not tend to 
M, so that n('Y) c S(e) does not meet M. Thus 'Y (beyond p) remains outside a 
certain S(t) and so it has an w-point q outside s(r). Since the path o of q is in 
n('Y), it is in S(e); hence the latter contains the complete path o. Since e is arbi­
trarily small this contradicts one of the assumptions and proves sufficiency. 

16. Application. Take an autonomous system in E" 

(15.1) x = X(x), X(O) = 0, 

behaving as those considered earlier relative to a certain region <I> surrounding the 
origin. Here M is the origin and it has manifestly a compact neighborhood. We 
may therefore apply the preceding results and obtain the following conclusions: 

(15.2) A necessary condition for the stability of the origin for(15.1) is that no path 
of the system be issued from the origin (-O as t - - oo ) . 

(15.3) A sufficient condition for the instability of the orgin for (15.1) is that some 
path be issv,ed from the origin. 

(15.4) Necessary conditions for the asymptotic stability of the origin are the con­
dition of (15.2) plus this: there exists a neighborhood of the origin free from com­
plete paths of the system. 

V. THE GENERALIZED LIAPUNOV FUNCTION AND STABILITY 

16. Proceeding with the dynamical system f(p, t) in the space R and closed 
invariant set M, we remove the restriction that M possess a compact neighbor­
hood. By a generalized Liapunov function V(p) attached to M is meant a function 
defined in a certain set S(a) and with the following properties: 

(a) Given any O < e < a there exists a X > 0 such that V > X for p outside of 
S( e). 

(b) Given X > 0 there exists an 71(:>.) > 0 such that V < X for p e S(rJ). 
(c) V[.f(p, t)] is, in S(a), a non-increasing function of t. 
In a certain sense V generalizes the concept of a positive definite function 

with V of negative sign. 
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We have now at once: 

(16:1) THEOREM. A n.a.s.c. for the stability of Mis the existence of a generalized 
Liapunov function V. 

PROOF OF SUFFICIENCY. Given e, take 1/ = TJ(A(e)). Let the path 'Y start at 
p e S(TJ), Since in S(TJ), V < A and along the path 'Y + from p the function V is 
non-increasing, it will never take the value A and so 'Y will remain within S(e), 
or M is stable. 

PROOF OF NECESSITY. If p e S(a:), define V(p) by: 

V(p) = SUPt~od(f(p, t), M). 

Thus V(p) is the largest distance from M of the path 'Y! through p beyond p. 
It is easily seen that V(p) has all the required properties. In fact, given ewe may 
take A(e) = e. Then given A(~a:) we take TJ(A) as in the definition of stability. 
And finally V is evidently non-increasing along a path f(p, t) as t - + oo . This 
construction of Yoshizawa (after ideas of Okamura) proves necessity. (See 
Yoshizawa, Memoirs of the College of Sciences, Kyoto, 29, Math., 27-33, (1955).) 

(16.2) THEOREM. N.a.s.c. for the asymptotic stability of M is that there exist a 
V(p), defined for pin a certain S(a:) and such that V(f(p, t)) - 0 as t - + oo. 

PROOF OF NECESSITY. At all events since Mis stable, for some e we have a 
V(p) defined for p € S(rJ(e)). Take the path 'Y through p and suppose 
that V(J(p, t)), which is non-increasing, does not-o. It will tend from above to a 
lower limit A. There is then a t(A) such that in S(t) we have V < A, while for all 
t ~ 0, V(J(p, t)) ~ A. Since 'Y - M it will penetrate and remain in S(t) for t 
sufficiently large, and we will then have V(f(p, t)) < A. This contradiction proves 
necessity. 

PROOF OF SUFFICIENCY. The existence of V(p) implies stability. If it is not 
asymptotic there is an e, 1/ pair and a point p of S(TJ) whose path 'Y! beyond p 
does not -M. Let it remain outside S(t). There is then a A(t) > 0 such that 
outside S(t) we have V > A. Hence V(J(p, t)) does not - 0 as t - + oo, and 
this contradiction provAs sufficiency. 

(16.3) THEOREM. N.a.s.c. for instability of M are the existence of a function 
V(p) defined in a certain S(a:) and with the following properties: 

(a) I V(p) I is bounded in S(a:). 
(b) Every S(e) contains at least one point p where V(p) > 0. 
(c) At every point p .e S(a:) along its path the derivative Vis defined and 

V =AV+ W(p) 

where A > 0 and W(p) is non-negative in S(a). 

PROOF OF NECESSITY. When M is unstable +.here is an e > 0 such that no 
matter how small o, S(o) contains a point p whose pHth-y reaches H(e). Given then 
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p ES(e) there are two possibilities: (i) its path 'Y remains in S(e); (ii) there is a 
first time t(p) at which 'Y reaches H(e): f(p, t(p)) eH(e),f(p, t') eS(e) for 
t' e [O, t(p)]. In case (i) define V(p) = O; in case (ii) define V(p) = e-tCp>. Thus 
V(p) satisfies both (a) and (b). Now along 'Y we have V = et-t(p) and so V = V, 
so that (c) holds with>...= 1, W = 0. This proves necessity. 

PRoor OF SUFFICIENCY. Let V(p) exist as stated and suppose that we have 
stability. Let e ;;::;; a and 7/ correspond as in stability. Thus if p e S(71) then on its 
path 'Y: I V(f(p, t)) I is bounded. Take p such that V(p) > 0. Since on 'Y 

V = XV+ W, V(f(p, O)) = V(p), 

integration yields on 'Y 

V = V(p)i 1 - +oo 

with t, which contradicts the assumption that j VI is bounded on S(a) :::J S(e). 
Hence Mis unstable. 

17. Some consequences. If M has a compact neighborhood in R then the 
n.a.s.c. of (14.2) and (16.1), likewise of (14.3) and (16.2) must be equivalent. 
Therefore we have: 

(17.1) If M has a compact neighborhood a necessary condition for the existence of a 
generalized Liapunov function is that no path from outside M has an a-point in M. 

( 17 .2) Under the same conditions this Liapunov function V will tend to zero along 
every path [V(f(p, t)) - 0 as t - + oo] if and only if M has a neighborhood 
free from complete paths of the system (Krasovskii). 

18. An observation of an entirly different nature is the following. Suppose that 
the space R - M has several components and let U be one of them. Then all the 
preceding results continue to hold if one replaces R by U and M by N = M n U. 
We have then stability asymptotic or otherwise, likewise instability, of M 
relative to U alone. If there are many components { U,..} then the behaviors in the 
various components need not be related. In fact the U,.. need not be the com­
ponents of R - M but merely those of some set S(a) - M, and everything goes 
on in the same way. 

There are noteworthy and well known applications of the above remarks. 
Consider a planar system 

(18.1) x = X(x, y), iJ = Y(x, y) 

where x, y are now coordinates, and to simplify matters assume that X and Y 
are analytic wherever considered. Suppose that the system has a limit-cycle 'Y 

(isolated periodic solution). Thus there is a neighborhood U of 'Y free from 
limit-cycles. Let M = 'Y· Then U - 'Y has two components U1 and U2 • If Ui is 
stable a path issued from Ui - 'Y, for U. narrow enough, will spiral towards 'Yi 
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while if Ui is unstable it will spiral away from -y. Now 'Y may be 

stable on both sides 
unstable on both sides 
stable on one side, unstable on the other, 

and simple examples of each of these cases can be readily given. 
Consider again the system (18.1) and suppose that X(O, O) = Y(O, O) = 0, 

while X, Y are holomorphic at the origin. Then the curves X = 0, Y = 0 sub­
divide a neighborhood of the origin into a finite (arbitrarily large) number of 
sectors, whose stability behaviors may well be entirely independent. 

VI. UNIFORM ASYMPTOTIC STABILITY 

19. We continue to consider the same invariant closed set M but without a 
necessary neighborhood with compact closure. We operate again within a certain 
S(a). Let 1J(c:) be the stability function. Asymptotic stability means that given 
any~ and if c: is small enough then any path 'YP from p E S(c:) will after a certain 
time TP remain in SW. Asymptotic stability is uniform if one may choose a 
TP = T, the same for all p E S(c:). 

(19.1) THEOREM. N.a.s.c. for uniform asymptotic stability of M is the ex­
istence of a function V(p) such as in Theorem 16.2, which in addition is such that 
V(f(p, t)) --t Oas t --t + oo, uniformly in p for p E S(c:). 

PROOF OF NECESSITY. Suppose that M is uniformly asymptotically stable. 
There exists then e (fixed) such that given any small~ there is a TW such that for 
t ;?; TW we havef(p, t) E SW, with T the same for all p E S(c:). The V(p) defined 
in (16.1) is such that 

V(f(p, t)) = SUPr>O d(f(p, t + -r), M). 

Thus for p E S(c:), 

V(f(p, t)) = SUPe>t d(f(p, 0), M) 

fort ;?; TW. Thus V(f(p, t)) --t Oas t --t + oo, uniformly in p for p E S(e). 

PROOF OF SUFFICIENCY. At all events if the conditions are satisfied we have 
asymptotic stability. Let c:, ~ be as above. If the asymptotic stability is non­
uniform, then whatever T, there exists a p E S(e) such that f(p, T) is outside of 
SW. Hence there is a >..W such that V(f(p, T)) > >..W, which contradicts the 
assumption that V(f(p, t)) --t O as t --t + oo uniformly in p for p e S(e). This 
proves sufficiency. 

(19.2) If M has a neighborhood S(a) with compact closure then asymptotic 
stability is always unif arm. 

Take e < a and~ arbitrarily small and set S(e) = B, SW = C, S(1J(~)) = D; 
We suppose e such that given p e B there is a time T such that f(p, T) e D and so 
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f(p, t) E C for t ~ T. Since B is compact and j(p, T) is continuous in p, if µ is 
such that s(f(p, T), µ) c D there is av such that whenever q E S(p, v) = U then 
f(q, T) ED and hence f(q, t) EC for t ~ T. Since B is compact its open covering 
{ U} has a finite subcovering { Uk} v..rith T = Tk for Uk. Hence if T denotes now 
the largest Tk then j(B, t) EC for t ~ T; that is, asymptotic stability is uniform. 

As a special case take the system (2.1) in En with the origin O asymptotically 
stable. Since the origin always has a neighborhood with compact closure within 
the domain <I> of operation of the differential equation, asymptotic stability of 0 
is always uniform and this is generally tacitly assumed. 

In conclusion, the author v,,rishes to thank Robert Bass for his abundant help 
in connection with this manuscript. 
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