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BILINEAR FORMS VERSUS GALOIS REPRESENTATIONS 

BY VICTOR SNAITH* 

§1 

Throughout this paper all fields will have characteristic different from two. 
Furthermore a bilinear form fJ: V X V - K will mean a non-singular, symmetric 
bilinear form which is finite dimensional over the field, K. K* denotes K - {Ol 
and K** denotes the subgroup of squares. An element, a E K*, determines a 
bilinear form (a):K X K - K defined by {(x, y) - axyj and depends up to 
isomorphism, only on a E K* /K**. 

If Hi(K, Z/2) denotes Galois cohomology [S] there is an isomorphism 

l:K*/K** ~ H 1(K; Z/2) where if g E G(K/K), the Galois group of the 
separable closure, K, over K then l(a)(g) = g( ✓a)/✓a E {±lj. A form, (V, {J), 
has Hasse-Witt characteristic classes [D] 

(1.1) 

defined as the i-th symmetric function of l(a 1), • • •, l(an) where (V, fJ) ~ (a 1) 

EB • • • EB (an). 
Now let us turn to orthogonal Galois representations, p:G(N/K) - Om(K). 

Here N/K is a finite Galois extension with group G(N/K) and Om(K) = 
{XE GLm(K); XXt = JI. Such a representation determines a continuous 1-

cocycle p1r:G(K/K) 4 G(N/K) ~ Om(K) - Om(K) where 1r is the canonical 
map. This cocycle gives a class, (p) E H 1(K; Om(K)), the Galois cohomology 
group which classifies bilinear forms of rank mover K [S; S2, pp. 152/3]. The 
quadratic form (p) can be shown to equal Fri:ihlich's bilinear form defined in 
[F, §2]. This gives rise to Hasse-Witt classes, HWi(p). On the other hand 
H*(O(K); Z/2) [Su; Ka] is a polynomial ring on Stiefel-Whitney classes, wi. 

Pulling back these classes gives rise to Stiefel-Whitney class of p, 

(1.2) 

In addition p possesses a spinor class [F] 

(1.3) Sp[p] E H 2(K; Z/2) 

defined in the following manner. Let 0:Om(K) - K*/K** denote the spinor 
norm [O' M, p. 137]. Define 

Sp[p] E Hom(G(N/K), K*/K**) ~ H 1(G(N/K); Z/2) ® H 1(K; Z/2) 
A A 

by Sp[p](g) = 0(p(g)) and set Sp[p] equal to the image of Sp[p] under the cup-
product. 
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(1.4.) By way of illustration let us consider for a moment the case when K 
is a number field. 

It is well-known that the discriminant, HW1(p), the Hasse-Witt invariant, 
HWip), the rank and the signatures at the real places of K, determine the 
bilinear form, (p), up to isomorphism. However, for i ~ 3, Hi(K; Z/2) is the 
sum of copies of Z /2, one for each real place. In addition if (p) ® Kv ~ q (-1) 
EB (m - q) (1) at a real completion Kv then the Ku-component of HW;(p) is 

(~) (mod 2). Hence the IHW;(p), i ~ ll determine (p) up to isomorphism, 

which illustrates the usefulness of (1.5) below. Incidentally, any bilinear form 
is represented by a representation p in the above manner, for any K of 
characteristic different from two. 

The following result can be deduced from our Theorem 1. 7 but we will give 
a direct proof. 

THEOREM (1.5). If K is a number field then these classes are related as follows 

HW·( ) = { SW;(p), if i ¥- 2 
' P SW2(p) + Sp[p], if i = 2. 

Proof: It is well-known (c.f. [S3]) that HW 1(p) = SW1(p) while the formula 
in dimension two is proved in [F, §3.1]. For dimensions i ~ 3 the inclusions of 
K into its real completions, Kv, induces an isomorphism 

Hi(K;Z/2) ~ EBv Hi(Kv; Z/2) ~ EBv (Z/2). 

Consequently, it will suffice to show that HW;(p) = SW;(p) for all i ~ 1 when 
K = IR and G(K./K) e::f Z/2 generated by r (complex conjugation). 

Any homomorphism from a finite 2-group into 02n(IR) may be conjugated, 
by a result of Borel-Serre (see [Ta]) to land in the wreath product 2":n f 0 2(1R) n 
generated by the diagonal 2 X 2 blocks, Oi!R) n, and the permutation matrices 
which, by conjugation, permute these blocks. Since a homomorphism, Z/2 -

2":n is conjugate to a homomorphism of the form Z/2 diagonal (Z/2)' = (};2)' 
C };2, - 2":n we may conjugate p(r) E 02n(IR) into 2":n f 02(IR) and then by a 
permutation to have the form 

p(r) = 

where A; E Oi!R) or A; = (}-i !) E };2 f 02(IR). In the latter case 

(~ !)A{x0_1 i) = (~ i) which is in turn conjugate to a diagonal matrix 
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of (±l)'s. Therefore, by conjugations in O2n(~) which leaves HW;(p) and 
SW;(p) unaltered, we may suppose pis the sum of representations 

Pa:Z/2 = G(C/~) - O,(~)(E = 1 or 2), 

P = $a Pa 

Since HW;(p' EB p") = Lm HWm(p')HW;-m(p"), and similarly for SWi, it 
suffices to show that HWi(Pa) = SWi(Pa) for i = 1 and 2. As remarked earlier, 
this is well-known when i = 1 and from [F, §3.1)] HW2(p"') = SWz(p"') + Sp[pa], 
so we must show that Sp[pa] = 0 E H 2(~); Z/2), when dim Pa= 2. 

If det Pa(T) = 1 then 

P,h) = (-~ !) with a2 + b2 = 1, ab -:;e 0 

and Sp[pa] = 0 since the spinor norm of Pa(T) =a; 1 [0' M, p. 137], which is 

a square in~- Similarly, if det Pa(T) = -1 then 

Pa(T) = (~ _:) with a2 + b2 = 1, ab -:;e 0 

so that the spinor norm of Pa( T) is the same (since 2 is a square in ~) as that 
of 

(~ ~)(~ -!) = (! -~) 
which is e; l) by [O' M, p. 137] which is again a square in~-

1.6. 
Write HW = 1 + HW1 + HW2 +···and SW= 1 + SW1 + SW2 +···for 

the total Hasse-Witt and Stiefel-Whitney classes, respectively. In many cases 
p, as an element of the Grothendieck group of orthogonal K-representations, 
is the formal sum of representations induced up from one- and two-dimensional 
representations (see, for example [S4; De; Ta]). This justifies interest in the 
following formula, which generalizes those of [S2; F, §3.1; K]. Let IndE/K(p) 
denote the representation of G(N /K) induced from p on G(N /E). 

Inside the special orthogonal group, SOz(K), let Cn denote the cyclic group 

. of order n. The matrix T = (~ ~) E O2(K) acts on x E Cn by the formula 

TXT = x- 1 and we have the wreath product Z/2 ~ Cn C O2(K). This is the 
dihedral group of order 2n. 

We say that p:G- O.(K) (E = 1 or 2) is special dihedral if either 1: = 1 or if 
E = 2 and im (p) C Z/2 ~ Cn. 

THEOREM (1. 7). Let N ::J E ::J K be a chain of finite extensions of fields in 
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which N/K is Galois and char (K) "'F' 2. Let p:G(N/E) - O,(K) be a special 
dihedral representation of dimension E = 1 or 2. 

Then, in H*(K; Z/2), 

HW(IndE;K(p)) = ISW[lndE;K(p)]l(l + Sp[IndE;K(p)]). 

1.8. 
Remarks. 
(i) If TrE/K denotes the Galois cohomology transfer then 

(1.9) Sp[lndE;K(p)] == TrE;K(Sp[p]) + (rank p)l(2)dE/K 

where dE/K E H1(K; Z/2) is the discriminant of E/K. This formula is detived 
in [F, §4, Theorem 6(ii)]. Also ifrank(p) = 1, then 0 = Sp[p]. 

(ii) The representation IndE;K(P) represents the bilinear form which is the 
Scharlau transfer of the form represented by p. 

(iii) By the induction theorems of [De; S4; Ta] Theorem 1.7 is sufficient to 
determine HW(p) for any p:G(N/K) - Om(IR), where K :J IR, the real field, in 
terms of SW (p) and suitable spin or classes. , 

(iv) In fact, the proof of Theorem 1.7 actually yields the following stronger 
form. 

THEOREM. If p is a virtual, orthogonal representation of G(N /K) of the form 
p = L n;p; with p; = IndE;1K(p/) and p/ is a 1- or 2-dimensional special dihedral 
representation, as in Theorem 1. 7, then 

HW(p) = SW[p](l + Sp[p]) E H*(KZ/2). 

1.10. 
In [S3] Serre discovered the first formulae of the type of §1.7 when dim 

p = 1 in dimensions less than or equal to three. Frohlich generalized the two 
dimensional formula to arbitrary representations in [F] and in [K] B. Kahn 
found the formula in arbitrary dimensions when dim p = 1. I am very grateful 
to these authors for their correspondence and their preprints. I am particularly 
grateful to Bruno Kahn for providing me with the counterexample given in §5 
and for numerous other helpful comments. 

I will prove Theorem 1.7 by means of Koslowski's transfer [Kos] when E/K 
is Galois and [E:K] = 2j. This is done in §3. The general case is deduced in 
§4 using a double coset formula argument. 

§2. The Spinor class of a 2-dimensional representation 

Through this section N/K will be a finite Galois extension for which 
G(N/K) is a 2-group. Let p:G(N/K) - O2(K) be an orthogonal representa-

tion. If r = (~ ~) then O2 (K) ~ Z/2 ~ S0 2K where 

SOiK) = {(-~ ~} a2 + b2 = 1} 
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and T generates Z/2. Suppose that im(p) ~ Z/2 t>< C2i where C2i C S0 2 (K) is 
the cyclic group of order 2j. 

We have homomorphisms (i = 1, 2) x;:Z/2 t>< C2 i-. Z/2 given by composing 
the i-th projection with the canonical map 

1 t>< r:Z/2 ~ C2i-. Z/2 ~ C2 ~ Z/2 x C2. 

Since 

we have 

(2.1) 

Suppose that im(p) n S0 2(K) = C2 i with j ~ 2 with generator 

( a· {J_·) (1 + IXj)" gj = -{J~ : then, since O(T'g") = 2' - 2- [O' M, p. 137] we see that 

(2.2) S [ ] = {(x1 + X2)l(2) + x2 l(l + a) if j ~ 2, 
P P X1l(2) if j = l or j = 0. 

The equation b2 + (1 + a)2 = 2(1 + a), if a 2 + b2 = 1, shows that [(2)[(-1) 
== 0 = l(aj + l)l(-1) so that 

(2.3) l(-l)Sp[p] = 0 in H 3(K; Z/2). 

LEMMA (2.4). For p:G(N/K)-. Oz(K) as in §2.l 

HW(p) = SW[p](l + Sp[p]) in H*(K; Z/2). 

Proof. It is well-known that HW 1(p) = SW1[p] and by [F; §3.1] HW2(p) = 
SW2[p] + Sp[p]. Since Sp[p] and HW2(p) are sums of products of one 
dimensional classes and l(Z) 2 = l(Z)l(-1), 0 = Sq 1(HW2(p)) = Sq1SW2[p] = 
SW1[p]SW2[p] by the Wu formulae. Also, Sq1(HW2(p)) = HW1(p)HWz(p) so 
the formula HW 2(p) = SW2 [p] + Sp[p] implies that O = SW1[p]Sp[p]. It 
remains to show that Sp[p]HW2[P] = 0. 

There exist a, b E K * so that 

(2_5) {SW 1[p] = l(a) + l(b) 
l(a)l(b) = HW2(p). 

and 

Since SW 1[p]Sp[p] = 0 we may multiply by l(a) to obtain 

O = Sp[p]l(a)l(b) + Sp[p]l(a)l(-1) = Sp[p]HWz(p) 

by (2.3). 

§3. Koslowski's transfer and the spinor class 

3.1. 
Let X be a topological space, in applications it will be the classifying space 

of a finite Galois group. 
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Let G(X) denote ff;;e: 1 Hi(X; Z/2) considered as the subset of Il;;e:o H;(X; 
Z/2) of elements having one as their zero component. G(X) is made into a 
group by means of the cup-product. We will use only connected spaces, X, in 
which case, following [Kos], we set 

(3.2) G(X) = z X G(X) 

with product given by (m, a)(n, b) = (m + n, ab). 
If 1r:X - Y is a double covering of connected spaces there is a transfer 

[Kos, §2] 

(3.3) Nx;y:G(X) - G(Y) 

which is a homomorphism, natural for double covers and satisfying for each 
vector bundle, V - X, 

(3.4) Nx;y(dim V, SW(V) = (2 dim V, SW(Indx;y(V))), 

where SW is the total Stiefel-Whitney class and Indx;y(V) is the induced 
bundle, whose fibre at y E Y is Vx1 EB V x. if lx1, x2} = 1r-1(y). 

3.5. 
In this section we will study the following problem. Suppose that K = Kn C 

Kn-i C • • •, C K 0 =Eis a chain of quadratic extensions and that p:G(N/E) 
- 0 2(K) is, as in §2.1, a special Galois representation of a 2-group, G(N/E). 
We will establish the following formula. Write N E/K for N K._ 1K· N K~_sfKn-i • 
NE/K1• 

LEMMA (3.6). In the situation of §3.5 

NE;K(O, 1 + Sp[p]) = (O, 1 + Sp[IndE;K(p)]), 

in G(K), the Galois cohomology analogue of G(X). 

3.7. 
For finite groups i:A CD of index two NBA/ED is defined as the compos­

ite of the pretransfer of [K - P], </>*, with a map D as follows 

A A fJ A 2 </>* A 

NBA/BD:G(BA) -- G(B(~2 ~ (A )) ~ G(BD). 

From [Kos, §2.2/2.4], if O ¥- w E H 1(B~ 2 ; Z/2) and if dim(x) = 2, 

(3.8) .D(O, 1 + x) = (O, 1 + Tr(l ® x) + P(x)(l + w)- 2) 

where Tr:H*(BA; Z/2) - H*(BD; Z/2) is the transfer and P:H;(BA; Z/2) -

H 2;(B(~ 2 ~ (A)2); Z/2) is the power map used to define Steenrod operations 
[S - E]. P satisfies (see [K, Prop I.2.5(d)]) 

(3.9) { P(u + v) = P(u) + P(v) + Tr(u ® v) 
<f>*(P(u))(z2 + zd) = <J>*P(ui*(z)) 
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u, v E H*(BA; Z/2), z E H 1(BD; Z/2), where d is the image of o ¥: w E 
H 1(B~n; Z/2) in H 1(BD; Z/2). 

3.10. 
Proof of §3.6. We will use the formulae of (2.2) for Sp[p]. However, firstly 

we observe that ifj ~ 3 then ✓2 EK so that 1(2) = 0 while if j = 2, a 2 = 0 and 
l(l + aj) = 0. Hence we will suppose, by induction on the length of the chain 
of quadratic extensions, that we have shown 

(3.11) JVE/KJO, 1 + Sp[p]) = {O, 1 + Sp[JndE/Km{p)]) 

and that 

{
Z2l(l + aj) if j ~ 3 

(3.12) Sp[JndE/Km{p)] = (Z1 + Z2)l{2) if j = 2 
Z1l(2) if j = 0, 1 

for some Z1, Z2 E H 1(Km; Z/2). Therefore by the second equation in (3.9) 

{
</>*P(Z2)(l(l + aj) 2 + l(l + aj)d) if j ~ 3 

</>*P{Sp[IndE/KJp)]) = <1>*P(Z1 + Z2)(l(2)2 + l(2)d) if j ~ 2 
</>*P(Z1)(l(2) 2 + l(2)d) if j = 0, 1 

where dis the discriminant of Km/Km-l• However these expressions are zero 
since <t>*P(Z)d = 0 by [K, Prop II.1.4] and the squares l(l, aj)2 and [(2)2 are 
zero, as remarked in §2. Hence, by (3.8) and (3.11) 

NE/Km+JO, 1 + Sp[p]) = (O, 1 + TrKmfKm+l (Sp[JndE/Km(p)])) 

= (0, 1 + Sp[JndE/Km+l (p)]), 

by (1.9) as dim(IndE;KJp)) is even. This completes the induction step. 

We are now prepared to prove Theorem 1. 7 in the special circumstances of 
§3.5. 

PROPOSITION (3.13). Let N :J E = Ko :J K1 :J • • • :J Kn = K be a chain of 
extensions as in §3.5 and let p:G(N/E)-O,(K), e = 1 or 2, be a special dihedral 
Galois representation, as in §2.1. Then 

HW(IndE 1K(p)) = SW[IndE/K(p)]{l + Sp[IndE/K(p)]} in H*(K; Z/2). 

3.14. 
Remark. When dim p = 1 we easily find, from (1.9), that Sp[IndE/K(p)] = 

l(2)dE/K where dE/K E H 1(K; Z/2). 

3.15. 
Proof of 3.13. If n = 0 there is nothing to prove and if n = 1, e = 1 the 

formula follows from (1.9) and §2.4 applied to IndE/K1 (p). Hence we may 
assume e = 2. In this case 
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by (Sn, §3.9(ii)]. On the other hand, by §2.4, 

NE;K(2, HW(p)) = NE;K((2, SW[p])(0, 1 + Sp[p])) 

= (2n+1, SW[lndE;K(p)](0, 1 + Sp[lndE;K(p)]) 

by (3.4) and §3.6. Equating second coordinates of these two expressions yields 
the required formula. 

§4 

4.1. 
Let N ::J E ::J K be a chain of field extensions as in the statement of Theorem 

1.7. Let p:G(N/E) - 0,(K) (t = 1 or 2) be an orthogonal representation. 
Since, when proving Theorem 1.7, we will be calculating in H*(K; Z/2) we 
may assume that the Galois extension, N/E, contains all over-fields of,E that 
appear in the course of the argument to follow. 

Following [K, §3), for example, the finite, separable extension E/K sits 
inside a finite Galois extension L/K and we denote by Sa Sylow 2-subgroup 
of G(L/K). Set F = L 8 then 

(4.2) F ®KE~ EBi=1 Ei 

(4.3) [F:K] is odd 

and for each i = 1, • • •, t there exists a chain of quadratic extensions 

(4.4) Fi = Fi,O ::) Fi,1 ::) Fi,2 ::) • • • ::) Fi,n, = F. 

In addition the double coset formula for the transfer yields 

(4.5) resF;K(lndE;K(p)) = Li=1 IndE;1F(resE;1E(p)) 

where 'res' denotes the restriction, for example resF/K is induced by G(N/F) 
~ G(N /K ). 

4.6. 
Proof of Theorem 1.7. From (4.3) H*(K; Z/2) - H*(F; Z/2) is injective so 

that it suffices to evaluate resF;K*HW(IndE;K(p)) = IU=i HW(IndE;/F 
(resE;JE(p))), by (4.5). By §3.13, this equals 

(4_7) {[IU=1 SW(lndE;1F(resE;1E(p)))] llf=1 (1 + Sp[lndE;1F(resE;1E(p))]) 
= resF;K*(SW[lndE;K(p)]) rn=l (1 + Sp[lndE;JF(reSE;JE(p))]). 

Since Sp [-] is additive and natural 

Li=1 Sp[lndE;1F(resE;1E(P))] = resF;K*Sp[lndE;K(p)], by (4.5). 

It remains to show that the products 

(4.8) 

all vanish when one expands out (4.7). However this is easy, by means of 
(3.12). Suppose that pG(N /E;) = Z/2 I>< C2ji, where we interpret ji = -1 as the 
case of trivial image. Let j = maxi(j;). Since (1 + a,) = 2a.+12 and aj E K this 
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means that l(l + a.) = l(2) ifs < j and if j 2:: 3 then l(2) = 0. Hence if j 2:: 3 
the only non-zero terms in the products (4.8) involve l(l + aj)2 = l(-l)l(l + 
aj) == 0 while if j = 0, 1, 2 or -1 these terms all have a factor l (2)2 = 0. 

Therefore ( 4. 7) equals 

resF;K*(SW[IndE;K(p)](l + Sp[IndE;K(p)])) 

as required. 

§5. A counterexample 

The example which follows is due to Bruno Kahn. 
Let Q denote the rationals and let E = Q(x1, x2, x3). The cyclic group, Z/3, 

acts on E by permuting the x; cyclically and we set K = Ezf 3, the fixed field 
of this action. Let L = E((x 1 - 1)112, (x 1) 112, (t) 112), where t = (1 + 
(x1)-1f2)(x1-1 ). 

LEMMA (5.1). L/E is Galois with group, G(L/E), isomorphic to the dihedral 
group of order eight. 

Proof. Define subfields as follows 

L1 = E((x1 - 1)112), £ 2 = L1((x 1) 112), £ 3 = E((x 1) 112) and £4 = L3((t) 112). 

Hence we have the following picture 
L 

£4/1 

I /£2 
~~ ~/ I 

i; /£1, 

In (5.2) L/L 1 is cyclic of order four. This is because 

(5.3) NL 2 /L/t) = (1 + (x1)- 112)x1- 1(1 - (x 1)- 112)x 1- 1 

= (xi - l)xi- 3 E d(L 1 *)2 

where x 1 = d = disc(L2/L 1), so that NL/L, ((t) 112) is not a square. The generator 
of G(L2/L 3) fixes t so that the generator of G(Li/E) leaves L globally invariant, 
which proves L/E is Galois. 

Let r E G(L/£
4

) and <r E G(L/£
1

) be generators so that r 2 = 1 = <r4

. From 
(5.3) one finds that rnr = <r3, by checking directly on (x 1 - 1) 112 and (t) 112. 

5.4. 
Now define a (non-special) dihedral representation 

p:G(L/E)--,,. 02(0) 

(5.5) by p(r) = (~ -!} 
where a 2 + b2 = 1, ab ¥- 0. 
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Since the spinor norms of p(r) and p(u) are respectively 2(a + 1) and 2 (modulo 
squares) we have, in H 2(E; Z/2), 

(5.6) Sp[p] = l(2(a + l))l(x1 - 1) + l(2)l(x1). 

Set A(p) = HW(p)/SW(p) then we will show that 

(5.7) A(IndE;K(p)) ¥- 1 + Sp[IndE;K(p)] 

for p, E, K as above. For suppose (5.7) were not true then we would have 

(5.8) ResE;K(A(IndE;K(p)) = 1 + Res(Sp[IndE;K(p)]) in H*(EjZ/2). 

However, by the proof of Lemma 2.4, A(p) =I+ Sp[p] and if g E G(E/K) ~ 
Z/3 is a generator (5.8) implies 

(5.9) IU=o (1 + (gj)*(Sp([p])) = 1 + Lj=o (gj)*(Sp[p]). 

To show that (5.9) fails, it suffices to show that the four dimensional 
component of the left side 

(5.10) c = l(2(a + 1))[(2) L1:,;;i,.<j:,;;a l(x1 - l)l(xj) E H 4(E; Z/2) 

can be non-zero. 
Let F = Q(x 2 , x3) which is the residue field of the principal ideal ring A= 

O(x2 , x3)[xi] at P = (x1). Hence, we have coboundary maps (from the 
localisation sequence for A and P). 

a:Hi(E; Z/2) - Hi- 1(F; Z/2) 

such that 

a(c) = l(2(a + l))l(2)a(L,,i,.,j:,;;a l(x; - l)l(xj)). 

However, a is a derivation which satisfies a(l(z)) = 0 if z EA is prime to x1, 
and a(l (x1)) = O so that 

a(c) = l(2(a + l))l(2)(l(x 2 - 1) + l(x3 - 1)) E H 3(F; Z/2). 

Repeating this process with A= Q(x3)[x2] and P = (x2 - 1) we obtain 

a' :Hi(F; Z/2) - Hi-l(Q(xa); Z/2) 

such that 

a'a(c) = l(2(a + 1))[(2) E H 2(0(x 3); Z/2). 

However, l(2(a + 1))[(2) is in the image of the injection H 2(Q; Z/2) -
H 2(Q(x3); Z/2) so that a' a(c) = 0 if and only if 

l(2(a + 1)[(2) = 0 E H 2(Q; Z/2) 

This in turn is true if and only if there exists u, v, w E Q such that 

2(a + l)u 2 + 2v2 = w 2• 

In particular, if a = 3/5, b = 4/5 then 2(a + 1) = 5 E Q* /Q** but 5u 2 + 2v2 = 
w2 is impossible (with u, v, w E Z) since 2 is not a square mod 5. 
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§6. Characteristic classes and ROK(G) 

Let G be a finite group and let K be a field of characteristic different from 
two. Following [Q, §5] one may define the Grothendieck group of orthogonal 
K-representations of G, ROK(G). We will recall the definition in §6.1 below. 

Henceforth, let N/K be a finite Galois extension and let G(N/K) be its 
Galois group. In §§1-5 we studied various characteristic classes-Hasse-Witt 
invariants, the spinor class, Stiefel-Whitney classes-of orthogonal Galois 
representations. However, these classes do not factor through ROK(G(N/K)). 
For example, if G(N/K is a 2-group and K is a number field, then RO0 (G(N/ 
K)) is generated by permutation representations [Seg, p. 379 et seq.] so that 
if the spinor class extended to a map 

Sp:ROo(G(N/K)) - H 2 (K; Z/2) 

we would have Sp[p] = l(2)SW1[p], since this is true for a permutation 
representation. However, such a formula contradicts the example given in §5. 
For this reason it seems appropriate to record here the manner in which these 
characteristic classes transform under the equivalence relations which define 
ROK(G). 

6.1. 
ROK(G) is defined as a quotient of the free abelian group on the isomorphism 

classes of finite dimensional, orthogonal representations (p, V, b ). Here b: V x 
V - K is a non-singular, symmetric bilinear form and p:G - O(V, b) is a 
homomorphism to the orthogonal group of b. The relations imposed are of 
three types. 

a) Scaling 

If a EK* and (ab)(x, y) = ab(x, y) then O(V, b) = O(V, ab) and we set 

(p, V, b) - (p, V, ab). 

b)Sum 

If (p, V, b) is the orthogonal sum of (p', V',b') and (p", V", b") we set 

(p, V, b) - (p', V', b') + (p", V", b"). 

c) Hyperbolic 

Let (p, V, b) be an orthogonal representation. Suppose that WC {v E VI b(v, 
W) = O} = W0 and that W (and hence W0) is a G-invariant subspace. Define 
forms 

and 
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b1(v + W, v' + W) = b(v, v') 

biw EB (v + W0), w' EB (v' + W 0)) = b(w, v') + b(w', v). 

Alsop induces p1:G-. O(W 0/W, b1) and p2:G-. O(W + (V/W 0), b2). With 
these conventions set 

6.2. 
The orthogonal representation p:G(N/K)-. O(V, b) of §6.1, considered as 

a 1-cocycle in H 1(K; O(V EBK K), b ®K K), corresponds to the symmetric 
bilinear form of [F, §2) which we will also denote by (p, V, b), as more briefly 
by (p). Hence, as in §1, (p, V, b) has Hasse-Witt classes, HW;(p), while the 
representation 

(6.3) [p):G(K/K)-. G(N/K)-. O(V, b)-. O(V ®KK, b ®KK) 

has Stiefel-Whitney classes, SW;[p). Also (p, V, b) has a spinor class corre­
sponding to 

Sp[p):G(K/K)-. G(N/K)-. O(V, b) ~ K*/K** 

where 0 is the spinor norm. From [F, §3] or [SN, §2.10) we have the following 
result. 

THEOREM (6.4). Let (p) = (p, V, b) as above and let [p] be as in (6.3). Then 

(i) SW1[p) + HW1(b) = HW1(p) in H1(K; Z/2) 

and 

(ii) HW 2(p) + HW 2(b) = Sp[p) + SW2[p) + HW 1(b)SW1[p) inH 2(K; Z/2). 

Scaling b to ab changes (p, V, b) to a(p, V, b), as one sees from Frohlich's 
explicit description of the bilinear form (p, V, b) [F, §2.Sn]. This leaves [p] 
unchanged but changes the spinor norm of p(g) (only when deg p(g) = -1) by 
a factor, a[O'M, p. 138). These facts have the following easy consequences. 

PROPOSITION (6.5). Let a EK* and set (p) = (p, V, b) and (p") = (p, V, ab), 
as above. Then 

a) SW;[p) = SW;[p"). 

b) HW1(ab) + HW1(b) = rank(b)l(a) = HW1(p) + HW 1(p"). 

c) Sp[p") = Sp[p) + l(a)SW1[p). 

d) HW2(ab) + HW 2(b) + (rank(b) - l)l(a)HW 1(b) = HW2(p") + HW 2(p) + 
(rank(b) - l)l(a)HW 1(p) = ½ rank(b)(rank(b) - l)l(a) 2. 

The following behaviour of SW; and HW; under orthogonal direct sum is 
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well-known. Additivity of the spinor class is clear from the definition and 
[O'M, p. 139]. 

PROPOSITION (6.6). Let (p) = (p, V, b) and (p') = (p', V', b') be orthogonal 
representations and set (p") = (p') EB (p'), the orthogonal sum of (p) and (p'). 
Then 

(a) HW 1(p) + HW1(p') = HW1(p"). 

(b) SW1[P] + SW1[p'] = SW1[p"]. 

(c) Sp[p] + Sp[p'] = Sp[p"]. 

(d) HW2(p) + HW2(p') + HW1(p)HW1(p') = HW2(p"). 

(e) SW2[P] + SW2[p'] + SW1[p]SW1[p'] = SW2[p"]. 

6.7. Now let us sketch the effect of the hyperbolic relation, §6.l(c). By [M-H, 
p. 13, §6.3] and the argument of [M-H, p. 56, §1.1] V has a basis v1, v2 , • • •, 

Va, Va+i, • • ·, Va+t, • • •, V2a+t with respect to which the matrix of bis 

( 0 0 Ia) 
{3= 0 I\ 0 

Ia O 0 

and (v 1, •••,Va)= W, (v 1, • • •, Va+t) = W 0. The matrix of p(g) (g E G(N/K)) 
has the form (XT = transpose of X) 

(
A(g) D(g) E(g) ) 

(6.8) p(G) = 0 B(g) F(g) 
0 0 (A(g) T)- 1 

where A(-) and B(-) are homomorphisms. In addition, B(g) E O(Kt, /\), 

(6.9) { 0 = E(g)A(g) r + A(g)E(g) r + D(g) I\ D(g) r 
F(g) = ((A(g)T)- 1)B(g) I\ D(g)T 

Hence, in §6.l(c), (p1 EB p2) is given in matrix form by 

(p1 EB µ2) = ((~ ~ ~ ), K 2a+t, (~ /\OO t
0
a)) 

0 0 (AT)-l Ia 

That is, (p1 + p 2) is represented by replacing D, E and Fin (6.8) by zero. We 

( 0 Ia) have 1r:Im(p) __,,.. O(Kt, /\) x O(K 2a, Ia O given by 1r(p(g)) = (B(g), 

( A~) A(g~ r)-) The kernel of 1r has a decomposition series with two­

divisible quotients. Hence, all 2-primary cohomology characteristic classes of 
p depend only on the homomorphisms A and B. This shows the following 
result. 
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PROPOSITION (6.10). Let (p), (p1) and (p2) denote the orthogonal representa­

tions of §6.l(c) when G = G(N/K). Then each of the characteristic classes SWi, 
HWi and Sp take the same value on (p) as on (pi EB P2). 
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