Boletín de la Sociedad Matemática Mexicana Vol. 30, No. 2, 1985

BILINEAR FORMS VERSUS GALOIS REPRESENTATIONS

By VICTOR SNAITH*

§1

Throughout this paper all fields will have characteristic different from two. Furthermore a bilinear form $\beta: V \times V \to K$ will mean a non-singular, symmetric bilinear form which is finite dimensional over the field, K. K^* denotes $K - \{0\}$ and K^{**} denotes the subgroup of squares. An element, $a \in K^*$, determines a bilinear form $\langle a \rangle: K \times K \to K$ defined by $\{(x, y) \to axy\}$ and depends up to isomorphism, only on $a \in K^*/K^{**}$.

If $H^{i}(K, \mathbb{Z}/2)$ denotes Galois cohomology [S] there is an isomorphism $l:K^{*}/K^{**} \xrightarrow{\cong} H^{1}(K; \mathbb{Z}/2)$ where if $g \in G(\overline{K}/K)$, the Galois group of the separable closure, \overline{K} , over K then $l(a)(g) = g(\sqrt{a})/\sqrt{a} \in \{\pm 1\}$. A form, (V, β) , has Hasse-Witt characteristic classes [D]

(1.1)
$$HW_i(V,\beta) \in H^i(K; \mathbb{Z}/2)$$

defined as the *i*-th symmetric function of $l(a_1), \dots, l(a_n)$ where $(V, \beta) \cong \langle a_1 \rangle$ $\oplus \dots \oplus \langle a_n \rangle$.

Now let us turn to orthogonal Galois representations, $\rho:G(N/K) \to O_m(K)$. Here N/K is a finite Galois extension with group G(N/K) and $O_m(K) = \{X \in GL_m(K); XX^t = I\}$. Such a representation determines a continuous 1cocycle $\rho\pi:G(\overline{K}/K) \xrightarrow{\pi} G(N/K) \xrightarrow{\rho} O_m(K) \to O_m(\overline{K})$ where π is the canonical map. This cocycle gives a class, $(\rho) \in H^1(K; O_m(\overline{K}))$, the Galois cohomology group which classifies bilinear forms of rank m over K[S; S2, pp. 152/3]. The quadratic form (ρ) can be shown to equal Fröhlich's bilinear form defined in $[F, \S2]$. This gives rise to Hasse-Witt classes, $HW_i(\rho)$. On the other hand $H^*(O(\overline{K}); \mathbb{Z}/2)$ [Su; Ka] is a polynomial ring on Stiefel-Whitney classes, w_i . Pulling back these classes gives rise to Stiefel-Whitney class of ρ ,

(1.2)
$$SW_i[\rho] = (\rho \pi)^*(w_i) \in H^i(K; \mathbb{Z}/2).$$

In addition ρ possesses a spinor class [F]

(1.3)
$$\operatorname{Sp}[\rho] \in H^2(K; \mathbb{Z}/2)$$

defined in the following manner. Let $\theta: O_m(K) \to K^*/K^{**}$ denote the spinor norm [O'M, p. 137]. Define

$$Sp[\rho] \in Hom(G(N/K), K^*/K^{**}) \cong H^1(G(N/K); \mathbb{Z}/2) \otimes H^1(K; \mathbb{Z}/2)$$

by $\operatorname{Sp}[\rho](g) = \theta(\rho(g))$ and set $\operatorname{Sp}[\rho]$ equal to the image of $\operatorname{Sp}[\rho]$ under the cupproduct.

* Research partially supported by NSERC grant #4633.

(1.4.) By way of illustration let us consider for a moment the case when K is a number field.

It is well-known that the discriminant, $HW_1(\rho)$, the Hasse-Witt invariant, $HW_2(\rho)$, the rank and the signatures at the real places of K, determine the bilinear form, (ρ) , up to isomorphism. However, for $i \ge 3$, $H^i(K; \mathbb{Z}/2)$ is the sum of copies of $\mathbb{Z}/2$, one for each real place. In addition if $(\rho) \otimes K_v \cong q \langle -1 \rangle \oplus (m-q) \langle 1 \rangle$ at a real completion K_v then the K_v -component of $HW_i(\rho)$ is $\binom{q}{i} \pmod{2}$. Hence the $\{HW_i(\rho), i \ge 1\}$ determine (ρ) up to isomorphism,

which illustrates the usefulness of (1.5) below. Incidentally, any bilinear form is represented by a representation ρ in the above manner, for any K of characteristic different from two.

The following result can be deduced from our Theorem 1.7 but we will give a direct proof.

THEOREM (1.5). If K is a number field then these classes are related as follows

$$\mathrm{HW}_{i}(\rho) = \begin{cases} \mathrm{SW}_{i}(\rho), & \text{if } i \neq 2\\ \mathrm{SW}_{2}(\rho) + \mathrm{Sp}[\rho], & \text{if } i = 2. \end{cases}$$

Proof: It is well-known (c.f. [S3]) that $HW_1(\rho) = SW_1(\rho)$ while the formula in dimension two is proved in [F, §3.1]. For dimensions $i \ge 3$ the inclusions of K into its real completions, K_v , induces an isomorphism

$$H^{i}(K_{i}Z/2) \xrightarrow{\cong} \bigoplus_{v} H^{i}(K_{v}; Z/2) \cong \bigoplus_{v} (Z/2).$$

Consequently, it will suffice to show that $HW_i(\rho) = SW_i(\rho)$ for all $i \ge 1$ when $K = \mathbb{R}$ and $G(\overline{K}/K) \cong \mathbb{Z}/2$ generated by τ (complex conjugation).

Any homomorphism from a finite 2-group into $O_{2n}(\mathbb{R})$ may be conjugated, by a result of Borel-Serre (see [Ta]) to land in the wreath product $\Sigma_n \int O_2(\mathbb{R})^n$ generated by the diagonal 2×2 blocks, $O_2(\mathbb{R})^n$, and the permutation matrices which, by conjugation, permute these blocks. Since a homomorphism, $Z/2 \rightarrow$

 Σ_n is conjugate to a homomorphism of the form $Z/2 \xrightarrow{\text{diagonal}} (Z/2)^r = (\Sigma_2)^r \subset \Sigma_{2r} \to \Sigma_n$ we may conjugate $\rho(\tau) \in O_{2n}(\mathbb{R})$ into $\Sigma_n \int O_2(\mathbb{R})$ and then by a permutation to have the form

where $A_i \in O_2(\mathbb{R})$ or $A_i = \begin{pmatrix} 0 & X \\ X^{-1} & 0 \end{pmatrix} \in \Sigma_2 \int O_2(\mathbb{R})$. In the latter case $\begin{pmatrix} 0 & X \\ I & 0 \end{pmatrix} A_i \begin{pmatrix} 0 & I \\ X^{-1} & 0 \end{pmatrix} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ which is in turn conjugate to a diagonal matrix

of (± 1) 's. Therefore, by conjugations in $O_{2n}(\mathbb{R})$ which leaves $HW_i(\rho)$ and $SW_i(\rho)$ unaltered, we may suppose ρ is the sum of representations

$$\rho_{\alpha}: Z/2 = G(\mathbb{C}/\mathbb{R}) \to O_{\epsilon}(\mathbb{R}) (\epsilon = 1 \text{ or } 2),$$
$$\rho = \bigoplus_{\alpha} \rho_{\alpha}$$

Since $HW_i(\rho' \oplus \rho'') = \sum_m HW_m(\rho')HW_{i-m}(\rho'')$, and similarly for SW_i , it suffices to show that $HW_i(\rho_\alpha) = SW_i(\rho_\alpha)$ for i = 1 and 2. As remarked earlier, this is well-known when i = 1 and from $[F, \S{3}.1]$ $HW_2(\rho_\alpha) = SW_2(\rho_\alpha) + Sp[\rho_\alpha]$, so we must show that $Sp[\rho_\alpha] = 0 \in H^2(\mathbb{R})$; Z/2, when dim $\rho_\alpha = 2$.

If det $\rho_{\alpha}(\tau) = 1$ then

$$\rho_{\alpha}(\tau) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ with } a^2 + b^2 = 1, \quad ab \neq 0$$

and $\operatorname{Sp}[\rho_{\alpha}] = 0$ since the spinor norm of $\rho_{\alpha}(\tau) = \frac{a+1}{2}$ [O'M, p. 137], which is a square in \mathbb{R} . Similarly, if det $\rho_{\alpha}(\tau) = -1$ then

$$\rho_{\alpha}(\tau) = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \quad \text{with} \quad a^2 + b^2 = 1, \qquad ab \neq 0$$

so that the spinor norm of $\rho_{\alpha}(\tau)$ is the same (since 2 is a square in \mathbb{R}) as that of

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} = \begin{pmatrix} b & -a \\ a & b \end{pmatrix}$$

which is $\left(\frac{b+1}{2}\right)$ by [O'M, p. 137] which is again a square in \mathbb{R} .

1.6.

Write $HW = 1 + HW_1 + HW_2 + \cdots$ and $SW = 1 + SW_1 + SW_2 + \cdots$ for the total Hasse-Witt and Stiefel-Whitney classes, respectively. In many cases ρ , as an element of the Grothendieck group of orthogonal K-representations, is the formal sum of representations induced up from one- and two-dimensional representations (see, for example [S4; *De*; *Ta*]). This justifies interest in the following formula, which generalizes those of [S2; *F*, §3.1; *K*]. Let $Ind_{E/K}(\rho)$ denote the representation of G(N/K) induced from ρ on G(N/E).

Inside the special orthogonal group, $SO_2(K)$, let C_n denote the cyclic group of order *n*. The matrix $\tau = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in O_2(K)$ acts on $x \in C_n$ by the formula $\tau x \tau = x^{-1}$ and we have the wreath product $Z/2 \ltimes C_n \subset O_2(K)$. This is the dihedral group of order 2n.

We say that $\rho: G \to O_{\epsilon}(K)$ ($\epsilon = 1 \text{ or } 2$) is special dihedral if either $\epsilon = 1$ or if $\epsilon = 2$ and im (ρ) $\subset \mathbb{Z}/2 \ltimes C_n$.

THEOREM (1.7). Let $N \supset E \supset K$ be a chain of finite extensions of fields in

which N/K is Galois and char $(K) \neq 2$. Let $\rho: G(N/E) \rightarrow O_{\epsilon}(K)$ be a special dihedral representation of dimension $\epsilon = 1$ or 2.

Then, in $H^*(K; \mathbb{Z}/2)$,

$$HW(Ind_{E/K}(\rho)) = \{SW[Ind_{E/K}(\rho)]\}(1 + Sp[Ind_{E/K}(\rho)]).$$

1.8.

Remarks.

(i) If $\operatorname{Tr}_{E/K}$ denotes the Galois cohomology transfer then

(1.9)
$$\operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)] = \operatorname{Tr}_{E/K}(\operatorname{Sp}[\rho]) + (\operatorname{rank} \rho)l(2)d_{E/K}$$

where $d_{E/K} \in H^1(K; \mathbb{Z}/2)$ is the discriminant of E/K. This formula is derived in $[F, \S4, \text{Theorem 6(ii)}]$. Also if rank $(\rho) = 1$, then $0 = \text{Sp}[\rho]$.

(ii) The representation $\operatorname{Ind}_{E/K}(\rho)$ represents the bilinear form which is the Scharlau transfer of the form represented by ρ .

(iii) By the induction theorems of [De; S4; Ta] Theorem 1.7 is sufficient to determine $HW(\rho)$ for any $\rho: G(N/K) \to O_m(\mathbb{R})$, where $K \supset \mathbb{R}$, the real field, in terms of $SW(\rho)$ and suitable spinor classes.

(iv) In fact, the proof of Theorem 1.7 actually yields the following stronger form.

THEOREM. If ρ is a virtual, orthogonal representation of G(N/K) of the form $\rho = \sum_{i} n_i \rho_i$ with $\rho_i = \text{Ind}_{E_i/K}(\rho_i')$ and ρ_i' is a 1- or 2-dimensional special dihedral representation, as in Theorem 1.7, then

$$HW(\rho) = SW[\rho](1 + Sp[\rho]) \in H^*(K_i Z/2).$$

1.10.

In [S3] Serre discovered the first formulae of the type of §1.7 when dim $\rho = 1$ in dimensions less than or equal to three. Fröhlich generalized the two dimensional formula to arbitrary representations in [F] and in [K] B. Kahn found the formula in arbitrary dimensions when dim $\rho = 1$. I am very grateful to these authors for their correspondence and their preprints. I am particularly grateful to Bruno Kahn for providing me with the counterexample given in §5 and for numerous other helpful comments.

I will prove Theorem 1.7 by means of Koslowski's transfer [Kos] when E/K is Galois and $[E:K] = 2^{j}$. This is done in §3. The general case is deduced in §4 using a double coset formula argument.

§2. The Spinor class of a 2-dimensional representation

Through this section N/K will be a finite Galois extension for which G(N/K) is a 2-group. Let $\rho:G(N/K) \to O_2(K)$ be an orthogonal representation. If $\tau = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ then $O_2(K) \cong Z/2 \ltimes SO_2K$ where

$$SO_2(K) = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; a^2 + b^2 = 1 \right\}$$

and τ generates Z/2. Suppose that $\operatorname{im}(\rho) \subseteq Z/2 \ltimes C_{2^j}$ where $C_{2^j} \subset SO_2(K)$ is the cyclic group of order 2^j .

We have homomorphisms $(i = 1, 2) x_i: Z/2 \ltimes C_{2^j} \to Z/2$ given by composing the *i*-th projection with the canonical map

$$1 \ltimes r: Z/2 \ltimes C_{2^j} \to Z/2 \ltimes C_2 \cong Z/2 \times C_2.$$

Since

$$H^1(\mathbb{Z}/2 \ltimes C_{2^j}; \mathbb{Z}/2) \cong \operatorname{Hom}(\mathbb{Z}/2 \ltimes C_{2^j}; \mathbb{Z}/2)$$

we have

(2.1)
$$H^{1}(Z/2 \ltimes C_{2^{j}}; Z/2) \cong \begin{cases} Z/2 \oplus Z/2 \langle x_{1}, x_{2} \rangle & \text{if } j \geq 1 \\ Z/2 \langle x_{1} \rangle & \text{if } j = 0. \end{cases}$$

Suppose that $\operatorname{im}(\rho) \cap SO_2(K) = C_{2^j}$ with $j \ge 2$ with generator $g_j = \begin{pmatrix} \alpha_j & \beta_j \\ -\beta_j & \alpha_j \end{pmatrix}$ then, since $\theta(\tau^{\epsilon}g^{\nu}) = 2^{\epsilon} \left(\frac{1+\alpha_j}{2}\right)^{\nu} [O'M, p. 137]$ we see that

(2.2)
$$\operatorname{Sp}[\rho] = \begin{cases} (x_1 + x_2)l(2) + x_2l(1 + \alpha_j) & \text{if } j \ge 2, \\ x_1l(2) & \text{if } j = 1 & \text{or } j = 0. \end{cases}$$

The equation $b^2 + (1 + a)^2 = 2(1 + a)$, if $a^2 + b^2 = 1$, shows that $l(2)l(-1) = 0 = l(\alpha_j + 1)l(-1)$ so that

(2.3)
$$l(-1)\operatorname{Sp}[\rho] = 0$$
 in $H^{3}(K; \mathbb{Z}/2)$.

LEMMA (2.4). For $\rho: G(N/K) \rightarrow O_2(K)$ as in §2.1

$$HW(\rho) = SW[\rho](1 + Sp[\rho]) \text{ in } H^*(K; Z/2).$$

Proof. It is well-known that $HW_1(\rho) = SW_1[\rho]$ and by $[F; \S3.1] HW_2(\rho) = SW_2[\rho] + Sp[\rho]$. Since $Sp[\rho]$ and $HW_2(\rho)$ are sums of products of one dimensional classes and $l(Z)^2 = l(Z)l(-1)$, $0 = Sq^1(HW_2(\rho)) = Sq^1SW_2[\rho] = SW_1[\rho]SW_2[\rho]$ by the *Wu* formulae. Also, $Sq^1(HW_2(\rho)) = HW_1(\rho)HW_2(\rho)$ so the formula $HW_2(\rho) = SW_2[\rho] + Sp[\rho]$ implies that $0 = SW_1[\rho]Sp[\rho]$. It remains to show that $Sp[\rho]HW_2[\rho] = 0$.

There exist $a, b \in K^*$ so that

(2.5)
$$\begin{cases} \mathrm{SW}_1[\rho] = l(a) + l(b) \text{ and} \\ l(a)l(b) = \mathrm{HW}_2(\rho). \end{cases}$$

Since $SW_1[\rho]Sp[\rho] = 0$ we may multiply by l(a) to obtain

$$0 = Sp[\rho]l(a)l(b) + Sp[\rho]l(a)l(-1) = Sp[\rho]HW_2(\rho)$$

by (2.3).

§3. Koslowski's transfer and the spinor class

3.1.

Let X be a topological space, in applications it will be the classifying space of a finite Galois group.

Let G(X) denote $\prod_{i\geq 1} H^i(X; Z/2)$ considered as the subset of $\prod_{i\geq 0} H^i(X; Z/2)$ of elements having one as their zero component. G(X) is made into a group by means of the cup-product. We will use only connected spaces, X, in which case, following [Kos], we set

$$\hat{G}(X) = Z \times G(X)$$

with product given by (m, a)(n, b) = (m + n, ab).

If $\pi: X \to Y$ is a double covering of connected spaces there is a transfer [Kos, §2]

(3.3)
$$\hat{N}_{X/Y}:\hat{G}(X) \to \hat{G}(Y)$$

which is a homomorphism, natural for double covers and satisfying for each vector bundle, $V \rightarrow X$,

(3.4)
$$\hat{N}_{X/Y}(\dim V, SW(V) = (2 \dim V, SW(Ind_{X/Y}(V))),$$

where SW is the total Stiefel-Whitney class and $\operatorname{Ind}_{X/Y}(V)$ is the induced bundle, whose fibre at $y \in Y$ is $V_{x_1} \oplus V_{x_2}$ if $\{x_1, x_2\} = \pi^{-1}(y)$.

3.5.

In this section we will study the following problem. Suppose that $K = K_n \subset K_{n-1} \subset \cdots$, $\subset K_0 = E$ is a chain of quadratic extensions and that $\rho: G(N/E) \to O_2(K)$ is, as in §2.1, a special Galois representation of a 2-group, G(N/E). We will establish the following formula. Write $\hat{N}_{E/K}$ for $\hat{N}_{K_{n-1}K} \cdot \hat{N}_{K_{n-2}/K_{n-1}} \cdot \cdots \hat{N}_{E/K_1}$.

LEMMA (3.6). In the situation of \$3.5

$$\hat{N}_{E/K}(0, 1 + \operatorname{Sp}[\rho]) = (0, 1 + \operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)]),$$

in $\hat{G}(K)$, the Galois cohomology analogue of $\hat{G}(X)$.

3.7.

For finite groups $i:A \subset D$ of index two $\hat{N}_{BA/BD}$ is defined as the composite of the pretransfer of [K - P], ϕ^* , with a map \hat{D} as follows

$$\hat{N}_{BA/BD}:\hat{G}(BA) \xrightarrow{\hat{D}} \hat{G}(B(\Sigma_2 \ltimes (A^2)) \xrightarrow{\phi^*} \hat{G}(BD).$$

From [Kos, §2.2/2.4], if $0 \neq w \in H^1(B\Sigma_2; \mathbb{Z}/2)$ and if dim(x) = 2,

(3.8)
$$\hat{D}(0, 1 + x) = (0, 1 + \operatorname{Tr}(1 \otimes x) + P(x)(1 + w)^{-2})$$

where $\operatorname{Tr}: H^*(BA; \mathbb{Z}/2) \to H^*(BD; \mathbb{Z}/2)$ is the transfer and $P: H^i(BA; \mathbb{Z}/2) \to H^{2i}(B(\Sigma_2 \ltimes (A)^2); \mathbb{Z}/2)$ is the power map used to define Steenrod operations [S - E]. P satisfies (see $[K, \operatorname{Prop} I.2.5(d)]$)

(3.9)
$$\begin{cases} P(u+v) = P(u) + P(v) + \operatorname{Tr}(u \otimes v) \\ \phi^*(P(u))(z^2 + zd) = \phi^* P(ui^*(z)) \end{cases}$$

 $u, v \in H^*(BA; \mathbb{Z}/2), z \in H^1(BD; \mathbb{Z}/2)$, where d is the image of $o \neq w \in H^1(B\Sigma_n; \mathbb{Z}/2)$ in $H^1(BD; \mathbb{Z}/2)$.

3.10.

Proof of §3.6. We will use the formulae of (2.2) for $\text{Sp}[\rho]$. However, firstly we observe that if $j \ge 3$ then $\sqrt{2} \in K$ so that l(2) = 0 while if j = 2, $\alpha_2 = 0$ and $l(1 + \alpha_j) = 0$. Hence we will suppose, by induction on the length of the chain of quadratic extensions, that we have shown

(3.11)
$$N_{E/K_m}(0, 1 + \operatorname{Sp}[\rho]) = (0, 1 + \operatorname{Sp}[\operatorname{Ind}_{E/K_m}(\rho)])$$

and that

(3.12)
$$\operatorname{Sp}[\operatorname{Ind}_{E/K_m}(\rho)] = \begin{cases} Z_2 l(1 + \alpha_j) & \text{if } j \ge 3\\ (Z_1 + Z_2) l(2) & \text{if } j = 2\\ Z_1 l(2) & \text{if } j = 0, 1 \end{cases}$$

for some $Z_1, Z_2 \in H^1(K_m; \mathbb{Z}/2)$. Therefore by the second equation in (3.9)

$$\phi^* P(\operatorname{Sp}[\operatorname{Ind}_{E/K_m}(\rho)]) = \begin{cases} \phi^* P(Z_2)(l(1+\alpha_j)^2 + l(1+\alpha_j)d) & \text{if } j \ge 3\\ \phi^* P(Z_1 + Z_2)(l(2)^2 + l(2)d) & \text{if } j \ge 2\\ \phi^* P(Z_1)(l(2)^2 + l(2)d) & \text{if } j = 0, 1 \end{cases}$$

where d is the discriminant of K_m/K_{m-1} . However these expressions are zero since $\phi^*P(Z)d = 0$ by [K, Prop II.1.4] and the squares $l(1, \alpha_j)^2$ and $l(2)^2$ are zero, as remarked in §2. Hence, by (3.8) and (3.11)

$$N_{E/K_{m+1}}(0, 1 + \operatorname{Sp}[\rho]) = (0, 1 + \operatorname{Tr}_{K_m/K_{m+1}}(\operatorname{Sp}[\operatorname{Ind}_{E/K_m}(\rho)]))$$
$$= (0, 1 + \operatorname{Sp}[\operatorname{Ind}_{E/K_m}(\rho)]),$$

by (1.9) as dim(Ind_{E/K_m}(ρ)) is even. This completes the induction step.

We are now prepared to prove Theorem 1.7 in the special circumstances of §3.5.

PROPOSITION (3.13). Let $N \supset E = K_0 \supset K_1 \supset \cdots \supset K_n = K$ be a chain of extensions as in §3.5 and let $\rho: G(N/E) \rightarrow O_{\epsilon}(K)$, $\epsilon = 1$ or 2, be a special dihedral Galois representation, as in §2.1. Then

$$HW(Ind_{E/K}(\rho)) = SW[Ind_{E/K}(\rho)]\{1 + Sp[Ind_{E/K}(\rho)]\} \text{ in } H^*(K; \mathbb{Z}/2).$$

3.14.

Remark. When dim $\rho = 1$ we easily find, from (1.9), that $\operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)] = l(2)d_{E/K}$ where $d_{E/K} \in H^1(K; \mathbb{Z}/2)$.

3.15.

Proof of 3.13. If n = 0 there is nothing to prove and if n = 1, $\epsilon = 1$ the formula follows from (1.9) and §2.4 applied to $\operatorname{Ind}_{E/K_1}(\rho)$. Hence we may assume $\epsilon = 2$. In this case

$$\tilde{N}_{E/K}(2, \text{HW}(\rho)) = (2^{n+1}, \text{HW}(\text{Ind}_{E/K}(\rho))),$$

7

by (Sn, \$3.9(ii)]. On the other hand, by \$2.4,

$$N_{E/K}(2, \text{HW}(\rho)) = N_{E/K}((2, \text{SW}[\rho])(0, 1 + \text{Sp}[\rho]))$$
$$= (2^{n+1}, \text{SW}[\text{Ind}_{E/K}(\rho)](0, 1 + \text{Sp}[\text{Ind}_{E/K}(\rho)])$$

by (3.4) and §3.6. Equating second coordinates of these two expressions yields the required formula.

§4

4.1.

Let $N \supset E \supset K$ be a chain of field extensions as in the statement of Theorem 1.7. Let $\rho:G(N/E) \rightarrow O_{\epsilon}(K)$ ($\epsilon = 1$ or 2) be an orthogonal representation. Since, when proving Theorem 1.7, we will be calculating in $H^*(K; \mathbb{Z}/2)$ we may assume that the Galois extension, N/E, contains all over-fields of E that appear in the course of the argument to follow.

Following [K, §3], for example, the finite, separable extension E/K sits inside a finite Galois extension L/K and we denote by S a Sylow 2-subgroup of G(L/K). Set $F = L^S$ then

(4.2)
$$F \otimes_K E \cong \bigoplus_{i=1}^t E_i$$

$$(4.3) [F:K] is odd$$

and for each $i = 1, \dots, t$ there exists a chain of quadratic extensions

$$(4.4) F_i = F_{i,0} \supset F_{i,1} \supset F_{i,2} \supset \cdots \supset F_{i,n_i} = F.$$

In addition the double coset formula for the transfer yields

(4.5)
$$\operatorname{res}_{F/K}(\operatorname{Ind}_{E/K}(\rho)) = \sum_{i=1}^{t} \operatorname{Ind}_{E_i/F}(\operatorname{res}_{E_i/E}(\rho))$$

where 'res' denotes the restriction, for example $\operatorname{res}_{F/K}$ is induced by $G(N/F) \hookrightarrow G(N/K)$.

4.6.

Proof of Theorem 1.7. From (4.3) $H^*(K; \mathbb{Z}/2) \to H^*(F; \mathbb{Z}/2)$ is injective so that it suffices to evaluate $\operatorname{res}_{F/K}^* HW(\operatorname{Ind}_{E/K}(\rho)) = \prod_{i=1}^t HW(\operatorname{Ind}_{E_i/F}(\operatorname{res}_{E_i/E}(\rho)))$, by (4.5). By §3.13, this equals

(4.7)
$$\begin{cases} \prod_{i=1}^{t} \mathrm{SW}(\mathrm{Ind}_{E_i/F}(\mathrm{res}_{E_i/E}(\rho))) \prod_{i=1}^{t} (1 + \mathrm{Sp}[\mathrm{Ind}_{E_i/F}(\mathrm{res}_{E_i/E}(\rho))]) \\ = \mathrm{res}_{F/K}^*(\mathrm{SW}[\mathrm{Ind}_{E/K}(\rho)]) \prod_{i=1}^{t} (1 + \mathrm{Sp}[\mathrm{Ind}_{E_i/F}(\mathrm{res}_{E_i/E}(\rho))]). \end{cases}$$

Since Sp[-] is additive and natural

$$\sum_{i=1}^{t} \operatorname{Sp}[\operatorname{Ind}_{E_i/F}(\operatorname{res}_{E_i/E}(\rho))] = \operatorname{res}_{F/K}^* \operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)], \quad \text{by (4.5)}.$$

It remains to show that the products

(4.8)
$$\operatorname{Sp}[\operatorname{Ind}_{E_i/F}(\operatorname{res}_{E_i/E}(\rho))]\operatorname{Sp}[\operatorname{Ind}_{E_i/F}(\operatorname{res}_{E_i/E}(\rho))]$$

all vanish when one expands out (4.7). However this is easy, by means of (3.12). Suppose that $\rho G(N/E_i) = Z/2 \ltimes C_2 j_i$, where we interpret $j_i = -1$ as the case of trivial image. Let $j = \max_i(j_i)$. Since $(1 + \alpha_s) = 2\alpha_{s+1}^2$ and $\alpha_j \in K$ this

means that $l(1 + \alpha_s) = l(2)$ if s < j and if $j \ge 3$ then l(2) = 0. Hence if $j \ge 3$ the only non-zero terms in the products (4.8) involve $l(1 + \alpha_j)^2 = l(-1)l(1 + \alpha_j) = 0$ while if j = 0, 1, 2 or -1 these terms all have a factor $l(2)^2 = 0$.

Therefore (4.7) equals

$$\operatorname{res}_{F/K}^{*}(\operatorname{SW}[\operatorname{Ind}_{E/K}(\rho)](1 + \operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)]))$$

as required.

§5. A counterexample

The example which follows is due to Bruno Kahn.

Let \mathbb{Q} denote the rationals and let $E = \mathbb{Q}(x_1, x_2, x_3)$. The cyclic group, Z/3, acts on E by permuting the x_i cyclically and we set $K = E^{Z/3}$, the fixed field of this action. Let $L = E((x_1 - 1)^{1/2}, (x_1)^{1/2}, (t)^{1/2})$, where $t = (1 + (x_1)^{-1/2})(x_1^{-1})$.

LEMMA (5.1). L/E is Galois with group, G(L/E), isomorphic to the dihedral group of order eight.

Proof. Define subfields as follows

$$L_1 = E((x_1 - 1)^{1/2}), L_2 = L_1((x_1)^{1/2}), L_3 = E((x_1)^{1/2})$$
 and $L_4 = L_3((t)^{1/2}).$

Hence we have the following picture

(5.2)

In (5.2) L/L_1 is cyclic of order four. This is because

(5.3)
$$N_{L_2/L_1}(t) = (1 + (x_1)^{-1/2})x_1^{-1}(1 - (x_1)^{-1/2})x_1^{-1}$$
$$= (x_1 - 1)x_1^{-3} \in d(L_1^*)^2$$

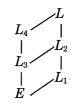
where $x_1 = d = \text{disc}(L_2/L_1)$, so that $N_{L/L_1}((t)^{1/2})$ is not a square. The generator of $G(L_2/L_3)$ fixes t so that the generator of $G(L_1/E)$ leaves L globally invariant, which proves L/E is Galois.

Let $\tau \in G(L/L_4)$ and $\sigma \in G(L/L_1)$ be generators so that $\tau^2 = 1 = \sigma^4$. From (5.3) one finds that $\tau \sigma \tau = \sigma^3$, by checking directly on $(x_1 - 1)^{1/2}$ and $(t)^{1/2}$.

5.4.

Now define a (non-special) dihedral representation

(5.5)
$$\rho:G(L/E) \to O_2(\mathbb{Q})$$
by $\rho(\tau) = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \quad \rho(\sigma) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
where $a^2 + b^2 = 1, ab \neq 0$.



Since the spinor norms of $\rho(\tau)$ and $\rho(\sigma)$ are respectively 2(a + 1) and 2 (modulo squares) we have, in $H^2(E; \mathbb{Z}/2)$,

(5.6)
$$\operatorname{Sp}[\rho] = l(2(a+1))l(x_1-1) + l(2)l(x_1).$$

Set $\Lambda(\rho) = HW(\rho)/SW(\rho)$ then we will show that

(5.7)
$$\wedge (\operatorname{Ind}_{E/K}(\rho)) \neq 1 + \operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)]$$

for ρ , E, K as above. For suppose (5.7) were not true then we would have

(5.8) $\operatorname{Res}_{E/K}(\Lambda(\operatorname{Ind}_{E/K}(\rho)) = 1 + \operatorname{Res}(\operatorname{Sp}[\operatorname{Ind}_{E/K}(\rho)])$ in $H^*(E_i \mathbb{Z}/2)$.

However, by the proof of Lemma 2.4, $\Lambda(\rho) = I + \operatorname{Sp}[\rho]$ and if $g \in G(E/K) \cong Z/3$ is a generator (5.8) implies

(5.9)
$$\prod_{j=0}^{2} (1 + (g^{j})^{*}(\operatorname{Sp}([\rho])) = 1 + \sum_{j=0}^{2} (g^{j})^{*}(\operatorname{Sp}[\rho]).$$

To show that (5.9) fails, it suffices to show that the four dimensional component of the left side

$$(5.10) c = l(2(a+1))l(2) \sum_{1 \le i \ne j \le 3} l(x_1-1)l(x_j) \in H^4(E; \mathbb{Z}/2)$$

can be non-zero.

Let $F = \mathbb{Q}(x_2, x_3)$ which is the residue field of the principal ideal ring $A = \mathbb{Q}(x_2, x_3)[x_1]$ at $P = \langle x_1 \rangle$. Hence, we have coboundary maps (from the localisation sequence for A and P).

$$\partial: H^i(E; \mathbb{Z}/2) \to H^{i-1}(F; \mathbb{Z}/2)$$

such that

$$\partial(c) = l(2(a+1))l(2)\partial(\sum_{1 \le i \ne j \le 3} l(x_i - 1)l(x_j)).$$

However, ∂ is a derivation which satisfies $\partial(l(z)) = 0$ if $z \in A$ is prime to x_1 , and $\partial(l(x_1)) = 0$ so that

$$\partial(c) = l(2(a+1))l(2)(l(x_2-1) + l(x_3-1)) \in H^3(F; \mathbb{Z}/2).$$

Repeating this process with $A = \mathbb{Q}(x_3)[x_2]$ and $P = \langle x_2 - 1 \rangle$ we obtain

$$\partial': H^i(F; \mathbb{Z}/2) \to H^{i-1}(\mathbb{Q}(x_3); \mathbb{Z}/2)$$

such that

$$\partial' \partial(c) = l(2(a+1))l(2) \in H^2(\mathbb{Q}(x_3); \mathbb{Z}/2).$$

However, l(2(a + 1))l(2) is in the image of the injection $H^2(\mathbb{Q}; \mathbb{Z}/2) \to H^2(\mathbb{Q}(x_3); \mathbb{Z}/2)$ so that $\partial' \partial(c) = 0$ if and only if

$$l(2(a + 1)l(2) = 0 \in H^2(\mathbb{Q}; \mathbb{Z}/2))$$

This in turn is true if and only if there exists $u, v, w \in \mathbb{Q}$ such that

$$2(a+1)u^2 + 2v^2 = w^2.$$

In particular, if a = 3/5, b = 4/5 then $2(a + 1) = 5 \in \mathbb{Q}^*/\mathbb{Q}^{**}$ but $5u^2 + 2v^2 = w^2$ is impossible (with $u, v, w \in Z$) since 2 is not a square mod 5.

§6. Characteristic classes and $RO_K(G)$

Let G be a finite group and let K be a field of characteristic different from two. Following $[Q, \S5]$ one may define the Grothendieck group of orthogonal K-representations of G, $RO_K(G)$. We will recall the definition in §6.1 below.

Henceforth, let N/K be a finite Galois extension and let G(N/K) be its Galois group. In §§1-5 we studied various characteristic classes—Hasse-Witt invariants, the spinor class, Stiefel-Whitney classes—of orthogonal Galois representations. However, these classes do not factor through $RO_K(G(N/K))$. For example, if G(N/K) is a 2-group and K is a number field, then $RO_Q(G(N/K))$ is generated by permutation representations [Seg, p. 379 et seq.] so that if the spinor class extended to a map

$$\operatorname{Sp}: RO_{\mathbb{Q}}(G(N/K)) \to H^2(K; \mathbb{Z}/2)$$

we would have $\text{Sp}[\rho] = l(2)\text{SW}_1[\rho]$, since this is true for a permutation representation. However, such a formula contradicts the example given in §5. For this reason it seems appropriate to record here the manner in which these characteristic classes transform under the equivalence relations which define $RO_K(G)$.

6.1.

 $RO_K(G)$ is defined as a quotient of the free abelian group on the isomorphism classes of finite dimensional, orthogonal representations (ρ, V, b) . Here $b: V \times V \to K$ is a non-singular, symmetric bilinear form and $\rho: G \to O(V, b)$ is a homomorphism to the orthogonal group of b. The relations imposed are of three types.

a) Scaling

If $\alpha \in K^*$ and $(\alpha b)(x, y) = \alpha b(x, y)$ then $O(V, b) = O(V, \alpha b)$ and we set

 $(\rho, V, b) \sim (\rho, V, \alpha b).$

b) Sum

If (ρ, V, b) is the orthogonal sum of (ρ', V', b') and (ρ'', V'', b'') we set

$$(\rho, V, b) \sim (\rho', V', b') + (\rho'', V'', b'').$$

c) *Hyperbolic*

Let (ρ, V, b) be an orthogonal representation. Suppose that $W \subset \{v \in V \mid b(v, W) = 0\} = W^0$ and that W (and hence W^0) is a *G*-invariant subspace. Define forms

$$b_1:(W^0/W)^2 \to K$$

and

$$b_2: (W \oplus V/W^0)^2 \to K$$

by

$$b_1(v + W, v' + W) = b(v, v')$$
$$b_2(w \oplus (v + W^0), w' \oplus (v' + W^0)) = b(w, v') + b(w', v).$$

Also ρ induces $\rho_1: G \to O(W^0/W, b_1)$ and $\rho_2: G \to O(W + (V/W^0), b_2)$. With these conventions set

$$(\rho, V, b) \sim (\rho_1, W^0/W, b_1) + (\rho_2, W \oplus (V/W^0), b_2).$$

6.2.

The orthogonal representation $\rho: G(N/K) \to O(V, b)$ of §6.1, considered as a 1-cocycle in $H^1(K; O(V \oplus_K \overline{K}), b \otimes_K \overline{K})$, corresponds to the symmetric bilinear form of $[F, \S 2]$ which we will also denote by (ρ, V, b) , as more briefly by (ρ) . Hence, as in §1, (ρ, V, b) has Hasse-Witt classes, $HW_i(\rho)$, while the representation

$$(6.3) \qquad [\rho]: G(\overline{K}/K) \to G(N/K) \to O(V, b) \to O(V \otimes_K \overline{K}, b \otimes_K \overline{K})$$

has Stiefel-Whitney classes, $SW_i[\rho]$. Also (ρ, V, b) has a spinor class corresponding to

$$\operatorname{Sp}[\rho]: G(\overline{K}/K) \to G(N/K) \to O(V, b) \xrightarrow{\theta} K^*/K^{**}$$

where θ is the spinor norm. From [F, §3] or [SN, §2.10] we have the following result.

THEOREM (6.4). Let $(\rho) = (\rho, V, b)$ as above and let $[\rho]$ be as in (6.3). Then

(i)
$$SW_1[\rho] + HW_1(b) = HW_1(\rho) \text{ in } H^1(K; \mathbb{Z}/2)$$

and

(ii)
$$HW_2(\rho) + HW_2(b) = Sp[\rho] + SW_2[\rho] + HW_1(b)SW_1[\rho] in H^2(K; Z/2).$$

Scaling b to αb changes (ρ, V, b) to $\alpha(\rho, V, b)$, as one sees from Fröhlich's explicit description of the bilinear form (ρ, V, b) [F, §2.Sn]. This leaves $[\rho]$ unchanged but changes the spinor norm of $\rho(g)$ (only when deg $\rho(g) = -1$) by a factor, $\alpha[O'M, p. 138]$. These facts have the following easy consequences.

PROPOSITION (6.5). Let $\alpha \in K^*$ and set $(\rho) = (\rho, V, b)$ and $(\rho_{\alpha}) = (\rho, V, \alpha b)$, as above. Then

a)
$$SW_i[\rho] = SW_i[\rho_{\alpha}].$$

b)
$$\operatorname{HW}_1(\alpha b) + \operatorname{HW}_1(b) = \operatorname{rank}(b)l(\alpha) = \operatorname{HW}_1(\rho) + \operatorname{HW}_1(\rho_\alpha).$$

c)
$$\operatorname{Sp}[\rho_{\alpha}] = \operatorname{Sp}[\rho] + l(\alpha) \operatorname{SW}_{1}[\rho].$$

d) $HW_2(\alpha b) + HW_2(b) + (rank(b) - 1)l(\alpha)HW_1(b) = HW_2(\rho_{\alpha}) + HW_2(\rho) + (rank(b) - 1)l(\alpha)HW_1(\rho) = \frac{1}{2}rank(b)(rank(b) - 1)l(\alpha)^2.$

The following behaviour of SW_i and HW_i under orthogonal direct sum is

12

well-known. Additivity of the spinor class is clear from the definition and [O'M, p. 139].

PROPOSITION (6.6). Let $(\rho) = (\rho, V, b)$ and $(\rho') = (\rho', V', b')$ be orthogonal representations and set $(\rho'') = (\rho') \oplus (\rho')$, the orthogonal sum of (ρ) and (ρ') . Then

- (a) $HW_1(\rho) + HW_1(\rho') = HW_1(\rho'')$.
- (b) $SW_1[\rho] + SW_1[\rho'] = SW_1[\rho''].$
- (c) $\operatorname{Sp}[\rho] + \operatorname{Sp}[\rho'] = \operatorname{Sp}[\rho''].$
- (d) $HW_2(\rho) + HW_2(\rho') + HW_1(\rho)HW_1(\rho') = HW_2(\rho'').$
- (e) $SW_2[\rho] + SW_2[\rho'] + SW_1[\rho]SW_1[\rho'] = SW_2[\rho''].$

6.7. Now let us sketch the effect of the hyperbolic relation, §6.1(c). By [M-H, p. 13, §6.3] and the argument of [M-H, p. 56, §1.1] V has a basis $v_1, v_2, \dots, v_a, v_{a+1}, \dots, v_{a+t}, \dots, v_{2a+t}$ with respect to which the matrix of b is

$$\beta = \begin{pmatrix} 0 & 0 & I_a \\ 0 & \wedge & 0 \\ I_a & 0 & 0 \end{pmatrix}$$

and $\langle v_1, \dots, v_a \rangle = W$, $\langle v_1, \dots, v_{a+t} \rangle = W^0$. The matrix of $\rho(g)$ $(g \in G(N/K))$ has the form $(X^T = \text{transpose of } X)$

(6.8)
$$\rho(G) = \begin{pmatrix} A(g) & D(g) & E(g) \\ 0 & B(g) & F(g) \\ 0 & 0 & (A(g)^T)^{-1} \end{pmatrix}$$

where A(-) and B(-) are homomorphisms. In addition, $B(g) \in O(K^t, \Lambda)$,

(6.9)
$$\begin{cases} 0 = E(g)A(g)^{T} + A(g)E(g)^{T} + D(g) \wedge D(g)^{T} \\ F(g) = ((A(g)^{T})^{-1})B(g) \wedge D(g)^{T} \end{cases}$$

Hence, in §6.1(c), $(\rho_1 \oplus \rho_2)$ is given in matrix form by

$$(\rho_1 \oplus \rho_2) = \left(\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & (A^T)^{-1} \end{pmatrix}, \qquad K^{2a+t}, \begin{pmatrix} 0 & 0 & I_a \\ 0 & \wedge & 0 \\ I_a & 0 & 0 \end{pmatrix} \right)$$

That is, $(\rho_1 + \rho_2)$ is represented by replacing D, E and F in (6.8) by zero. We have $\pi: \operatorname{Im}(\rho) \to O(K^t, \Lambda) \times O(K^{2a}, \begin{pmatrix} 0 & I_a \\ I_a & 0 \end{pmatrix}$ given by $\pi(\rho(g)) = (B(g), \begin{pmatrix} A(g) & 0 \\ 0 & A(g)^T \end{pmatrix}^{-1}$. The kernel of π has a decomposition series with two-

divisible quotients. Hence, all 2-primary cohomology characteristic classes of ρ depend only on the homomorphisms A and B. This shows the following result.

PROPOSITION (6.10). Let (ρ) , (ρ_1) and (ρ_2) denote the orthogonal representations of §6.1(c) when G = G(N/K). Then each of the characteristic classes SW_i, HW_i and Sp take the same value on (ρ) as on $(\rho_1 \oplus p_2)$.

THE UNIVERSITY OF WESTERN ONTARIO London, Ontario N6A 5B7 Canada

References

- [D] M. A. DELZANT, Définition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2, C. R. Acad. Sci Paris, 255 (1962), 1366–1368.
- [De] P. DELIGNE, Les constantes locales de l'équation fonctionelle de la fonction L d'Artin d'une représentation orthogonale, Inventiones Math., **35** (1976), 299–316.
- [F] A. FRÖHLICH, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J.F. Reine. ang. Math., 360 (1985), 85-123.
- [K] B. KAHN, Classes de Stiefel-Whitney de formes quadratiques et de représentations Galois réelles, Inventiones Math., 78/79 (1984).
- [Ka] M. KAROUBI, Homology of the infinite orthogonal and symplectic groups over algebraically closed fields, Inventiones Math., 73 (1983), 247–250.
- [Kos] A. KOSLOWSKI, The Evens-Kahn formula for the total Stiefel-Whitney class, Proc. Amer. Math. Soc. (2) 91 (1984), 309–313.
- [K-P] D. S. KAHN & S. B. PRIDDY, Applications of the transfer to stable homotopy, Bull. Amer. Math. Soc., 78 (1972), 981–987.
- [O'M] O. T. O'MEARA, Introduction to quadratic forms, Grund Math. Wiss. #117, Springer-Verlag.
- [M-H] J. MILNOR & D. HUSMOLLER, Symmetric bilinear forms, Ergeb. Math. #73, Springer-Verlag.
- [Q] D. G. QUILLEN, The Adams Conjecture, Topology 10 (1971), 67-80.
- [Seg] G. B. SEGAL, Permutation representations of finite p-groups, Oxford Q. J. Math. (2) 23 (1972), 375–381.
- [S] J. P. SERRE, Cohomologie Galoisienne, Lecture Notes in Mathematics. #5, Springer-Verlag.
- [S2] ——, Local fields, Grad. Texts in Mathematics, #67, Springer-Verlag.
- [S3] , L'invariant de Witt de la forme $Tr(x^2)$, Comment. Math. Helvet., 59 (1984), 651–676.
- [S4] ——, Conducteurs d'Artin de caractères réels, Inventiones Math., 14 (1971), 173–183.
- [S-E] N. E. STEENROD (written by D. B. A. EPSTEIN), Cohomology operations, Annals of Math. Studies, **#50** (1962).
- [Sn] V. P. SNAITH, The equivalent second Stiefel-Whitney class, the characteristic classes of symmetric bilinear forms and orthogonal Galois representations; Contemp. Math. A. M. Soc. 55, Part 1 (1983), 617–634.
- [Su] A. A. SUSLIN, On the K-theory of algebraically closed fields, Inventiones Math., 73 (1983), 243-249.
- [Ta] J. T. TATE (prepared in collaboration with C. J. Bushnell and M. Taylor), Local Constants; Algebraic Number Fields (ed. A. Fröhlich), Academic Press, (1977).

14