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APPROXIMATION AND ADAPTIVE POLICIES IN 
DISCOUNTED DYNAMIC PROGRAMMING* 

BY ONESIMO HERNANDEZ-LERMA 

1. Introduction 
In this paper we consider an iterative procedure to approximate the optimal 

reward function of infinite-horizon discounted dynamic programming prob­
lems with Polish (i.e., complete separable metric) state and action spaces. The 
procedure is then used to: (i) determine an asymptotically optimal policy, and 
(ii) determine an asymptotically optimal adaptive policy for decision models 
depending on unknown parameters, combined with a strongly consistent 
parameter estimation scheme. The policy obtained in (ii) is compared with the 
"principle of estimation and control" introduced by Schal [22] for the adaptive 
control of denumerable-state semi-Markov processes and extended here to 
Polish state-space Markov decision problems. 

Our motivation to consider the problems indicated above stems from our 
interest in Markov decision processes with incomplete state information 
(MDP-ISI) and depending on unknown parameters. We are thus confronted 
with a decision problem combined with state identification (sometimes called 
a filtering problem) and parameter estimation. However, it is well-known [11, 
18, 20, 21, 23] that in many cases of interest a MDP-ISI can be reduced to a 
Markov decision process (MDP) in the usual sense, but in which the state 
space, say S, of the original problem is replaced by the space S' of probability 
measures on S. Therefore, since S' turns out to be a Polish space in most of 
the usual cases (cf. cited references), it seemed natural to begin by extending 
to the case of a Polish state-space previously known results for MDP's with 
unknown parameters and denumerable (possibly finite) state space. And this 
is essentially what we do in the present paper: the nonstationary value­
iteration (NVI) scheme introduced by Federgruen and Schweitzer [2] for 
MDP's with finite state and action spaces, as well as the adaptive policies 
considered by Schal [22] and Hernandez-Lerma and Marcus [5, 9] are extended 
here to the case of Polish state and action spaces. This is a first step towards 
the solution of the MDP-ISI and unknown parameters; the main difficulty 
involved to obtain a complete solution is briefly discussed in Section 6. 

Our results are also related to approximations of dynamic programs obtained 
under quite general conditions by Langen [15] and Whitt [24]. However, by 
restricting ourselves to discounted dynamic programming models we are able 
to show (uniform) convergence of our approximation schemes with very simple 
and short proofs. 

* This research was supported in part by the Consejo Nacional de Ciencia y Tecnologia, under 
grant PCCBBNA-020630 
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We begin in Section 2 by introducing the decision models we are concerned 
with. In Section 3, the NVI scheme of Federgruen and Schweitzer [2] is 
extended to decision models with Polish state and action spaces. The NVI 
scheme is used in Section 4 to determine an asymptotically optimal (AO) 
policy, and in Section 5 is used to determine an AO policy for adaptive decision 
models, i.e., decision models depending on unknown parameters. Also in 
section 5, our results are briefly compared with the "principle of estimation 
and control" [22], extended here to MDP's with Polish state space. 

2. The Decision Model 
To avoid unnecessary repetitions we shall agree that a topological (respec­

tively, product) space is always endowed with the Borel (respectively, product) 
u-algebra. The Cartesian product of the sets A and B is denoted by AB. 

As usual [3, 10, 11, 16, •••]to state the (discounted) dynamic programming 
problem we need to specify a decision mo_del, the collection of admissible 
policies, and the objective function. This is done as follows. 

The decision model (S, A, q, r, (j) satisfies: 

(Al) (a) The state space Sis a Polish(= complete separable metric) space. 
(b) The action set A is Polish. For each x E S, the set of admissible 

actions in state x, denoted by A(x), is a nonempty measurable subset 
of A. Let K: = {(x, a): x ES, a E A(x)} be a measurable subset of 
(the product space) SA. 

(c) q(x, a, . ), for (x, a) EK, is the transition law: when the system is in 
state x and action a E A(x) is chosen, the system moves to a new 
state according to the probability distribution q(x, a, •) on S. 

(d) r:K-+ ~ is the (measurable) reward function. 
(e) 0 ::s /j < 1 is the disc011rt factor. 

I 

In addition, we shall assume the following. 

(A2) (a) There exists a constant R such that I r(x, a) I :SR for all (x, a) EK. 
Moreover for each x ES, 

(b) A(x) is compact, 
(c) a-+ r(x, a) is continuous on A(x), and 
(d) a -+ f q(x,a, dy)u(y) is continuous on A(x) for each bounded 

measurable function u: S -+ ~-

Let Xn and An be the state and action at the n-th stage, respectively, n = 0, 
1, •••.A given realization of (Xo, Ao, Xi, A1, •••)is denoted by (Xo, ao, x1 , a1 , 

... ). 
A policy d is a sequence d = (d0 , d1, • • • ), where dn(h.., •) is a conditional 

probability measure on the Borel sets of A, given the history of the process hn 
= (xo, ao, • • • , Xn-1, an-1, Xn), and it satisfies that 

n = 0, 1, •··· 

A Markov policy is a sequence (/o, /1, • • •) of functions fn E F, where Fis the 
collection of all measurable functions/: S-+ A such that f(x) E A(x) for all 



APPROXIMATION IN DISCOUNTED DYNAMIC PROGRAMMING 27 

x E S. As usual we identify F with the set of stationary policies, i.e., Markov 
policies of the form (f, f, · · · ), f E F. 

Finally, the objective function is 

(1) 

the expected total discounted reward when policy d is used and the initial 
state is x. A policy dis said to be optimal if it satisfies that v(d, x) = v*(x), x 
ES, where v* is the optimal reward function defined by 

v*(x) = supd v(d, x), XE S. (2) 

As mentioned in the Introduction, we are interested in a procedure to 
approximate v* and in determining an asymptotically optimal Markov policy; 
this is done in Sections 3 and 4, respectively. The results are then applied 
(Section 5) to decision processes depending on unknown parameters. An 
important role is played by the following well-known result (3, 4, 10, 11, 16]. 

PROPOSITION (1). Assume (Al, A2). Then (a) v* is a bounded measurable 
function and it satisfies the optimality equation 

v*(x) = SUPaEA(x) [r(x, a)+ {3 Js q(x, a, dy)v*(y)], xES. (3) 

(b) A stationary policy f E F is optimal if, and only if, it satisfies that 

v*(x) = r(x, f(x)) + {3 f q(x, f(x), dy)v*(y), x ES. 

The existence of an optimal stationary policy is insured under (Al, A2). 

Notation. B(S) denotes the space of real-valued bounded measurable func­
tions u on S with the supremum norm II u II = supx I u(x) 1-M(S) is the space 
of finite signed measures µ on S with the total variation norm II µ II (see, e.g., 
[19]). 

We shall use below the following obvious facts. For any u E B(S) and 
µ E M(S), 

If u dµ I s II u II II µ II . (4) 

If u, v E B(S), then (see, e.g., [11, Lemma 3.3]) 

I SUPx u(x) - SUPx v(x) I :S SUPx I u(x) - v(x) I. (5) 

3. Nonstationary Value-Iteration 

The nonstationary value-iteration (NVI) scheme introduced by Federgruen 
and Schweitzer [2, Theor. 3.l(a)] for finite state and action spaces is extended 
in Theorem 1 below to the decision model (S, A, q, r, {3) described in Section 
2. 

Consider a sequence of decision models (S, A, Qn, rn, {3), n = 0, 1, • • • , each 
of which satisfies Assumptions (Al) and (A2), and such that they "converge" 
to (S, A, q, r, {3) in the following sense. 
(A3) As n - oo, 

(a) 17(n): = SUP(x,a)EK I rn(X, a) - r(x, a) I - 0, 
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(b) 1r(n): = SUP(x,a)EK II qn(X, a, ·) - q(x, a, ·) II - 0, 

where II 'II denotes the total variation norm. 

Note that (A3) is equivalent to: 
(A3'). As n - oo, 

ii(n): = SUPm2cn 17(m)-o and ir(n): = SUPm2cn 1r(m)-o. 

Also note that both sequences ii(n) and ir(n), n = 0, l, ... , are non­
increasing. 

Now let Vn( • ), n = 0, l, • • • , be the functions in B(S) defined by 

Vo(x): = SUPaEA(x)ro(x, a), 

and for n = l, 2, • • • , 

XE s, 

xES. (6) 

Note that, for all n, Vn and the optimal reward function v* in (2) are bounded: 

II v* II :S C1 and II Vn II :S R Lk=O (3k :S Ci, (7) 

where c1 = R/(1 - (3). 

THEOREM (1). If (Al, A2, A3) hold, then II Vn - v* II - 0. More precisely, (a) 
II Vn - v* II :S c • maxlii([n/2]), ir([n/2]), 13[nl21j, n ~ 0, where c = (l + (3c1)/ 
(1 - /3) + 2c1 = (1 + (3c1 + 2R)/(1 - /3), and [r] denotes largest integer :Sr. 
Moreover, if the sequences 17(n) and 1r(n) in (A3) are themselves non-increasing, 
then ii and ir in (a) can be substituted by 11 and 1r, respectively, to obtain: 

(b) II Vn - v* II :Sc · maxl11([n/2]), 1r([n/2]), 13[n/21j. 

Proof. The proof is essentially the same as that of Theorem 3.1 (a) in [2], 
but is included here for completeness. First note that, by (7), we can apply (5) 
to the functions Vn+I and v* (with v* as in (3)). That is, for any x in S, 

I Vn+1(X) - v*(x) I :S SUPaEA(x) I rn+1(X, a) - r(x, a) 

+ (3 f qn+i(x, a, dy)vn(Y) - (3 f q(l-, a, dy)v*(y) I, 
Now inside the absolute value on the right-hand side, add and subtract the 
term (3 f qn+1(x, a, dy)v*(y), and then use the triangle inequality, the inequality 
(4), and take the supremum over all x ES, to obtain 

llvn+1 - v*II :S 11(n + 1) + /3llv*ll1r(n + 1) + /3llvn - v*II, 
Therefore, for all m = l, 2, • • • , 

II Vn+m - v* II :S rr~l (3k[11(n + m - k) 
(8) 

+ f3c11r(n + m - k)] + (3m II Un - v* 11-
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Now, since II Vn - v* II :S 2c1 and ij(n) 2:: 11(n + k) and i(n) 2:: 1r(n + k) for 
all k, it follows from (8) that 

II Vn+m - v* II $ [ij(n) + /3c1i(n)]/(l - /3) + 2c1/3m (8') 

$ c · max{ij(n), i(n), fjm). 

Then, making the substitution k = n + m with n = [k/2] and m = k - [k/2] 
2:: [k/2], inequality (8') reduces to 

II Vk - v* II :S c • max{ij([k/2]), i([k/2]), /3[k/ 2lj, 

which proves (a). Finally, to obtain (b) just note that if 11(n) and 1r(n) are non­
increasing, then (8') holds when ij and i are substituted by 11 and 1r, respec­
tively. □ 

Several interesting applications of the NVI scheme are mentioned by Fed­
ergruen and Schweitzer in [2, Section l]. Here we will use it to obtain 
asymptotically optimal policies (Section 4 below) and to obtain adaptive 
policies for decision processes depending on unknown parameters. A similar 
approach has been used in [6] to obtain finite-state approximations for 
denumerable MDP's. 

4. Asymptotically Optimal Policies 

Consider the function ¢ : K .- ~ defined by 

</)(x, a) = r(x, a) + /3 f q(x, a, dy)v*(y) - v*(x). (9) 

This function has been widely used [3, 4, 5, 17] as a measure of the "difference" 
between an optimal action in state x and any other action a E A(x). For 
instance, in terms of ¢, Proposition 1 can be restated as follows. 

PROPOSITION (1'). Assume (Al, A2). (a) Optimality equation: SUPxEA(x)¢(x, 

a)= 0. 
(b) Optimality criterion. A stationary policy f is optimal if, and only if, 

</)(x, f(x)) = 0 for all x ES. 

Here we use¢ to define asymptotic optimality. 

Definition l. A Markov policy lfnl, i.e., a sequence of functions fn E F, is 
asymptotically optimal (AO) if, for each x ES, </)(x, fn(x)) .- 0 as n .- oo. 

Comment. Asymptotic optimality is related to the following concept due to 
Schfil [22]. A policy d is asymptotically optimal in the sense of Schfil if, for 
every x ES, 

(10) 

where 
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is the expected total reward from stage N onwards discounted at stage N. This 
concept of asymptotic optimality can be related to that in Definition 1 by the 
fact that [22, Theor. 4.12] (see also [5, 9]) the left-hand side of (10) can be 
written as 

VN(d, x) - E/v*(XN) = E/[L::'=N rr-N<J,(Xn, An)]. 

Thus a sufficient condition for (10) is the following: <I> is a bounded function 
and </>(Xn, An) - 0 P/-almost surely as n - oo. D 

We now use the NVI scheme (6) to define an AO policy. First note that 
under Assumptions (Al) and (A2), for each n = 0, 1, • • • , there is a measurable 
function fn:S-A such that fn(x) E A(x), and 

Vo(x) = ro(x,fo(x)), x ES (11) 

Vn(X) = rn(X,fn(X)) + fJ f Qn(X,fn(X), ,dy)Vn-i(Y), XE S. 

This follows from standard measurable selection theorems; see, e.g., [3, 10, 
16]. Thus lfnl is a Markov policy and we also have the following. 

THEOREM (2). Under the assumptions of Theorem 1, lfnl is AO. Further­
more, the asymptotic optimality is uniform in the sense that 

II <I> lln: = SUPxes I <J>(x, fn(x)) I - 0 as n - oo, 

Proof. From (9) and (11), 

<J>(x,fn(x)) = </>(X,fn(X)) + Vn(X) - Vn(X) 

= r(x,fn(x)) - rn(X,fn(x)) + fJ f q(x,fn(x), dy)v*(y) 

- fJ f Qn(X,fn(x), dy)Vn-i(Y) + Vn(X) - v*(x). 

On the right-hand side, add and substract the term 

fJ f Qn(X, fn(x), dy)v*(y); 

then a simple calculation (which uses (4)) shows that 

II <I> lln :S 11(n) + fJ II v* II 1r(n) + fJ II Vn-1 - v* II + II Vn - v* II, 
from which the desired result is immediately concluded. □ 

5. Adaptive Policies 

A Markov decision process, say (S, A, q(O), r(O), fl), depending on an 
unknown parameter (J is called an adaptive MDP. (The name is sometimes 
used to include MDP's with incomplete state information, as in [11].) To solve 
these problems, the decision-maker has to identify or estimate the unknown 
parameter (J while seeking the optimal policy. Thus at each decision epoch, he 
has to estimate the parameter and "adapt" his actions to the estimated value; 
policies combining these two functions-parameter estimation and control 
actions-are called adaptive policies. An extensive survey on adaptive decision 
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problems has been given recently by Kumar [13]; additional references can be 
found in [4, 5, 7-9, 17, 22]. 

In this section we consider an adaptive MDP (S, A, q(O), r(O), /3), where the 
transition law q(x, a, 0, . ) and the reward function r(x, a, 0) depend on an 
unknown parameter 0. In contrast to Bayesian problems [13, 11], we do not 
have a priori information about the true parameter value, except that it belongs 
to a given parameter set T, which is assumed to be a Polish space. For each 
0 E T, the decision model (S, A, q(O), r(O), /3) is assumed to satisfy conditions 
(Al) and the analogue of conditions (A2), namely: 

(A20)(a) I r(x, a, 0) I s; R for all (x, a) EK, 0 E T. Moreover for each x ES 
and 0 ET, 

(b) A(x) is compact, 
(c) a - r(x, a, 0) is continuous on A(x), and 
(d) a - f q(x, a, 0, dy)u(y) is continuous on A(x), for each u E B(S). 

Under these assumptions, Proposition 1 (or l') holds for each fixed 0 E T. 
In particular, if we define (cf. (1), (2) and (9)) 

and 

v(d, X, 0): = Exd'8 [}:;;'=o {3nr(Xn, An, 0)], 

v*(x, 0): = supd v(d, x, 0), 

</J(x, a, 0): = r(x, a, 0) 

+ f3 f q(x, a, 0, dy)v*(y, 0) - v*(x, 0), (x, a) E K, 

we can rewrite Proposition 1' as follows. 

PROPOSITION (1"). For fixed 0 E T, (a) SUPaEA(xJ</J(x, a, 0) = 0; and (b) a 
stationary policy f ( •, 0) is optimal if, and only if, </>(x, f (x, 0), 0) = 0 for all 
xES. 

Note that equation (a) in Proposition 1" is equivalent to 

v*(x, 0) = SUPaEA(x)[r(x, a, 0) + /3 f q(x, a, 0, dy)v*(y, 0)], xES; 

cf. [ 4] section 1. 1. 
If 0 E Tis the true (but unknown) parameter value, we can approximate 

the optimal reward function v*( •, 0) using an appropriate version of Theorem 
1, and an asymptotically optimal policy can be obtained from Theorem 2. To 
do this, the idea (roughly) is to consider the sequences 

Qn(X, a, . ): = q(x, a, On, • ), n~O, 

where (x, a) EK and {On} is a sequence in T converging to 0. We require the 
0-analogue of assumptions A3. 

(A30) For any 0 ET and any sequence IBn) in T such that On - 0 as n - oo, 

and 71(n, 0): = SUP(x,a)EK I r(x, a, On) - r(x, a, 0) I - 0, 

1r(n, 0): = SUP(x,a)EK II q(x, a, On, ·) - q(x, a, 0, ·) II - 0. 
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The 0-analogue of (A3') holds for the non-increasing sequences 

ii(n, 0) = SUPm2:n 71(m, 0), ir(n, 0), ir(n, 0): = SUPm2:n 1r(m, 0). 

Similarly, instead of the functions Vn in (6), we now consider 

Vo(x, 0o): = SUPaEA(x)r(X, a, 0o), 

and for n = 1, 2, • • • , 

XE S, 

Vn(X, On):= SUPaEA(x)[r(x, a, On) + fJ J q(x, a, On, dy)Vn-1(Y, On-1)] (12) 

= r(x, fn(X, On), On)+ fJ J q(x, fn(X, On), On, dy)Vn-1(Y, On-1), 

where, for each x E S, fn(x, On) is a measurable maximizer of the right side of 
(12). Note that the right side of (12) depends on o<n>: = (00 , 01, • • • , On), so 
that, strictly speaking, we should write vn(x, o<n>) (respectively, fn(x, o<n>)) 
instead of Vn(x, On) (respect., fn(x, On)). However, we shall keep the latter, 
shorter, notation. Then, Theorems 1 and 2 can be summarized as follows. 

COROLLARY (1). Assume (Al, A20, A30) and let {On} be any sequence in T 
converging to 0. Then 

(a) II Vn( ·, On) - v*( ·, 0) II-+ 0 as n-+ oo, and 
(b) lfn( ·, 0n)l is asymptotically 0-optimal in the sense that 

SUPxeS I <J,(x, fn(X, On), 0) I -+ 0 as n-+ oo. 

Furthermore, (with the obvious changes in notation) the inequalities in 
Theorem 1 (a) and (b) also hold in the present case. 

To define adaptive policies we first introduce the following definition, where 
P/·8 denotes the probability measure when policy dis used, x is the initial 
state, and 0 is the true parameter value; cf. [4, 12, 22]. 

Definition 2. A sequence On = O(X0 , A 0 , • • • , Xn-I, An-1, Xn) of T-valued 
measurable functions is said to be a sequence of strongly consistent (SC) 
estimators of 0 E T if, as n-+ oo, On converges to 0 P/.8-almost surely for any 
x E S and any policy d. 

Examples of SC estimators in adaptive Markov or semi-Markov decision 
processes can be seen in [4, 7, 8, 12, 14, 17, 22]. Given a sequence of SC 
estimators, an adaptive policy is obtained as follows. 

Definition 3. Let {On} be a sequence of SC estimators of OE T. The policy 
d = (dn, n = o, 1, ... ) defined by 

dn(Xo, Ao, • • • , Xn-1, An-I, Xn) = fn(Xn, On) 

is called the NVI adaptive policy. 
Note that, since the convergence in Corollary l(b) is uniform in x, we obtain: 

COROLLARY (2). As n -+ oo, 

(13) 
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We can state (13) by saying that the NVI adaptive policy dis asymptotically 
optimal, although strictly speaking Definition 1 is not applicable here, since 
d is not a Markov policy. 

To appreciate the goodness of the NVI policy, let us briefly compare it with 
the "principle of estimation and control (PEC)" introduced by Schfil [22), and 
which we now describe. 

I. For each 0 E T, let g( •, 0) E F be an optimal stationary policy (cf. 
Proposition 1"). 

II. Let {On) be a sequence of SC estimators of 0, the true parameter value. 
III. Define a policy d' = (dn') by 

(14) 

d' is called the PEC policy. 
The PEC policy is known in adaptive control under the various names of 

"naive feedback controller", "self-tuning regulator", and others, but is very 
well described as [17) "the method of substituting the estimates into optimal 
stationary controls". The PEC policy has been widely used in decision proc­
esses with average-reward criterion [4, 7, 8, 14, 17), but to the best of our 
knowledge, Schal's paper [22) was the first application to discounted-reward 
problems (with denumerable state space). To prove that d' is asymptotically 
optimal (see Theorem 3(b) below) we need the following. 

LEMMA (1). Assume (Al, A20, A30). If 0n .- 0, then 

II v*( ·, On) - v*( ·, 0) II ._ 0. (15) 

Proof. For any x in S, we obtain from (5), 

I v*(x, On) - v*(x, 0) I :S SUPaEA(x) I r(x, a, On) - r(x, a, 0) 

+ f3 f q(x, a, 0n, dy)v*(y, On) - f3 f q(x, a, 0, dy)v*(y, 0) I, 
and therefore (using (7)), 

II v*( ·, On) - v*( ·, 0) II :S r,(n, 0) + /3C17r(n, 0) + /311 v*( ·, On) - v*( ·, 0) II, 
that is, 

(1 - /3) II v*(·, On) - v*(·, 0) II :S r,(n, 0) + {3c17r(n, 0). 0 

THEOREM (3). Under the assumptions of Lemma 1 we have: 
(a) If 0n .- 0, then 

II</>(·, g(., On), 0) II= SUPx I </>(x, g(x, On), 0) I._ 0 as n ._ oo. 

(b) The PEC policy d' is asymptotically optimal in the sense that, as n .- oo, 

I </>(Xn, g(Xn, On), 0) I .- 0 Px d', 0-almost surely for any x ES. 

Proof. Part (a) can be proved as Theorem 1. First note that (cf. Proposition 
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l" and I above) since </>(x, g(x, On), On) = 0, we can write 

</>(x, g(x, On), 8) = </>(x, g(x, On), 8) - </>(x, g(x, On), On). 

Next, using the definition of <t>(x, a, 8) to expand the right-hand side, a 
straightforward calculation shows that 

II</>(·, g( ·, On), 8) II :'.S 11(n) + /311 v*( ·, 8) 11 'll"(n) 

+ (1 + /3) II v*(·, On) - v*(·, 8) II, 

so that (a) can be concluded from (A38) and (15). Finally since (a) holds, 
uniformly in x, for any sequence On - 8, (b) holds for any sequence {Onl of SC 
estimators. D 

If follows from Corollary 2, Theorem 3 (b) and the comment following 
Definition 1, that the NVI and the PEC adaptive policies are both asymptot­
ically optimal in the sense of Schal [22]. Note also that our proof of the 
asymptotic optimality of d' (Theorem 3 (b)) is much more elementary than 
Schal's proof [22, Theorem 5.21]. This is mainly due to the fact that, instead 
of the recurrency assumption 2.5 in [22], we have introduced the "uniform 
continuity" conditions (A38). 

Finally, note that, from the point of view of applications, the main disad­
vantage of the PEC policy d' with respect to our NVI policy d is in step I 
above: d' requires to determine in advance the optimal stationary policies 
g(., 8) for all values of 8. 

6. Concluding Remarks 

As noted in the Introduction the underlying motivation for the present work 
was our interest in Markov decision processes with incomplete state infor­
mation (MDP-ISI) and depending on unknown parameters. Having trans­
formed the original MDP-ISI to a MDP with complete state information in 
which the new state space is a space of probability measures [11, 18, 20, 21, 
23] it might be thought that the adaptive policies (NVI and PEC) in Section 
5 above are applicable. However, these adaptive policies are defined in terms 
of a sequence of SC estimators which are based on complete observations of 
the state (and action) sequence(s). Thus, to apply the results in Section 5 to a 
MDP-ISI there still remains the problem of showing that a sequence of SC 
estimators, based on incomplete state observations, can be constructed. We do 
not have an answer to this problem at present, but perhaps results like those 
of Baum and Petrie [1] for finite-state non-controlled partially observed 
Markov chains might be extended to a MDP-ISI. 

Note: The results in this paper have been recently applied to the adaptive 
control of a MDP-ISI that depends on unknown parameters [25]. 
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