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ON THE GENERALISED RIEMANN-HURWITZ FORMULA 

BY S. GITLER*, J.F. GLAZEBROOK AND A. VERJOVSKY* 

Introduction 
Let M be a compact orientable manifold of dimension 2m, with fundamental 

class [M] and let Ebe a complex vector bundle of rank non M, with Chern 
classes {c;(E)l, 0 < i ~ n. If Pis a homogeneous polynomial of weight min n 
indeterminates, then the associated Chern number is defined to be (P(c1 (E), 
· · · , cn(E)), [M]) = (P(E), [M]). 

Let M1 be a closed submanifold of M of co-dimension r. We consider another 
complex vector bundle F of rank n on M, and assume given a morphism </>: 
E - F of vector bundles such that. VI = </) I M-M, :EI M-M, - FI M-M, is an 
isomorphism. Let S (M1) be the 'double' of a tubular neighbourhood B (M1) of 
M1 in M (see below): S(Mi) is the sphere bundle of v EB 1 where vis the normal 
bundle of the embedding M 1 C M. 

We may construct the 'clutched' bundle (E, VI, F) over S(M 1) as follows: 
consider the restriction of E to one copy of B(M 1), and F to another copy of 
B (Mi) and attach them by means of the 'clutching' isomorphism VI on the 
boundary of B(M1). 

In [11], Ngo Van Que proved the generalised Riemann-Hurwitz formula: 

(P(E), [M]) - (P(F), [M]) = (P(E, VI, F), [S(Mi)]), 

explicitly in terms of Chern forms and integration. It is remarked that the 
techniques work when the Chern forms are replaced by Pontrjagin or Euler 
forms, in the case of real vector bundles, and the same formula is obtained. 

The purpose of this paper is to state and prove a result in the characteristic 
ring of two G-bundles E and F where G is any group admitting a classifying 
space BG. Within this context, our main result turns out to be a considerable 
generalisation of that stated above. We also discuss some applications to the 
special case of branched covering maps and exemplify our discussion with two 
examples outside of the smooth category. 

During the preparation of this paper the second named author enjoyed the 
hospitality of the Departamento de Matematicas, CINVEST AV-IPN. He also 
wishes to thank Professor J. Eells for originally suggesting the possibility of 
generalising the above result and Dr. J. Rawnsley and Dr. B. Sanderson for 
useful remarks concerning an earlier version. 

* During the preparation of this paper, the first and the third named authors were supported 
by CONACYT, respectively by PCCBBNA-001371 and PCCBBNA-005171. 
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§ 1. The main result 

We assume given a smooth orientable n-manifold Mand an r-submanifold 
M1 with n - r ~ 2. Then the pair (M, M1) satisfies 

I 

1) H (M LZ) = {0 q > n 
q ' a; q=n' 

2) Hq(M 1 , LZ) = 0 if q ~ n - l, 

3) there exists a neighbourhood N(Mi) of M1 so that M1 is a deforma
tion retract of the interior N°(Mi) of N(Mi) and the inclusion 
p: M - (M, M - N°) (M1)) induces an isomorphism 

(1.1) p*:Hn(M) ~ Hn(M, M- N°(Mi)). 

We form the subspace % of M X I where 

(1.2) % = (M x al) U ( (M - N°(Mi)) X J) 

and the double S(M1) c % by 

(1.3) S(Mi) = (aN(M1) XI) u (N(Mi) X al) 

Now let 

% 1 = (M x {O)) U ((M - N°(Mi)) X [O, ¾D 

and 

%2 = (M X {1)) U ((M - N°(Mi)) X [¼, 1]) 

i = l, 2. 

By this construction, the spaces %; are homotopically equivalent to M1 and 
the spaces % / % 1 and S (M1) / S (M1 h are both homotopically equivalent to the 
Thom space M/(M-N°(Mi)). 

It follows from the cofibration 

(1.4) 

and 2) above that 

Hn(S(Mi), Z) ~ Hn(S(Mi)/S(M1h) ~ z. 
More generally, a pair of CW-complexes (M, Mi) will be called an (n, A)

adapted pair for any coefficient ring A if it satisfies the above conditions 1) -
3) with A replacing z. A choice of generators for Hn(M, A) and Hn(S(Mi), A) 
will be called an orientation of Mand S(Mi) respectively. 

Remark. Examples arise from the following two cases: we could take M to 
be an orientable manifold and M1 to be a codimension ~ 2 subcomplex, or 
even more generally, M could be taken to be an orientable simple n-circuit [3] 
and M1 to be an arbitrary subcomplex of codimension ~ 2. 
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Now let us consider a topological group G with its classifying space BG. If 
P E Rq(BG, A) is a cohomology class and E is a G - bundle over a space X, 
then we shall denote by P(E) E Rq(X, A) the class defined by P(E) = fE*(P) 
where fE: X -BG is the classifying map. Also, if -r E Rq(X, A), then we denote 
the Kronecker pairing by (P(E ), -r). We now proceed to our main result: 

THEOREM (1.1). Suppose (M, M1) is an (n, A)-adapted pair and E and Fare 
G-bundles over M such that on M - M1 there exists a homotopy 

(1.5) {E I M-M1 u. fF IM-Mi. 

Then there exists a bundle ~8 over S(Mi) and orientations [M] and [S(Mi)] 
such that for any class P E Rn(BG, A), we have the following equality of 
Kronecker pairings 

(1.6) (P(~8), [S(Mi)]) = (P(E) - P(F), [M]) 

Proof. Henceforth, we assume all cohomology and homology groups to have 
coefficients in A. 

For i = 1, 2, let us consider % and %; i = 1, 2. 

We have % 1 n % 2 = (M - N°(Mi)) X [¼,}].The Mayer-Vietoris sequence 
for (%1, %2) gives 

(1.7) 
a <i1,"2>. 
--+ Rn-1(%1 n %2) - Rn-1(%1) EB Hn-1(%2) - • • • • 

We claim that the maps (ii, i2)* and a* in dimensions n are the 0-maps and 
hence we have the isomorphism 

(1.8) 

This follows from the sequence 

a. i. 
-Rn-i<M- N°(Mi)) -Rn-1(M) - • • • • • • 

Since it• = i*, for t = 1, 2, then from (1.1) i* is O in dimension n and a 
monomorphism in dimension n - 1. 

Let [M] be an orientation for M; it induces generators [M]o and [Mh for 
Rn(%) by pushing forward [M]; we have the sequence 

<t1.t2l. "• 
Rn(M) - Rn(.%1) EB Rn(.%2) - Rn(%) 

where for i = 1, 2, t;:M -%; is the inclusion x-x X {i}. Consider now the 
mapg:%-M given by g(x, t) = x. 
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Then g* [M]i = [M]. Now the restriction g1 of g to S(Mi) sends S(Mi) to 
M1 and we have the induced maps 

(1.9) 

If [S(Mi)] is a generator, then for ao, a1 E ~. we have 

j*[S(Mi)] = ao[M]o + ai[Mh 

and since g*j* = gi*i* = 0, it follows that a1 = -ao. Moreover, consider the 
diagram with maps i1, s and h 

(1.10) 

where S(M 1h = S(M1) n %1. Then s is a homotopy equivalence and each 
space has the homotopy type of N(Mi)/aN(Mi). On passing to the level of 
homology we have 

(1.11) 

and obtain h*j*[S(Mi)] = aoh*[M]0 • But h*j* = s*j1* is an isomorphism, 
hence ao is a unit in A and h*[M])0 is a generator of Hn(%/% 1). 

Finally, if we look at 

we can choose generators [S(Mi)] and [M] such that s*j1*[S(M1)] = io*k*[M], 
and ao = 1. 

We now proceed to construct a bundle over % as follows: we define 
16:%---+ BG to be IE on M x {O} IF on M X {1}, andl 6 on (M - N°(Mi)) XI. 

Let f6 be the corresponding bundle over% and ~6 = i*f6 the induced bundle 
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Now taking account of (1.6), (1.15) and Lemma 1.2, we obtain (see also 
[11]). 

(1.17) (x(E), [M]) - (x(F), [M]) = b(x(L), [Mi]). 

§2. Applications to branched covering maps and examples 

We shall speak of a (finite) topological branched covering as that defined 
by Fox in [5]. In fact, such a branched covering can be seen as a special case 
of a singular fibration: let X and Y be topological spaces and 1r:X - Ya map. 
Let Yi be a closed subset of Y such that 

(2.1) 7r-i(Y - Yi) - Y- Yi 

is a fibration of some specified type, e.g. a Serre or Hurewicz fibration. We 
call the set {1r-i(y) :y E Yi} the singular fibres. 

Such a singular fibration 1r: X - Y can be expressed as a composition of 
singular fibrations 

where Z is the identification space of X where the singular fibres are identified 
to points and where for 1ri, the non-singular fibres are thus identified with 
points and for 1r2 , the singular fibres consist of points. 

In the case that a compact Lie group G acts on X, then we obtain a singular 
fibration X - X/G where 

(2.2) 

is a principal G-fibration, where XufJ is a principal orbit for H which is 
conjugate to a subgroup of each isotropy group of G. This niay be seen to be a 
special case of [2, Theorem 3.2, p. 182] (in this case, the group Kin Bredon's 
notation, is taken to be the identity). 

For branched coverings we consider a map 1r: M - N where M and N are 
equidimensiortal orientable combinatorial manifolds with branch set Ni (con
nected) which is taken to be a pure codimension 2 simplificial complex, tamely 
embedded in the interior of N. Let Mi= 1r-i(NiHMi is sometimes called 'the 
ramification locus' of 1r ); we assume that Mi and Ni are combinatorially 
homeomorphic. By the degree of 1r, we mean the number of pre-images of a 
point x E N - Ni. We do not assume orientability of Ni. 

Considering the special, equi-dimensional case of (2.1), we would set M = X 
and N = X/G where G is considered to be cyclic of order k and acts freely on 
M - Mi where M1 is the fixed point set of the action of G. Here 1r has degree 
equal to k. Such (cyclic) branched coverings have been discussed by Hirzebruch 
in [7]. 

So let us proceed to set E = TM, F = 1r*TN, assume that Mi is of codimension 
2 in M and take 1r to have degree equal to k. 

Further, let Ki = v(Mi) and K 2 = 1r-i11(Ni) (here II denotes the normal 
bundle). Thus for Kin (1.15), we consider the 'clutched' bundle 

(2.3) 



GENERALISED RIEMANN-HURWITZ FORMULA 7 

THEOREM (2.1). Let 1r:M -N be a smooth branched covering map of degree 
k. Then with respect to the fibration. 

(2.4) 

there exists a bundle isomorphism t ~ q*TM 1 EB K where K is an orientable 2-
dimensional bundle defined by (2.3) such that 

(2.5) 

Proof. This is a special case of Theorem 1.1 where we take t to be tu and 
the result follows from (1.15) and from an explicit description of the clutching 
map 

where q;, i = 1, 2, are the restrictions in (2.4) to B;(Mi). 
Let x E M1 and let Ube a neighbourhood of x and let V be a neighbourhood 

of 17(x) in M1 . 

Now for y E S 1 C D 2 and z E q*TM 1 , we define the clutching map 11 by 

(2.6) (x, y, z) = (x, y, kyk-lz) 

where the first two components constitute the identity and the third compo
nent represents the differential of the map. But the explicit description in 
(2.6) actually reduces to describing a map S 1 - S0(2) which, in this case, is 
none other than y - yk-i, whence we deduce that with respect to (2.4). 

(x(K), i*[S 2]) is (k - 1) to within a sign. □ 

We shall choose (2.5) to have a minus sign. Note that generally, K may not 
be unique but the evaluation of x (K) on i* [S2] is. Thus using (1.17), we 
recover the formula of [11] for a smooth branched covering map 1r:M - N of 
degree k with branch set N1: 

(2.7) / x(M) = kx(N) - (k - l)x(Ni). 

However, the restriction that 1r should be smooth can, in fact, be weakened 
and (2. 7) is true in the combinatorial category. To see this, let us recall that 
for a fibration F - X - B, we have x(X) = x(F)x(B). Thus commencing 
from (2.1) and using the fact that 

where c denotes the codimension of M1 in M, we can deduce (2.7) in the 
combinatorial category. But even more generally, we assert the following: 

THEOREM (2.2). Let Mand N be topological manifolds and let ¢:M - M1 -

N - N 1 a k-fold covering where M1 and N1 are subspaces of codimension C1 and 
c2 respectively such that 
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Then we have 

(2.8) x(M) = kx(N) + (-l)c+l(k - l)x(N1). 

Proof. By Lefschetz duality and the exactness of the triangle 

H,(M\ i,(M,) 

H*(M, Mi) 
we deduce that x(M - Mi)~ x(M, Mi)~ x(M) + (-l)c 1+1x(Mi). 

But also, we have 

x (M - Mi) = kx (N - Ni) 

= kx(N) + (-l)" 2kx(Ni), 

whence we deduce (2.8). □ 

We now proceed to discuss two examples of topological branched coverings 
from outside of the smooth category in order to exemplify how the topology is 
regulated by (2.8) for the case c = 2. 

Example (2.3). In [8] Kuiper considers the quotient space Y of CCP2 under 
the identification of complex conjugation. The quotient map 1r :CCP2 - Y is a 
piecewise-smooth branched covering of degree 2 with branch set JRP2• The 
possibility of global smoothness is lost on the branch set. 

We deduce from (2.8) that x(Y) = 2. Once we can show that Y is simply
connected, we can then deduce that Y is a homotopy 4-sphere and then apply 
the results of Freedman [6] to deduce that Y is actually S4. Thus we need only 
to establish: 

LEMMA (2.4). The space Y ~ CCP2/(complex conjugation) is simply-con
nected. 

Proof. Consider the isomorphic presentation 
T 

CCP1 x «::.P1/(a, b) ru (b, a) ~ CCP2 

given by T([z1, z2], [w1, w2]) = [z1w2, Z1W2 + z2W1, z2w2]

The following diagram commutes 

T 
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where I[zo, 21, 22] = [zo, ii, zd and J[a, b] = [a, b]. Then we have 
<CP2/I = Ila, bl, {a, bj:a, b, E <el(~ (<CP1 X <CP1/ru)/J) 

Now consider the map 'Y: S 1 - <CP2/J given by 

'Y(t) = {b1(t), 'Y2(t)l, {-y1(t), -Y2(t)ll. 

By a codimension argument, we may assume that 'Yi(t), 'Y2(t) "Foo Vt E S 1. 
Consider then the homotopy, for s E [0, 1], given by 

r,(t) = lls'Yi(t), S'Y2(t))ls-y1(t), S,Y2(t)ll 

where I'1 = 'Y and I'o =constant.Exhibiting such a homotopy suffices to show 
that Y is simply-connected. □ 

t 

Example (2.5). This is an example of an n-circuit pair (M, Mi) where M1 is 
not locally flat in M but nevertheless (2.8) applies. 

Let n1, • • • , nm be integers ~ l. Consider the complex hypersurfaces 
p- 1(0) C cm defined by the weighted homogeneous polynomialp(z 1, • • • , Zn)= 
z1n, + • • • + Zmnm. Then following' [9], we see that V = V(ni, • • • , nm) = p- 1(0) 
has the origin as its unique singularity. Furthermore, V intersects each sphere 
S(r) 2m-l = {(21, • • •, Zm) E rcm:Li=l I zd 2 = r2l transversally. To see this, 
assume that (z1, • • • , Zn) E Vis a point different from the origin and consider 
the map T:~+ - cm defined by T(t) = (t"1z1, t" 2z2, • • • , t"mzm) where a;= ITj#i 

ni. 
Then T (t) lies in V for all t > 0. The function t - 11 T (t) II 2 is strictly 

increasing since (d/dt) II T(t) 112 > 0. 
Hence V meets s 2m-1(r) transversally. Let \J = V n n2m = I (21, • • • , Zm) E 

V:Li=1 I zd 2 ~ lj. 
Then it follows from [9] that Vis homeomorphic to the cone ?&'Vi (n1, • • . , 

nm) where Vi(n 1, •••,nm) is the Brieskorn manifold V1(n1, •••,nm)= V n 
s2m-1_ 

In fact, the pair (?&'S2m-1(l), ?&'V(n1, • • • , nm)) is homeomorphic to the pair 
(D2m, V). Consider now the map 1ro: \JC cm - D2m-2 C rr:,m-l given by 

1ro(Z1, • • • , Zm) = (22, • • • , Zm). 

Then 1r0 is a branched covering of degree n1, with ramification locus 

w = l(z2, ... 'Zm) E rr:,m-1:z2n2 + ... Zmnm = 0, Li=2 I zd 2 ~ lj. 

Consider the double S ( V) of V obtained by taking two disjoint copies 
y+ = \JX{Ol, v- = Vx{ll of V, by identifying (x, 0) with (x, 1), for all 
x E Vi(n 1, • • • , nm). Then by a standard construction [10], we can provide 
S ( W), with a differentiable structure in the complement of the two points 
that correspond to the origin (i.e. (0, 0) (0, 1)). Consider 1r:S(V) - D 2m-2 
where 2n 2m-2 ::::: S 2m-2 is the double of D2m-2 constructed in the obvious 
fashion. This describes S ( V) as a branched covering of order m over the sphere 
s 2m-2 with ramification locus the double of W, S(W). We see that Wis a 
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topological manifold if and only if Vi (n1 , • • • , nm) is a homotopy sphere 
(which may, in many cases, be exotic). 

If we consider the particular case V1 (5, 3, 2, 2, 2). Then we obtain a map 
1r:S8 - S8 which is a 5-fold PL-branched covering for some PL-triangulation 
of S 8 . 

The ramification locus of such a covering is a PL triangulated 6-sphere 
embedded in S 8 in a knotted fashion (since its complement is a manifold that 
fibres over S 1 with fibre a bouquet of eight 4-spheres). 

To exemplify the fact that the degree of the map and the topological type 
of the branch set N 1 does not in fact impose topological conditions on N, we 
consider the following interesting observation. Let 1r:<CP2 - N be a topological 
branched covering of degree k ~ 0, where N is a simply connected combinatorial 
4-manifold and the branch set of 1r, N 1 , is a compact orientable surface 
(possibly with singularities). Then applying (2.8), we have 

(2.9) 3 = k(2 + b2 (Ni)) + (2g - 2)(k - 1) 

where b2 (N) is the second betti number of N and g here denotes the genus of 
N 1 . Now (2.9) only makes sense fork= b2(N) = 1. Thus we deduce that 1r is, 
in fact, forced to be a homeomorphism. 

We conclude with a further observation. Assume given a topological 
branched covering 1r:lHIPn - lH!Pn (quaternionic projective space of n-dimen
sions) that is actually the restriction of a map lHIH"" - lHIP"". Then following 
[4], such a map has degree k = (2p + 1)2, wherep E ?l. The formula (2.8) thus 
tells us that the branch set N1 must have x (N1) = n + 1. 
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