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SPECTRAL ANALYSIS AND MEAN-PERIODIC FUNCTIONS 
ON RANK ONE SYMMETRIC SPACES 

BY ANTONI WAWRZYNCZYK 

Introduction 

Let X be a symmetric space of the rank one and of noncompact type. The 
manifold X can be represented as a homogeneous space X = G/K, where G is 
a semisimple noncompact Lie group of finite center and K is a maximal 
compact subgroup of G. The action of G on the space E (X) of smooth functions 
with the usual Frechet topology is defined by the formula: 

Lgf (x) := f (_g-1x) 

The subject of the present paper is the spectral analysis and synthesis in 
E(X) with respect to the family e>..,b of plane waves on X. (The customary 
notation of [13], [19], [20] is used). 

A number of papers have appeared recently dedicated to the study of the 
spectral analysis and synthesis on symmetric spaces (see [1], [2], [3], [4], [6], 
[16], [21] ). All of them however, except [16] and [21] are treating the case of 
the space E (K\X) of spherically symmetric functions on X. Although this is 
precisely the key to the general theory, only the analysis with respect to the 
plane waves neglects all deep differences between the classical theory X = Rn 
(see [5], [7], [12], [17]) and the symmetric space case. 

We prove that the spectral analysis holds on X, i.e. any closed and invariant 
subspace V C E (X) contains some plane wave. As known ( cf. [21]) the spectral 
synthesis fails in general. For example the space E(SL(2, R)/U(l)) contains 
a numerable family of invariant subspaces such that in each of them one can 
distinguish three different subrepresentations of G and only two independent 
classes of plane waves. 

This phenomenon may occur only if the subspace contains a zonal spherical 
function</>>.. for which c(X)c(-:,\) = 0. By c(-) is denoted the Harish-Chandra 
function of X. 

The way of studying the problem is the following. For a given :,\ one can 
consider in the space E(X) a maximal invariant subspace which contains the 
unique zonal spherical function <I>>--. It is the space consisting of those f E E (X) 
which satisfy for some natural k 

(0.1) 

where 

di(g) EC. 

The space of functions satisfying (0.1) is denoted by E>--(kl_ Each element of 

15 
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the space Ex Ck) can be represented as 

(0.2) 

where Tx,i is an analytic functional (Prop. 4.6). This generalizes a result of 
Helgason which refers to the case k = 0. 

Provided that for a given closed, invariant, nontrivial subspace V C E (X) 
we know the set of zonal spherical functions belonging to V and the higher 
numbers m (X) such that <t>/i> E V for all j ::s m (X), we can try to approximate 
the elements of V by linear combinations of the form 

(0.3) 1/;(x) = Lx }:jJ&> JB e;x+p,bU>(x) dTx,i(b). 

According to [21] (see Them 4.8) it is always possible. In the present paper we 
prove that a function f E E(X) can be expanded in a series of the form (0.3) 
if it is mean-periodic with respect to some slowly decreasing distribution. This 
type of expansions was announced in [16]. 

I. Notation and preliminaries 

We shall use the standard notation which is established in classical books 
[14], [15], [19], or in [20]. 

By G = KAN we denote the lwasawa decomposition of the semi-simple Lie 
group G of non-compact type and of finite center. 

The constituent A of this decomposition is a vector group and thus the 
mapping exp: a - A is a diffeomorphism, (here a stands for the Lie algebra of 
the group A). It follows that for every g E G there exists a unique element 
H(g) Ea such that: 

g = k exp H(g)n, where k EK, n EN. 

The subgroup K is a maximal compact subgroup of G so admits a probability 
Haar measure denoted by dk; the subgroup N is nilpotent. Let M and M' be 
respectively the centralizer and normalizer of A in K. Then W: = M' /Mis 
the Weyl group of G. 

The quotient X := G/K is a symmetric space of noncompact type whose 
boundary is defined as B : = K/M = G/MAN. 

The dimension of a is called the rank of X. 

We denote by a,,* the space of complex valued and R-linear functionals on 
a. 

By a plane wave on X with frequency X E 00 * and normal kM E B we mean 
the following function: 

(1.1) 

The plane wave satisfies the multiple identity 

(1.2) 
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Let db denote the K-invariant probability measure on B. 
The Radon-Nikodym derivative (dgb/db) is a plane wave which is denoted 

by e2p,b(gk). The function 

r/>x(x) := J B e;>..+p,b(x) db 

is called the zonal spherical function on X of the frequency A. Applying the 
identity (1.2) we state the relations called the spherical equations: 

(1.3) 

and 

(1.4) 

J K r/>x(gkx) dk = r/>x(gK)r/>x(x) 

The zonal spherical functions satisfy the following symmetry relations, 
which can be found in [14), [15), [18) 

(1.5) r/>x (gk) = rf>-x (g- 1 ) 

(1.6) r/>w>.. = r/>x, W E W. 

By E(X) is denoted the space of infinitely differentiable functions on X 
with its customary topology. The group action on E (X) is defined as: 

Lnf(x) := f (g- 1x). 

E (K\X) stands for the space of those elements / E E (X) which satisfy 

Lkf = f, k EK. 

In particular the zonal spherical functions are contained in E(K\X), as 
well as the functions 

Let us denote also 

The spaces E (X) and E (K\X) are locally convex Frechet reflexive complete 
spaces whose duals E' (X) and E' (K\X) can be identified with the space of 
compactly supported distributions and K-invariant compactly supported dis­
tributions, respectively. 

One can consider the space E' (X) as a subspace of E' (G) composed of 
those elements which are right K-invariant i.e. satisfy 

Tx(f (xk)) = T(f) for all / E E(G), k EK. 

The space E' (G) forms a convolution algebra with the convolution defined 
as 
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If Sis right K-invariant then for any TEE' (G) also T * Sis invariant. 
Thus both E' (X) and E' (K\X) form convolution subalgebras of E' (G). The 
convolution of TEE' (G) and S = fdg (dg denotes a Haar measure on G) is 
given by the formula 

(1.7) T * f (g) = T(L 6/), where /(g) := f(g- 1). 

A linear subspace V C E(X) is called G-invariant if L6 V C V for all g E G. 
A closed subspace is G-invariant iff T * V C V for all T E E' ( G). 

Having given a representation ( r, U) of the compact subgroup Kin a Frechet 
space U we define the operator 

Pu := f K r(k)u dk. 

Obviously 

PE(X) = E(K\X) and PE' (X) = E' (K\X). 

A subspace V c E (K\X) will be called invariant if T * V c V for all T E 
E' (K\X). If V c E(X) is G-invariant then PVis invariant in E(K\X). 

2. Spectral analysis 

We are interested in the spectral analysis in the spaces E(K\X) and E(X). 
As the elementary functions in the first space we consider the zonal spherical 
functions <P>.., which according to (1.6) are parametrized by the set W/a,, *. In 
the space E(X) we take the plane waves e;11.+p,b, (A, b) Ea,,* x Bas the family 
of elementary functions. 

We will say that the spectral analysis holds in the space of E(K\X) if any 
closed and invariant subspace V C E(K\X) contains some zonal spherical 
function. The spectrum of V (denoted Sp V) is the set of those A E a,,* for 
which <P>.. E V. If {<J,>.., <P"A U>, • • •, <P"A Cm>} C Vand <P"A Cm+i> ft. V then the number 
mis called the multiplicity of A in Sp Vandis denoted by m(A). 

The spectral synthesis problem in the space E (K\X) consists in the question 
if the spectrum Sp V and the multiplicities m(A), A E Sp V determine V 
uniquely. 

The main purpose of this section is to prove that the spectral analysis holds 
in the space E (X) that is, every closed and invariant subspace V C E (X) 
contains some plane wave. 

The problem of spectral analysis and synthesis in the space E (K\X) was 
solved in [1] in case of the symmetric space of rank one (see also [21]). On 
the other hand the examples constructed in [3] show that in spaces of rank 
higher than one even the spectral analysis is not possible. 

THEOREM (2.1). [21]. Let X be a rank one symmetric space of the noncompact 
type. If O ¢ V ¢ E (K\X) is closed and invariant, then it is equal to the closed 
linear span of the set of functions <P"A <n>, A E Sp V, n :S m(A). 
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The proof is based on the theorem of Schwartz (17] about the spectral 
analysis and synthesis in the space E(R) applied in the same way as in (11], 
where the case G = SL(2, R) is considered. 

The problem of spectral analysis in E(X) for rank one symmetric space X 
will be solved by reducing it to Thm 2.1. Throughout what follows, all 
symmetric spaces considered are assumed to be of rank one. 

Let V C E (X) be a closed, invariant and nontrivial subspace. The space PV 
is nontrivial closed and invariant in E(K\X). There exists, according to Thm 
2.1, some XE Sp PV. 

Our aim is to prove that at least one of the plane waves eil,+p,b or e-i>.+p,b 
belongs to V. 

Denote by V;, the closed linear span of the set ILg</>x I g E Gj. The space Vx 
is contained in another G-invariant subspace of E(X) defined as follows. 

Ex= If E E(X) I PLcf = c(g)<J>x for all g E G, and some c(g) E q:'} 

On putting the argument x = eK in the defining equation of Ex we observe 

In virtue of the equations (1.3), (1.4) all plane waves eiw>.+p,b, b E B, 
w E W belong to Ex as well as the zonal spherical function </>x and then the 
whole space Vx. Because of (1.6) we have Ewx = Ex for all w E W, what in our 
rank one case means that E-x = Ex. In general the space Ex is not equal to 
Vx, although it is true for "almost all" values of X. This fact was proved by 
Helgason (14] or [15] in a slightly different form. 

Let D (X) be the algebra of all differential operators on X which commute 
with the G-action. 

THEOREM (2.2). (15]. Ex= If E E(X) I Df = (D<J>x)(eK) f, DE D(X) }. 

Let us define the continuous operator A: L2(B) -E(X) by the formula: 

(2.1) 

It is easily seen in virtue of (1.2) that the operator Fx intertwines the 
representation ux defined in L 2 (B) by the formula: 

(2.2) U/-.J;(x) := e;>.+p,b(gK)-.J;(g-1b) 

with the regular representation in E(X): 

(2.3) 

The closure of the image AL2(B) is an invariant subspace of Ex containing 
</>x and hence Vx. 

Definition. The functional X E a,,* is called simple if the mapping Fx is 
injective. 
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The following result is used in the proof of Thm 4.1 in [14]. 

THEOREM (2.3). If-")... is simple then the image A_L 2(B) bewngs to V;.,. 

Proof. Applying the multiplier identity (1.2) and the fact that e2p,b(x) = 
(dgb/db) we obtain 

(2.4) 
= F)\e-ix+p,b(gK), g E G, 

what means that the translations of</>)\ span exactly the space F)\(n), where n 
is the linear span of the family of functions. 

B 3 b - e-iHp,b(gK), g E G. 

On the other hand the condition-")... to be simple can be interpreted as the 
density of n in L 2 (B). Hence the operator F)\ is uniquely determined by its 
values on n. Taking into account that the space V)\ is complete and passing to 
the extension of F)\ we obtain F)\L 2(B) = F)\(Q) C VJ\, what was to be proved. 

COROLLARY (2.4). If-")... is simple then the space V)\ contains the plane waves 
e;Hp,b, b EB. 

Proof. It suffices to prove that the plane wave e;Hp,eM is contained in VJ\, 
because 

(2.5) 

by the very definition of the plane wave. 

Let on be an approximative unit in L 2 (B) i.e. such a sequence of functions 
that 

On 2:: 0, spton '\I eM and J B On db = 1. 

Then F)\on - e;Hp,eM and the corollary is proved. 

THEOREM (2.5). Let X be a symmetric space of rank one and of noncompact 
type and let V be a nontrivial closed invariant subspace of E(X). Assume A E 
Sp PV. Then the functions e;Hp,b or e-iHp,b are contained in V. 

Proof. The decisive step in the proof is based on another theorem belonging 
to Helgason. 

Denote by g = k + a + n the Iwasawa decomposition of the Lie algebra of 
the group G, corresponding to the global decomposition G = KAN. The positive 
restricted roots of g corresponding to the above decomposition are denoted by 
a and 2a if the latter root also appears. By m 2a and ma we denote the 
dimensions of the root spaces of a and 2a respectively. Let us define: 

e(A) := r- 1 qqma + 1 + iA))r- 1 qqma + m2a + iA)). 

The function e- 1 is just the denominator of the Harish-Chandra function c( •) 
appearing in the harmonic analysis on symmetric spaces. 
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THEOREM (2.6). [15]. First, the functional ;\ is simple if! e(:.\) ¥, 0. Second, 
EA= VA and both spaces are irreducible under the action of Giff e(:.\)e(-;\) ¥, 
0. 

Coming back to the proof of Thm 2.5, if :.\ E Sp PV then VA C V. Because 
of the form of the function e( •) at least one of the functionals :.\ and -:,\ is 
simple. In virtue of Corollary 2.4 the proof follows. 

The results of this section can be summarized in the following way: 

THEOREM (2.7). If Xis a symmetric space of rank one and of noncompact 
type then the spectral analysis holds in the space E(X). 

3. Mean periodic functions and spectral synthesis in E(K\X) 

Definition. A function f E E(X) is called mean-periodic if there exists a 
non-zero distribution T E E' (X) such that 

(3.1) T(Lgf) = 0 for all g E G. 

In terms of convolution the above condition can be written as 

(3.2) T * f = 0 or f * T = 0. 

For a fixed T the functions satisfying (3.1) will be called mean periodic with 
respect to Tor T-mean periodic. 

The space of all T-mean periodic functions is denoted by V(T). A function 
f is mean -periodic iff the space Vi being the closed linear span of all translations 
off is a propert subspace of E(X). 

According to Thm 2. 7 the space V1 contains some plane wave. Our aim now 
is to establish sufficient conditions for V1 to be uniquely determined by the 
functions e;>..+p,b <n> contained in it. Next we are going to find some approxi­
mation formulas off by the plane waves. 

Such formulas were proved in [1] for K-invariant mean periodic functions 
and announced in [16] for K-finite functions mean periodic with respect to a 
slowly decreasing distribution. 

Assume first T to be K-invariant. The spherical Fourier transform of T is 
defined as 

(3.3) 

The Fourier transform as a map 

E' (K\X) 3 T - T(.) 

is a homomorphism of the commutative convolution algebra E' (K\X) into 
the algebra A(ac*) of entire functions on ac*• The image of E' (K\X) is 
determined by the symmetric space version of the Paley-Wiener-Schwartz 
theorem [8]. The image of the space g- (K\X) under the spherical Fourier 
transform is equal in rank one case to the set of even functions on Oc * ~ C 
which satisfy: there exists such a C > 0 that for any N > 0 there exists CN > 
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0 for which 

On reasoning exactly as in the classical case one can prove that theimage 
of the space E' (K\X) is precisely the set Ao ( ac *) of entire and even functions 
which satisfy • • • • 

I XC\) I :S A 11 + I ;q Bexp CI Im A I 
for appropriate A, B, C > 0. 

The. space Ao ( ac *) can l>e topologized in such a way that the Fourier 
transform becomes a homeomorphism [10]. 

Definition. The distribution T EE' (K\X) will be called slowly decreasing 
if for any S E E' (K\X) and f E A ( ac *) the condition Tf = S implies f E 
Ao(ac *). 

This concept was introduced and studied by Ehrenpreis in case of classical 
Fourier transform [9]. • 

Since the image of the spherical Fourier transform is just the "even part" of 
the image of the classical Fourier transform one can extend to easily Ehren­
preis results about slowly decreasing distributions onto the symmetric space 
case. 

In the sequel we describe roughly, following the exposition [5], the way of 
deducing the spectral synthesis theorem and approximation formulas under 
the assumption of T being slowly decreasing. The results obtained are also 
contained in [1]. 

One of the most important results of this assumption is that the principal 
ideal generated in A0 ( ac *) by T is closed and consequently also the ideal J = 
{S * TI S E E' (K\X) l is closed in E' (K\X). 

The dual of the quotient space E' (K\X) / J is naturally identified with the 
space V(T) = If E E(K\X) I T * f = 0j. 

Hence 

V(T)' = E' (K\X)/J = Ao(ac*)/J. 

Let Z(T) denote the set of zeros of the function T. If A E Z(T) then m(A) 
will stand for the multiplicity of A. Let us observe that the condition A E Z(T) 
means that A E Sp PV(T). In fact, the condition T(</>1,.) = 0 implies T(Lg</>1,.) 
= T(PLg</>1,.) = </>1,.(g-1)T(</>1,.) = 0. 

In the same way one can check that m(A) = k means that </>1,. Ul E V(T) for 
all i :S k. 

The equivalence class of an element i/; E Ao ( ac *) modulo J is uniquely 
determined by the values i/;U\A) for A E Z(T),j s m(A). 

In order to describe those dou~le sequences ¥1>.,j which correspond to elements 
of the quotient space A0 ( ac *) / J one introduces a grouping in the parameter 
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space. Let 

n := l(i\,j) Ii\ E Z(T), j :s m(i\) l­

, By a grouping of n we mean a decomposition 

n = u k-1 nk where nk n n, = </> for k ¥- l and # nk < oo. 

Denote by Ek the vector spaceC# 11k. 

As proved in [9] for a given slowly decreasing distribution T one can find 
such a grouping {Ok} and such a system of norms II• Ilk in Ek that the space 
V ( T) ' = Ao ( 00 *) / J becomes isomorphfo to the space of all double sequences 
1/;,.,j , ( i\, j ) E n for which the following condition is satisfied: 

( 3A) for some C > 0 supk II it,,k II ke ,...cp. < oo, where it,,k stands for the vector 
(it,,),,,,j ), (i\, j) E nk ordered lexicographically; 

Pk= minrk(Im Ii\ I + log(l + Ii\ 12)). 

The dual space of V(T) is represented by the space of sequences A:= (F),,,,i ), 
( i\, j) E nk such that • • • 

(3.5) 

for every C > O; here II • II k * is the normal dual to II • II kin Ek*. 

We put 

(3.6) 

For fixedFthe series converges absolutely, uniformly over the bounded subsets 
of it,,'s and F's. 

In particular, putting it,= bx and/ E V(T) we have it,,<j)(i\) = </>),,, <i>(x) and 
the formula (3.6) gives the Fourier expansion: 

(3.7) 

The series is uniformly convergent on compact sets in X and for compact 
families of f's. 

By taking in place of ox its partial derivatives with respect to x we obtain 
the uniform convergence on compact sets of the series of derivatives. Hence 
the series (3.7) converges in the space E(K\X). 

In virtue of the above studies one obtains 

THEOREM (3.1). For any slowly decreasing TEE' (K\X) every solution f of 
the equation T * J = 0 admits the Fourier series expansion (3.7). 

The series is convergent on E(K\X) after applying an appropriate grouping 
procedure subordinated to T. 

Let V1 be the smallest invariant subspace of E (K\X) containing the function 
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/.If/is given by (3.7) then 

(3.8) A ( ") 

S * f (x) = L<X,i)Ellk Fx,iSC>,)</Jx' (x) for every SEE' (K\X). 

Since the transforms S(X), SEE' (K\X), separate the points of Z(T) we 
have 

PROPOSITION (3.2). The functions <Px, <Px (1), • • ·, </Jx (j) belong to the space v, 
generated in E(K\X) by the function f iff Fx,o, Fx,1, • • •, Fx,i =#: 0. 

Thus the sum Lk in (3.7) ranges in fact over the spectrum of the space V1 . 

Let us conclude with 

THEOREM (3.3). Every invariant subspace V C V(T) is uniquely determined 
by its spectrum: the set of functions </Jx contained in V and their corresponding 
multiplicities. 

4. On the spectral synthesis in the space E(X) 

The former results will be used for proving the Fourier expansion formulas 
for mean periodic functions in the space E(X). 

We still assume T E E' (K\X) but now we consider the solutions of the 
equation T * / = 0 in the space E(X). 

As a preparatory step we introduce a family of invariant subspaces in E (X) 
extending the family Ex defined in Sec 2. Denote 

(4.1) Ex (j) := {/ E E(X) I J K f(gkx) dk = L~=O Cm(g)</Jx (ml(x)}. 

The elements of the space Ex <i > are then projected by the operator P into the 
space spanned by the functions </Jx, </Jx <1), ••• , </Jx <i>. 

By derivation of the eq. (1.4) with respect to the variable A we find 

(4.2) J K e;>.+p,b <n>(gkx) dk = LJ=O (';) e;>.+p,b <i>(g)</Jx (n-i>(x). 

Thus the functions ei>.+p,b (n>, <Px (n) belong to Ex (n>. 

Let us observe the following filtration: 

(4.3) Ex (n) ::> Ex (n-l) ::> · · · ::> Ex (O) = Ex. 

Let again T denote a slowly decreasing distribution on X If f E V ( T) then 
the function 

1/;g: X 3 x - f K f (gkx) dk = PL6 - 1 f(x) 

belongs to V(T). When granges over a compact set CC G then the functions 
1/16 form a bounded subset in V(T). 

By applying the formula (3.7) to 1/16 we obtain 

(4.4) J K f (gkx) dk = L<X,i)Eok A,i (g)</Jx <i>(x) 
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The functions Fi..,j are differentiable, right K-invariant and the convergence is 
uniform on compact sets in GxX with all derivatives. 

Now apply the formula (4.4) to the function 

x _. f K f K f(gkhkx) dk dk =: F(g, h, x). 

Since 

F(g, h, x) = f K F(gkh, e, x) dk = f K F(g, e, hkx) dx 

we obtain the relations 
( ") ) (')( 

}:(X,j)Enk f K Fx,j (gkh) dk <bx ' (x) = L<X,j)Enk A,j (g f K <bx 1 hkx) dk 

= L(X,j)E!1k A,j(g) }:~=O (~) <bx (ml(h)<bx (j-ml(x). 

The uniqueness of the coefficients implies that the functions FxJ satisfy 

(4.5) f KA,m(X)-j (gkh) dk = }:~=oFx,m(X)-j+m(g)</)x (m)(h) • ( m(A),:j+m). 

In particular we observe that all the functions A,j belong to the space Ex m(xH_ 
Putting x = eK in (4.4) we conclude after consulting Prop. 3.2. 

PROPOSITION (4.1). For every T-mean periodic function f there exists a 
sequence (FxJ) E Em<x>, A E Z(T),j :s m(X), such that 

(4.6) 

and the series is convergent in E(X). 

The nonzero coefficients Fx,j correspond to the values XE Sp PV 1. 

In order to utilize the result obtained above we need some information about 
the structure of the spaces Ex Ul and the position of the functions e;>..+p,b UJ in 
them. 

As proved by Helgason [14] in case e(X)e(-X) :¢: 0, the space Eds irreducible 
under the action of G. One can prove also that under this condition the 
quotient space Ex U+1>/Ex U> is also irreducible (cf. [21]). In virtue of these 
results we have the following statement about the spectral synthesis in the 
space V(T): 

THEOREM (4.2). Let us assume that the distribution TEE' (K\X) is slowly 
decreasing and e(X)e(-X) :¢: 0 for all XE Z(T). Then every closed and invariant 
subspace V C V(T) is completely determined by the spectrum of the space PV. 
The functions e;x+p,b u > contained in V generate the space. 

Proof. Consider the space PV which is nontrivial iff Vis nontrivial. Accord­
ing to Thm 3.3 the space PV is determined uniquely by its spectrum. Propo­
sition 4.1 says that V is contained in the closure of the sum X E EB Sp 
pvE,n<>>, n(X) denoting the multiplicity of X in Sp PV. By the irreducibility of 
the spaces Ex and Ex u+i) /Ex <iJ the functions <bx, • • •, <bx n(X) generate by 



26 ANTONI WAWRZYNCZYK 

translations the space En<>.>. The same is true for the corresponding functions 
e;>.+p,b <n. 

If the functional X E Oc * satisfies e ( X) e ( - X) = 0 the spectral synthesis fails. 
In the case G = SL(2, R) one can observe for all singular values X that E>. 
contains 3 invariant subspaces and only 2 classes of plane waves e;>.+p,b and 
e-;>.+p,b (cf. [21]). 

The structure of the space E>. was studied in consecutive papers by Helgason 
[14], I, II. For the rank one case the problem was completely solved in the 
latter paper. 

Definition. Let (r, V) be a representation of the group G. A vector v E Vis 
called K-finite if the vectors r(k)v, k EK span a finite dimensional subspace 
in V. 

Definition. Analytic functionals on B are linear continuous functionals on 
the space A (B) of real analytic functions of B with its usual topology (see [14] 
or [15]). 

THEOREM (4.3). [14; II]. The K-finite elements of the spaces E>. are precisely 

(4.7) f (x) = f B e;>.+p,b(x)F(b) db, 

where F is a K-finite function on B. 

THEOREM (4.4) [14; I]. If rank X = 1 then each element f EE>. has the form 

(4.8) f (x) = f B e;>.+p,b(x) dT, 

where T is an analytic functional on B. 

THEOREM (4.5). Under the assumptions of Prop. 4.1 for every T-mean 
periodic function f and every X E Z ( T) there exists such a family of analytic 
functionals T>.,j,j = 1, 2, • • •, m(X) that 

(4.9) 

Proof. We already know that 

f (x) = Lk Ln. A.,j (x), 

where A.,j E Ex <n. The spaces E>. <n can be described in the following way: 

PROPOSITION (4.6). All elements of the space E>. <n are given by the formula 

(4.10) f(x) = L~=o fB e;>.+p,b<n>(x) dTn 

where Tn are analytic functionals on B. 

Proof of the Proposition. We apply induction with respect to j. For j = 0 the 
conclusion is just the theorem of Helgason. 

Assume that for j - 1 the statement has been proved and let f EE>. u>. Then 
we have 
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The functions Cn are all right K-invariant, then can be treated as functions 
on X. We observe that ci belongs to Eh. To see this let us calculate 

I= JK f K f (gkhkx) dk dk = Lh=o f K Cn(gkh) dk </>h (nl(x). 

On the other hand 

I= L~=O Cn(g) I K <t>/nl(hkx) dk 

= Lh=o Cn(g) L~=O (:) </>h (m)(h)</>x (n-ml(x). 

Comparing the coefficients of <t>U>(x) in both expressions we find 

J K CJ (gkh) dk = Cj (g)</>x (h), 

what means that ci E Ex. 

Note. By comparing other terms we can see that Cn E Eh <i-n>. 

According to Thm 4.3 the-re exists such an analytic functional Ti that 

ci (gk) = f B e;x+p,b(x) dTi. 

Let us define the function 

if;(x) = f(x) - f B e;x+p,b<i>(x) dTi. 

We obtain 

f K if;(gkx) dk = Lh=o Cn(g)</>h (nl(x) - f Bf K e;x+p,b <il(gkx) dTi 

= Lh=o (cn(g) - JB e;x+p,b(j-n)(g) dTj)</>/nl(x). 

By the definition of Ti the coefficient of </>x <il is zero, hence if; E Ex u-iJ_ 

Applying the induction hypothesis we end the proof of Prop. 4.5 and of the 
theorem. 

By using Thm 4.4 in place of 4.3 we obtain the same way: 

THEOREM (4.7). Assume that a T-mean periodic function f is K-finite. Then 
there exists a sequence of K-finite functions th,i on B such that 

(4.11) f(x) = Lk Lok JB e;x+p,b<il(x)th,i(b) db. 

The last formula may be compared with the Ehrenpreis Fundamental 
Principle Theorem which states that in q;n a solution of the differential 
equation 

P(D) f = 0 (pis a polynomial of n variables, Dk= f d!) 
is represented by 

f(x) = Lk=O f vk Ok e-i(x,z) d,k (z), 

where vk are algebraic varieties contained in the variety of zeros of P, Ok are 
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differential operators of constant coefficients and d"• are Radon measures on 
Vk. 

Finally, let us discuss the case of TE E' (X) without the assumption of K­
invariance. As before, let V(T) denote the set of solutions of the equation 

T(Lgf) = 0 for all g E G. 

If f E V(T) then, in particular, it satisfies also the equation T(PLgf) = 0 for 
all g E G, that is f E V(PT). 

The latter space is the greatest one which contains exactly the same zonal 
spherical functions and their derivatives </Jx (i) which are contained in V(T). If 
the set Z(PT) does not contain the zeroes of the function e(X)e(-X) then 
V(PT) = V(T). This suggests the following 

Definition. A distribution T E E ' (x) is called slowly decreasing if its 
projection PT is slowly decreasing. 

All results of this section are valid for general slowly decreasing distributions 
on rank one symmetric spaces of noncompact type. 

It was proved in [21] (Thm 5.1) that for an arbitrary closed and invariant 
subspace V C E (X) all elements of V can be approximated by means of linear 
combinations Lx;,k Fx;,k with Aj E Sp PV, k :s m(Xj ), Fx;,k E Ex <k>. By applying 
proposition 4.6 we obtain 

THEOREM (4.8). Let V be a closed invariant nontrivial subspace of E(X). 
Then each element of V can be approximated in E (X) by functions of the form 

f(x) = 2,}!:1 "f.::!-o(X;) JB e;\+p,b<m>(x)'Pj,m(b) db 

with Aj E Sp PV and 'Pj,m being K-finite functions on B. 
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