
ON l\lIONOIDS AND THEIR DUAL 

BY DANIEL M. KAN 

1. Introduction 

A monoid (i.e. a multiplicative system which is associative and has a unit) 
may be considered as a set A together with a multiplication map rn: A X A - A 
satisfying certain axioms. Let ;JR denote the category of sets. Then A and A X A 
arc objects of ;JrC while the map mis a map in this category. However the axioms 
are expressed in terms of the elements of the set A and hence make use of the 
fact that A is a set and not merely an object of some category. 

In this note we shall formulate the axioms of a monoid in terms of maps of the 
category ;Jrl without using clements. In fact for an arbitrary category with products 
ewe shall define a notion of o~jcct with a monoid structure which, if e is the cate­
gory of sets ( resp. topological spaces), reduces to the usual notion of monoid 
(resp. topological rnonoid). Application of this notion to the category of groups 
yields the following characterization of an abelian group: a group A is abelian 
4 and only if it admits a monoid structure. 

As the notion of object with a monoid structure is defined entirely in terms of 
maps of the category e it can be dualized. We thus obtain for an arbitrary cate­
gory ,vith sums ~ a notion of object with a co-nwnoid structure. Application of this 
noti011 to the category of groups yields the following characterization of a free 
group: a group Fis free if and only if it admits a co-monoid structure. Furthermore 
a free group admits more than one co-monoid structure; the co-nwnoid structures 
admitted by a free gr011p are in one to one correspondence with its free bases. 

The main lemma of [2] states, roughly speaking, that a functor from countable 
groups to groups which preserves short exact sequences and finite free products 
is either trivial or is, in a unique way, naturally equivalent with the inclusion 
functor. using the characteri,mtions of abelian groups and free group8 mentioned 
above, the proof of this lemma may be simplified. In particular there is no longer 
need for the group Z2 * Z2 to play a special role. 

Another application is a characterization of c.s.s. groupB -which are obtainable 
by the construction F of J. \V. Milnor ( [3]). 

In an appendix groups and their dual are considered. 
Throughout this note we freely use the language of categories and functors 

of Eilenbcrg-MacLane ( [11). 

2. Objects with a monoid structure 

We first specify what we mean by a category with products. 

DEFINITION (2.1). A category e will be called a category with products if for 
every two objects A.1, A2 Ee there are given an object A1 X A2 Ee ( called product) 
and maps Pi: A 1 X A2 - A; E e ( i = 1, 2) ( called projections) with the following 
property. For every two maps f;:B - A; e e (i = l, 2) there is a unique map 
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f:B - Ai X A2 t e such that commutativity holds in the diagram 

B 

/4 ]1 ~!2 
✓ \. 

Ai ;I!]:_ Ai X A2~ A2 

53 

It is readily seen that for every two maps yi:Ci - Ai t e (i = 1, 2) there is 
a unique map Yi X y2:Ci X C2 -Ai X A2 Ee such that commutativity holds in 
the diagram 

C1 J!I_ C1 X C2 ~ C2 

(2.la) j Yi j Yi X Y2 j Y2 

A1 J!!- Ai X A2 ...l!3.+ A2 

Also let A. t e be objects (i = 1, 2, 3) and let 

s;: (Ai X A2) X As -A; 

t;:A1 X (A2 X As) - Ai 

be the iterated projections. Then clearly there is a unique equivalence 

such that the following diagram is commutative for i = 1, 2, 3. 

(A1 X A2) X Aa 

"'Si 

"'\. 

and 

We may therefore identify the objects (Ai X A2) X As and Ai X (A 2 X A3) 

under the map j and denote the resulting object by Ai X A2 X A3 • 

DEFINITION (2.2). Let e be a category with products. An object Pt e is called 
a point if for every object A t e there is exactly one map A - P t e. 

This terminology may be justified by the following proposition, the proof of 
which is straightforward. 
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PROPOSITION (2;3). Let e be a category with products and let Pee be a point. 
Then for every object A 1c e the projections p1 :A X P-, A and p2:P X A---, A 
are equivalences. 

EXAMPLES (2.4). Examples of categories with products are: 
a) The category ml of sets. The product (in the above sense) of two sets is 

what is usually called their direct product. Any set consisting of only one element 
IS a 

b) The category J of topological spaces. The product of two topological spaces 
is what is called their cartesian product. space consisting of one point 
is a point. 

e) The category g of groups. The product of two groups is their direct product. 
Any group consisting of only one element is a point. 

We shall suppose that in every category with products there is given a point P. 
This is no real restriction, as a category e which has no points may always be en­
larged to a category with a point by adding one object P ( the point), its identity 
map, and for every object A e e one map A ---, P. 

We now define the notion of an object with a monoid structure. 

DEFINITION (2.5). Let e be a category with products. An object A E e will 
be called an object with a monoid structure if there is given a map m: A X A -A e e 
( called multiplication map) satisfying the following axioms. 

L Associativity: Commutativity holds in the diagram 

AXAXA m X iA 
A XA 

liA X m 
I 
1m 
j 

A XA 
m A 

II L. Existence of a left unit: There exists a map e:P---, A E e such that com­
mutativity holds in the diagram 

(p2r- 1 
A ---- P X A 

le X ·L 

A....-_m __ XA 

II R. E:ristence of a right ·unit: There exists a map e': P ---, A 
holds in the diagram 

(p1)~1 
A----.AXP 

rs..; 
r-.J 

~ !ii !iA X e' 

+-----AXA A_ m 

e e such that 
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EXAMPLES (2.6) 
a) A set with a monoid structure clearly is a monoid in the usual sense. 
b) Similarly a topological space with a monoid structure is a topological 

monoid. 

Let A be a group and let m: A X A --+ A be a homomorphism. In order that m 
satisfies the axioms II Land II Rm has to be the multiplication map in the usual 
sence. But this map is a homomorphism if and only if A is abelian. Hence 

THEOREM ( 2. 7). A group A is abelian if and only if it admits a monoid struc­
ture. If A is abelian it admits exactly one monoid structure, the multiplication 
map of which coincides with the multiplication map of A in the usual sense. 

Let A be a monoid. Then the multiplication map m: A X A --+ A is an epi­
morphism. Also, if e is a left unit of A and e' a right unit, then e = ee' = e'. 
Similar results hold for objects with a monoid structure. 

PROPOSITION (2.8). Let A be an object with a monoid structure. Then the 
multiplication map m:A X A --+ A is an epimorphism, i.e. if !1, f2:A --+Bare 
maps such that !1 ° m = !2 ° m, then .f1 = h . 

PROOF. In view of axiom II L 

!1 = Ji Om O (e X iA) o (p2)-1 

= !2 ° m O (e X iA) o (p2)- 1 = !2. 

PROPOSITION (2.9). Let A be an object with a monoid structure and let e:P--+ 
A be a left unit and e':P--+ A a right unit. Then e = e'. 

PROOF. Axiom II L yields the commutative diagram 

p __ d_ • p X p -­

lip Xe' 

(p2)-I 
A---PXA 

A ,.__m __ A X A •--

e Xe' 

where d:P--+ P X Pis the unique such map (proposition (2.3)). Hence 

m o ( e X e') o d = iA o e' = e'. 

Similarly axiom II R yields 

mo (e X e') 0 d = e. 

Hence e = e'. 
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REMARK ( 2.10). In the proof of proposition ( 2.8) we used only the fact that 
A has a left ( or right) unit; in the proof of proposition ( 2. 9) also associativity 
was not needed. 

3. Objects with a co-monoid structure 

The definitions of the preceding section may be dualized as follows. 

DEFINITION ( 3.1). A category D will be called a category with sums if for every 
two objects A1 , A 2 E D there are given an object A1 + A 2 1: D ( called sum) and 
maps ji:A; - A 1 + A 2 ED (i = 1, 2) (called injections) with the following 
property. For every two maps fi:Ai - B ED (i = 1, 2) there is a unique map 
f:A1 + A2 - B E D such that commutativity holds in the diagram 

B 

/f, !!'"~ 
. . 

A ~ A1 + A2 L A2 

Again it is readily seen that for every two maps gi:Ai: - C, ED (i = 1, 2) 
there is a unique map g1 + g2:A 1 + A 2 - C1 + C2 ED such that the dual of dia­
gram (2.la) is commutative. Also (A 1 + A2) + A3 and A1 + (A2 + As) will 
be identified under the canonical isomorphism and the resulting object will be 
denoted by A1 + A2 + As . 

DEFINITION (3.2). Let D be a category with sums. An object Q ED is called 
empty if for every object A ED there is exactly one map Q - A ED. 

This terminology may be justified by the following dual of proposition ( 2.3). 

PROPOSITION (3.3). Let D be a category with sums and let Q ED be an empty 
object. Then for every object A ED the injections j1:A - A + Q and j2:A -
Q + A are equivalences. 

EXAMPLES (3.4). Examples of categories with sums are 
a) The category ;Jll of sets. The sum of two sets A1 , A2 E ;Jll is what is usually 

called their union A1 u A2. The empty set is an empty object. 
b) The category g of groups. The sum of two groups A1 , A2 in the sense of 

definition (3.1) is what is usually called their free product A1 * A2. Any group 
consisting of only one element is an empty object. 

We shall suppose that in every category with sums D there is given an empty 
object Q. Again this is no real restriction on D. We then may define 

DEFINITION (3.5). Let D be a category with sums. An object A ED will be 
called an object with a co-monoid structure if there is given a map n: A -A + A 1c ~ 

( called co-multiplication map) satisfying the following axioms. 
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I* Associativity: Commutativity holds in the diagram 

n + iA A.+ A 

A+A ~-_n ____ A. 

II*L Existence of a left co-unit: There exists a map a:A---+ Q e i) such that com­
mutativity holds in the diagram 

A -(~j2_)-_1 - Q + A 
~ 

~!iA Ja+iA 
n A. ___ _,, .11 + A. 

II*R Existence of a right co-unit: There exists a map a/: A. ---+ Q e i) such that 
commutativity holds in the diagram 

U1)-l 
A. <----- A. + Q ,......, 

rv 

~riA 1 i.t + a' 

A 
n 

A.+ A 

Dualizing proposition (2.8) and (2.9) we get 

PROPOSITION (3.6). Let A be an object with a co-monoid structure. Then the 
co-multiplication map n:A ---+ A + A is a monomorphism. 

PROPOSITION (3.7). Let A be an object with a co-monoid structure with left 
co-unit a:A---+ Q and right co-unit a':A -, Q. Then a = a'. 

We now consider the possibilities of converting the objects of the categories 
mI (sets) and S (groups) into objects with a co-monoid structure. 

THEOREM (3.8). Let A. E mI be a non-empty set. Then A does not admit a 
co-monoid structure. 

PnooF. This is an immediate consequence of axiom II*L and the non-existence 
of maps A ---+ Q E ;)Tl. 

THEOREM (3.9). Let FE S be a free group and let the subset B c F be a free 
basis of F. Then the map n:F---+ F * F given by n(b) = j 1(b) · j2(b) for all 
b EB, defines a co-monoid structure on F. 

The proof of theorem (:3.9) is straightforward. 
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TH1DOREM (3.10). Let F cg be an object with a co-monoid structure and let 
n:F - F * F be the co-multiplication map. Then Fis a free group and the set 
B = lb I b € F, b ,.f 1, n(b) = i1(b) · i2(b)l is a free basis of F. 

COROLLARY (3.11). A group FE g is free if and only if it admits a co-monoid 
structure. 

COROLLARY (3.12). Let F 1c g be a free group. Then there exists a one to one 
correspondence between the co-monoid structures admitted by F and its free 
bases. 

PROOF OF THEOREM (3.10). Suppose Bis a basis of F and let w be a non-empty 
reduced word in the elements of B and their inverses. Then it follows from the 
definition of B that n( w) ,.f 1. Hence w ,.f 1, i.e. B is a free basis of F. It thus 
remains to show that B generates F. 

Let p e F, p ,.f 1. Then there exists an integer k and elements b1 , q2 , · · · , 
qk , r1 , · · · , rk 1: F such that 

and such that q2, · · · , qk , r1 , • • · , rk-l are ,.f 1. If k = 1 then it follows im­
mediately from axiom II*L and II*R that b1 = r1 = p, i.e. p e B. Now suppose 
k > l. Let 

n(b1) = i1(s1) · i2(t1) · · · i1(sm) · i2(tm) 

n(r1) = J1(u1) · j2(v1) · · · J1(un) · i2(vn), 

By hypothesis r1 ,.f 1 and in view of axiom II*L we may therefore suppose that 
v1 ,.f 1. Application of axiom I* yields 

J1(bi) · J2(u1) · J3(V1) · · · J2(un) · ja(vn) · · · 

= J1(81) · j2(t1) · · · i1(sm) · J2(tm) · J3(r1) · · · . 

This implies n(b1) = i1(b1) · i2(u1). Application of axiom II*L now yields u1 = 
b1 , i.e. b1 e B or b1 = 1. Consequently 

n(b"°11 · p) = j2(c1) · .h(q2) · · · i1(qk) · i2(r1c) 

where c1 = b11 • r1 . By the same method, using axiom II*R instead of axiom 
II*L we obtain that n(c1) = j2(c 1) · j 1(c1), i.e. c11 e B or c1 = 1 and hence 

n(c1 1 • b11 · p) = .ii(b2) · i2h) · · · i1(q1c) · i2(r1c) 

where b2 = c11 · q2 • It now follows by induction that there exist elements b1 , · · • , 

b1c_1 , c11, · · · , c;;-21 e F which are in B or = 1 such that 

where 
1 -1 b-1 -1 b-1 p = Ck-1 ' k-1 ' ' ' C1 ' 1 ' p. 

By axiom II*L and II*R we have that p' = b1c = r1c , i.e. p' e B or p' = l. Hence 
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pis in the subgroup of F generated by B. Asp was an arbitrary element of Fit 
follows that F is generated by B. 

4. On the proof of lemma 1 of [2] 

We recall lemma 1 of [2]. 

Let S be the category of groups, Sc the subcategory of countable groups and let 
I: Sc -, S denote the inclusion functor. Let J.VI: Sc -, g be a functor which preserves 

a) short exact sequences ( i.e. extensions) 
b) (two-fold) free products. Then· either there exists a unique neutral equivalence 

n:I-, Mor M(A) = l for all A E Sc. 

The proof of this lemma may be divided as follows. 
( i) I.f A E Sc is abelian, then so is M (A). This is proved by first showing that 

11,1 preserves direct products ( [2], proposition 10). It follows that M preserves 
monoid structures and hence the result follows by applying the characterization 
of abelian groups of theorem (2.7). In this part of the proof no use is made of the 
fact that NI preserves free products. 

(ii) If A 1c Sc is free, then so is M (A). As A is free it admits a co-monoid struc­
ture ( theorem ( 3. 9)) which clearly is preserved by the functor M. Hence 11if (A) 
is free (theorem (3.10) ). This part of the proof uses only the fact that M pre­
serves free products. 

(iii) If Z is infinite cyclic, then either M ( Z) is infinite cyclic or M ( Z) = 1. 
This follows immediately from (i) and (ii). 

(iv) Lf-M ( Z) is infinite cyclic, then there exists a unique natural equivalence 
m:I-, M. The problem is to choose for the isomorphism m(Z) one of the two 
possible isomorphisms Z -, 1VI(Z). Letze Z be a generator, then z induces on Z 
a co-monoid structure (theorem (3.9)). Application of the functor M yields a 
co-monoid structure on JJI ( Z). Denote by z' the corresponding generator of 
M(Z) (theorem (3.10) ). It is readily seen that the isomorphism m(Z) :Z -, 
M(Z) should be compatible with the co-monoid structures of Z and 11l(Z). 
Hence this must be the isomorphism given by (m(Z) )z = z'. This is the iso­
morphism h of [2], proposition 14. The uniqueness and existence of the natural 
equivalence m:I-, 1W then can be shown as iii [2], propositions 15 and 16. 

(v) If M(Z) = 1, then 1lI(A) = 1 for all A E g". This is proposition 17 of 
[2] and need not be changed. 

5. A topological application 

For a c.s.s. complex K with base point <P let FK be the c.s.s. group of J. W. 
Milnor ( [3]) which has the homotopy type of the loops on the suspension of K. 
We recall its definition. For every integer n ~ 0 F nK is the group which has 

(i) one generator F<Y for every simplex c, E Kn 
(ii) one relation F(<P'ri° · · · 11"-1 ) = 1. 

The face and degeneracy homomorphisms are given by 

(Fc,)11i = F(c,,r/) 0 ~ i ~ n. 
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The following theorems then are immediate consequences of theorem (3.9) 
and (3.10). 

THEOREM 1). The c.s.s. homomorphism n:FK -+ FK * FK given by 
n(Fu) = j 1(Fu) · J0

2(Fu) for every u e K defines on FK a co-monoid structure. 

THEOREM ( 5.2). Let G be a c.s.s. group with a co-monoid structure and let 
n: G -+ G * G be the co-multiplication map. Then 

( i) the simplices u E G for which n( u) = J1 ( u) · j2( u) form a c.s.s. complex L 
(ii) thec.s.s.homomorphismh:FL-+Ggiven h(Fu) = uisani,;omorphism 

which is compatible with the co-monoid structures. 

CoROLLAHY ( 5.3). Let S be the category of c.s.s. complexes with base point 
and let 5' be the category of c.s.s. groups with a co-monoid structure. Then the 
functor F: S -+ 5' is an isomorphism of categories. 

A.PPENDIX 

6. Groups and their dual 

Analogously to definition ( 2.5) the notion of an object with a group structure 
may be defined. 

DEFINITION (6.1). Let e be a category with products. An object A e e will 
be called an object with a group structure if there is a map m: A X A -+ A 
( called multiplication map) satisfying the following axioms. 

I Associativity ( see definition ( 2.5)). 
II L Existence of a left unit (see definition (2.5)). 
III L Existence of a left inverse: There exists a map t:A -+ A e e such that 

commutativity holds in the diagram 

A -- • P ______!!___, A 

(6.la) 

A A t X iA A A X ___ _, >< 

where d:A-+ 
the diagram 

X A e e is the unique map such that commutativity holds in 

(6.1 b) 

EXAMPLES (6.2) 
a) A set with a group structure clearly is a group. 
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b) A topological space with a group structure is a topological group. 
c) The monoid structure of theorem ( 2. 7) is actua11y a group structure. 

Many of the elementary properties of groups also hold for objects with a group 
structure, for instance, the uniqueness and two-sidedness of unit and inverse. 

PROPOSITION (6.3). Let A be an object with a group structure. Then 
a) there exists a right unit e': P ----, A ( see definition ( 2.5)) 
b) e = e' 
c) there exists a right inverse, i.e. a map t': A ----, A E e such that commutativity 

holds in diagram (6.la) withe' instead of e and iA X t' instead oft X iA. 
d) t = t'. 

The proof is similar to that of proposition (2.9) although more complicated. 
Dually we get 

DEFINITION (6.4). Let 5) be a category with sums. An object A E 5) will be 
called an object with a co-group structure if there is given a map n: A ----, A + A E 5) 

( called co-multiplication map) satisfying the following axioms 
I* Associativity (see definition (3.5) ). 
II*L Existence of a left co-unit ( see definition ( 3.5)) 
III*L Existence of a left co-inverse: There exists a map s:A----> A e :I) such that 

commutativity holds in the diagram 

A-Q~A 

( 6.4a) 

A +A A +A 

where b: A + A ----, A e 5) is the unique map such that commutativity holds in the 
dual of diagram (6.lb). 

ExAMPLES (6.5). The co-monoid structures of theorem (3.9) and (5.1) are 
actually co-group structures. · 

Dualization of proposition ( 6.3) yields that co-unit and co-inverse are also 
two-sided and unique. 
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